
Journal of Computer Science 2012, 8 (12), 1987-1995

ISSN 1549-3636

© 2012 Science Publications

doi:10.3844/jcssp.2012.1987.1995 Published Online 8 (12) 2012 (http://www.thescipub.com/jcs.toc)

Corresponding Author: Veeralakshmi Ponnuramu, Department of Computer Science and Engineering,

 B.S. Abdur Rahman University, Chennai, Tamilnadu, India

1987 Science Publications

JCS

Data Integrity Proof and

Secure Computation in Cloud Computing

1
Veeralakshmi Ponnuramu and

2
Latha Tamilselvan

1Department of Computer Science and Engineering,

2Department of Information Technology,

School of Computer and Information Sciences,

B.S. Abdur Rahman University, Chennai, Tamilnadu, India

Received 2012-08-09, Revised 2012-08-27; Accepted 2012-12-05

ABSTRACT

Cloud computing is an emerging computing paradigm in which information technology resources and
capacities are provided as services over the internet. The users can remotely store their data into the cloud
so that the users can be relieved from the burden of local data storage and maintenance. The user does not
have any control on the remotely located data. This unique feature possess many security challenges. One of
the important concern is the integrity of data and computations. To ensure correctness of user’s data in the
cloud, an effective scheme assuring the integrity of the data stored in the cloud is proposed. We try to obtain
and prove that the data stored in the cloud is not modified by the provider, thereby ensuring the integrity of
data. To ensure secure computation our scheme uses the Merkle hash tree for checking the correctness of
computations done by the cloud service provider. Algorithms are implemented using java core concepts and
java Remote Method Invocation (RMI) concepts for client-server communication by setting up the private
cloud environment with eucalyptus tool. This method is used to assure data integrity and secured
computations with reduced computational and storage overhead of the client.

Keywords: Cloud Computing Security, Data Storage, Merkle Hash Tree, Commitment Generation

1. INTRODUCTION

Cloud computing is a pay-per-use model for enabling
available, convenient, on-demand network access to a
shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, services) that can
be rapidly provisioned and released with minimal
management effort or service provider interaction. Cloud
computing refers to the delivery of scalable IT resources
over the internet, as opposed to hosting and operating
those resources locally, such as on a college or university
network. Those resources can include applications and
services, as well as the infrastructure on which they
operate. In cloud computing users can access storages and
applications from remote cloud servers by fixed or mobile
terminals. By deploying IT infrastructure and services
over the network, an organization can purchase these
resources on an as-needed basis and avoid the capital costs
of software and hardware. With cloud computing, IT

capacity can be adjusted quickly and easily to
accommodate changes in demand (Armbrust et al., 2009).

1.1. Cloud Computing Services Can Be Classified

into Three Services

Infrastructure As A Service (IAAS), Platform As A
Service (PAAS) and Software As A Service (SAAS).
Infrastructure as a Service (IaaS) involves outsourcing
the equipment used to support operations, including
storage, hardware, servers and networking components.
Platform as a Service (PaaS) is a paradigm for delivering
operating systems and associated services over the
internet without downloads or installation i.e., the
development environment is offered as a service.
Software As A Service (SAAS) is a software distribution
model in which applications are hosted by a vendor or
service provider and made available to customers over a
network, typically the internet. The cheap and powerful
processors, together with the “Software as a Service”

Veeralakshmi Ponnuramu and Latha Tamilselvan / Journal of Computer Science 8 (12) (2012) 1987-1995

1988 Science Publications

JCS

(SaaS) computing architecture, are transforming data
centers into pools of computing service on a huge scale.
The increasing network bandwidth and reliable flexible
network connections make it possible for clients to
subscribe high-quality services from data and software
that reside solely on remote data centers.

There are numerous security and privacy (Pearson,
2009) issues for cloud computing as it encompasses many
technologies including networks, databases, operating
systems, virtualization, resource scheduling, transaction
management, load balancing and memory management.
These issues fall into two broad categories-security issues
faced by cloud providers and security issues faced by their
customers. In most cases, the organizations providing
software, platform, or Infrastructure as-a-Service via the
cloud must ensure that their infrastructure is secure and that
their clients data and applications are protected. The
customer must also ensure that the provider has taken the
proper security measures to protect their information.
Cloud computing moves the application software and
databases to the large data centers, where the management
of data and services may not be trustworthy. This unique
attribute possess many new security challenges. The world
of cloud computing offers many benefits like limitless
flexibility, better reliability, enhanced collaboration,
portability and simpler devices. To enjoy the full benefit
of cloud computing, we need to address the privacy and
security concerns. In this study, the cloud security is
divided into two classes.

1.2. Stored Data Integrity

It refers to ensuring the integrity of outsourced data

stored at the untrusted cloud servers. In this we deal with

the problem of implementing a protocol for obtaining a

proof of data possession in the cloud. This problem tries

to obtain and verify a proof that the data that is stored by

a user at a remote data storage in the cloud is not

modified by the archive and thereby the integrity of data

is assured. This verification system prevent the cloud

storage archives from misrepresenting or modifying the

data stored in it without the consent of the data owner by

using frequent checks on the storage archives.

1.3. Cloud Computation Security

It refers to checking the result of the outsourced
computation by untrusted cloud servers. The cloud user
submits many tasks and data to the cloud server for
computation. The cloud server could cheat the cloud
users in two ways:

• The cloud server computes some functions and

return the cloud users a random number instead, but
claims to have completed all the computations

• The cloud server chooses some wrong data which has
much lowest computational cost and claims to use the
correct data while the original data is missing. In this
study, a scheme using Merkle hash tree to detect the
cheating behavior of cloud service provider is proposed

2. MATERIALS AND METHODS

2.1. Cloud Security Issues

Recently, much of growing interest has been pursued
in the context of remotely stored data verification. Some
security issues arising from the usage of cloud services
and by the underlying technologies used to build the
cross-domain internet-connected collaborations are
discussed in (Jensen et al., 2009). It focuses on WS-
security, transport layer security, browser security, cloud
integrity and binding issues.

2.2. Merkle Hash Tree

Wang et al. (2011) allows some third parity auditor,

not just the clients who originally stored the file on cloud

servers, to have the capability to verify the correctness of

the stored data on demand. Using Merkle hash tree it also

allows the clients to perform block-level operations on the

data files while maintaining the same level of data

correctness assurance. In this, the third party verifier can

misuse the data while they are doing the verification

operation. Lifei et al. (2010) proposed a mechanism for

checking the correctness of computations done by the

cloud service provider. In this, they have used the Merkle

hash tree to check the correctness of the computation. The

drawback in this scheme is, the number of computations

the cloud user submits to the provider must be in the

power of 2, since the Merkle hash tree can be constructed

for the number of nodes of power 2.

2.3. Pre-Computed Tokens

Wang et al. (2009a; 2009b) defined a storage

correctness model, for ensuring the correctness of stored

data. Their scheme relies on precomputed tokens. The

user pre-computes a certain number of short verification

tokens, each covering a random subset of data blocks.

The cloud user challenges the cloud server with a set of

randomly generated block indices. Upon receiving the

challenge, each cloud server computes a short signature

over the specified blocks and returns them to the user. The

values of the signatures must match the corresponding

tokens pre-computed by the user. The main drawback in

this scheme is, the cloud user can able to challenge the

cloud server only a specified number of times.

Veeralakshmi Ponnuramu and Latha Tamilselvan / Journal of Computer Science 8 (12) (2012) 1987-1995

1989 Science Publications

JCS

2.4. Proof Of Retrievability (POR)

 Juels and Kaliski (2007) uses some sentinel characters
embedded in the data file for checking the integrity. The
sentinels are hidden among other blocks in the data file F. In
the verification phase, to check the integrity of the data file,
the verifier challenges the provider by specifying the
positions of a collection of sentinels and asking the provider
to return the associated sentinel values. In this scheme, the
cloud user has to note the positions of the sentinel values
and the number of times that the cloud user challenging the
cloud server is also limited. Ateniese et al. (2007) defined
“Provable Data Possession” model for ensuring possession
of files on untrusted storages. In their scheme, they utilize
RSA- based homomorphic tags for auditing outsourced
data. In this the cloud user has to pre-compute the tags and
store all the tags. This tags need a lot of computation and
storage space. Shacham and Waters (2008) used the
homomorphic properties for checking the integrity of data.
Chang and Xu (2008) used the MAC and reed solomon
code for checking the remote integrity. The homomorrphic
properties, MAC and reed solomon code cannot be applied
for checking the correcteness of computations.

2.5. Problem Statement

One of the important concern is the integrity of data
and computation. Providers must ensure that all critical
data are masked and only authorized users have access to
data in its entirety. Cloud providers must also ensure that
applications available as a service via the cloud are secure
.We consider a general cloud computing model consisting
of n cloud servers, S1,S2,..Sn, which may be under the
control of one or more Cloud Service Providers (CSP).
The cloud user stores the data in the cloud servers. The
cloud user uses the cloud servers for data storage and
submits some tasks for computation. The cloud service
provider can compromise the user in two ways.

2.6. Storage Misuse

The Cloud Service Providers (CSPs) might delete
some rarely accessed data files to reduce the storage cost
or modify the stored data to compromise the data integrity.

2.7. Compromising Computation

The cloud user submits many tasks and data to the

cloud server for computation. The cloud server could

cheat the cloud users in two ways. (i)The cloud users

computes some functions and return the cloud users a

random number instead, but claims to have completed all

the computations. (ii) The cloud server chooses some

wrong data which has much lowest computational cost

and claims to use the correct data while the original data

is missing. In this study, a scheme using Merkle hash

tree to detect the cheating behavior of cloud service

provider is proposed.

2.8. Proposed Algorithm

To ensure correctness of user’s data in the cloud, an
effective scheme is proposed with two salient features:

• Obtain and verify a proof that the data stored in the

cloud is not modified by the provider, thereby the
integrity of data is assured

• To ensure secure computation our scheme uses the
Merkle hash tree for checking the correctness of
computations done by the cloud service provider

2.9. Ensuring Data Integrity

This verification system prevent the cloud storage

archives from misrepresenting or modifying the data

stored in it without the consent of the data owner by

using frequent checks on the storage archives. For

checking the integrity of data, first generate meta-data

for each data block in the file and append it to the

original data. Store this meta-data along with the

original data in the cloud server. When the verifier

wants to verify the integrity of the file F, the user

throws a challenge to the server and asks the server to

respond. The challenge specifies the block number and

the byte number in the data block that has to be

verified. The server responds with two values (i) the

value of meta-data and (ii) the value of original data.

The verifier decrypts the metadata and verifies if the

decrypted value is the same as the value of the original

data. If the values are same then integrity is assured.

The communication between the cloud server and user

is depicted in the Fig. 1.

2.10. Algorithm for Generating the Meta-Data

• Split the datafile F into n data blocks d1, d2, d3,.. dn

• Let each of the n data blocks contains m bytes like

b1, b2, b3,.. bm

• For every data blocks in the data file F, generate the

metadata by using the function Eq. 1:

f(i, j) = i * j* ASII(char[i, j])

.i = 1,2,3,..n; j = 1,2,3,..m
 (1)

 f(i,j)-> refers to the j’th byte in the I’th block

• Append the metadata value to the original data

• Store the appended meta-data and original data into

the cloudserver

Veeralakshmi Ponnuramu and Latha Tamilselvan / Journal of Computer Science 8 (12) (2012) 1987-1995

1990 Science Publications

JCS

Fig. 1. System flow diagram

2.11. Algorithm for Checking the Data Integrity

• The verifier challenges the cloud storage server by

specifying the block number i and the byte number j.

So the verifier sends an message like challenge (i,j)

to the cloud server

• The cloud server looks for the j’th data byte in the

I’th data block, in both the meta-data block and in

the original data block. The cloud server sends two

values M (i,j) and the D (i,j) to the verifier M (i,j)-

>value of meta-data at the jth byte in the I’th block

D (i,j)->value of original-data at the jth byte in the

I’th block

• The verifier do the inverse function Eq. 2:

,

f (i, j) M(i, j) / (i * j)= (2)

• If the equation 3 holds, then the data is not modified

Eq. 3:

,f (i, j) ASII(D(i, j))= (3)

• If the equation.3 does not hold, then the data is

modified. From the steps 3 and 4 of the data integrity

checking algorithm, the modification of stored data

has been detected thereby assuring the data integrity

2.12. Ensuring Secured Computation

 Merkle Hash Tree (MHT) is a well known
authentication structure proposed by Merkle, which is
constructed as a binary tree where each leaf of the tree
is a hash value of authentic values. It is used to ensure
the authenticity and integrity.
 In this proposal, Merkle hash tree is used to ensure
the correctness of computations done by the cloud
server. It is based on the Merkle hash tree commitment
scheme which includes the following procedures:

• Computation commitment generation

• Computation verification

2.13. Computation Commitment Generation

 The cloud server is generating the Merkle hash tree

as commitment to be given to the cloud user. It is

generated using the following steps:

• The cloud user submits a number of
computational service requests to the service
provider i.e., a set of functions F = {f1,f2,…fn}
over the data blocks P = {p1,p2,..pn}

• When the cloud server receives the computing
requests {F,P}, it inputs the data in the position P,
computes each function as yi = fi(Xpi) and the
builds the Merkle hash tree

Veeralakshmi Ponnuramu and Latha Tamilselvan / Journal of Computer Science 8 (12) (2012) 1987-1995

1991 Science Publications

JCS

• The cloud server constructs n leaves with the
values {Vi = H(yi||pi)}. Then the cloud server
builds the complete Merkle tree using these leaf
values from bottom to top, where value of internal
node is the combined hash function of the left and
right child. In this manner, the root R of Merkle
hash tree Fig. 2 is obtained

• The cloud server signs the root R and generate a
signature Sig (R) and sends the computational results

and the signature Sig (R) to the cloud users. The users
uses the Sig (R) to verify the computation results

 Usually, Merkle hash tree can be generated for the
number of leaves in order of power of 2. So, the number
of requests for computations from the cloud user must be
power of 2. To avoid this difficulty dummy nodes are
inserted to make the number of computations as a power
of 2 in Fig. 3.

Fig. 2. Merkle hash tree built by the cloud server

Fig. 3. Merkle hash tree with inserted dummy nodes

Veeralakshmi Ponnuramu and Latha Tamilselvan / Journal of Computer Science 8 (12) (2012) 1987-1995

1992 Science Publications

JCS

2.14. Computation Verification

The cloud user does the computation verification by
using the following steps:

• The cloud user performs verification by selecting a

random subset S = {c1, c2, ..cn} from the domain
[1,n]. and sends this challenge request to cloud server

• For each ci Є S, the cloud server finds in the Merkle

hash tree a path Фci, from the leaf to the root. For

each node on this path Фci, cloud server sends the

sibling sets to cloud user. For example, the

challenge on f4(x4) needs to compute a path Ф4

with the vertices {v4, B, E, R}. To perform this

computation each node‟s sibling vertices is required

to compute the root R. So the cloud server returns

the values X4, Sig (R) and the value set {v3, A, F}

back to the challenger
• The cloud user gets the values from the cloud server

and generates the signature Sig’(R) using the result and
the sibling value set sent by the cloud server. If the
signature Sig’(R) matches with the Sig (R), the cloud
user confirm that the computations are done correctly

3. RESULTS

A private cloud environment is deployed using the

eucalyptus tool which is provided along with the Ubuntu

Enterprise Cloud (UEC). UEC is a stack of applications

from Canonical included with Ubuntu server edition.

UEC includes eucalyptus along with a number of other

open source software. UEC makes it very easy to install

and configure the cloud. Eucalyptus is a software

platform for the implementation of private cloud

computing on computer clusters. It provides an C2-

compatible cloud computing platform and S3-compatible

cloud storage platform. Eucalyptus works with most

currently available Linux distributions including Ubuntu,

Red Hat Enterprise Linux, CentOS, SUSE Linux

Enterprise Server, openSUSE, Debian and Fedora. It can

also host Microsoft Windows images. Eucalyptus is an

acronym for “Elastic Utility Computing Architecture for

Linking Your Programs To Useful Systems”. To install

and configure a basic UEC three systems are required.

Two servers (server1 and server2) will run 32-bit server

version and the third server will run a desktop 32-bit

version (Client1). The desktop version of Ubuntu is

installed on client1 so that firefox or other browsers can

be utilized to access the web interface of UEC. Our

experiment is conducted on three systems with the

configurations listed in Table 1.

Table 1. Hardware configurations

Hardware Server1 Server2 Client1

CPU 1 GHz VT extensions VT extentions

RAM 1 GB 1 GB 1 GB

Disk 5400 rpm 5400 rpm 5400 rpm

 IDE IDE IDE

Disk space 40 GB 40 GB 40 GB

Networking 100 Mbps 100 Mbps 100 Mbps

Table 2. Generated meta data values for the text “cloud

computing”
Character Blockno (i) Blockno (j) Ascii (i,j) Meta data

C 1 1 99 99

L 1 2 108 216

O 1 3 111 333

U 1 4 117 468

D 2 1 100 200

Space 2 2 30 120

C 2 3 99 594

O 2 4 111 888

M 3 1 109 327

P 3 2 113 678

U 3 3 117 1053

T 3 4 116 1392

I 4 1 105 420

N 4 2 110 880

G 4 3 103 1236

Algorithms are implemented using java core concepts

and we have used java Remote Method Invocation

(RMI) concepts for client-server communication.

3.1. Storage Management

Walrus is a storage service in eucalyptus which is
compatible with Amazon’s S3 (Simple Storage Service).
Using walrus the users can store persistent data, which is
organized as buckets and objects. WS3 is a file level
storage system, as compared to the block level storage
system of storage controller. Walrus controller options
can be modified from the Web UI, on the\Configuration”
page under\Walrus Configuration” section. For using
walrus to manage eucalyptus Virtual Machine (VM)
images, Amazon’s tools are used to store/register/delete
them from walrus. Other third party tools can also be
used to interact with walrus directly. Some of third party
tools for interacting with walrus are:

• s3curl-S3 Curl is a command line tool that is a

wrapper around curl

• s3cmd-is a tool that allows command line access to

storage that supports the S3 API

• s3fs-is a tool that allows users to access S3 buckets

as local directories

Veeralakshmi Ponnuramu and Latha Tamilselvan / Journal of Computer Science 8 (12) (2012) 1987-1995

1993 Science Publications

JCS

S3 Curl is used to interact with walrus for storing data in
the server. Users may create, delete, list buckets, put, get,
delete objects, set access control policies, with S3 Curl tool.
A perlscript called s3curl.pl from Amazon is used to create
buckets in the Walrus and store data in the bucket.

For the text file containing the text “cloud
computing” we generated the metadata as follows.

We assume these parameters:

n 4,F data.txt, text "couldcomputing"= = =

The file F is split into 4 blocks of 4 bytes each. The
metadata is generated using the equation.1. The generated
meta value for each byte is displayed in the Table 2.

3.2. Example 1

 After appending metadata to the original data the file

looks as shown in the Fig. 4.
A bucket is created in walrus storage area and

metadata.txt file is stored in the bucket. To check the
integrity of this file a challenge (1,4) is sent to the server.
The server returns M(1,4) as 468 and D(1,4) as „u‟. Using
the equation 2, the inverse function f’(i,j) is calculated:

,
f (1,4) 468 / (1* 4) 117 1, j 4= = = =

117 is the ASCII (u) and D (1,4) returned from the

server is also ‘u’. So the equation. 3 f’ (1,4) = d(1,4) =

117 holds.

3.3. Example 2

Suppose the character at the positions (3,1), (3,2)
are modified to ‘c’ instead of ‘m’ and ‘a’ instead of
the character ‘p’ the metadata.txt file looks as ashown
in the Fig. 5.

To check the integrity of this file a challenge (3,2) is
sent to the server. The server returns M (3,2) as 678 and
D (3,2) as „a”. Using the equation 2, the inverse function
f’(i,j) is calculated:

,f (3,2) 678 / (3* 2) 113i 3, j 2= = = =

113 is the ASCII (p) and D (3, 2) returned from the
server is ‘a’. Now f’(3,2)=113 and ASCII(a) = 97. Here
the equation.3 does not hold. From the example 1 and 2,
it is concluded that modification of data can be detected.
So from this, our proposed algorithm for checking data
integrity has been proved.

3.4. Example 3

Consider the case that, the proposed algorithm has
not been applied to the data and the plain data is stored
as such in the server as shown in the Fig. 6.

Fig. 4. Metadata.txt

Fig. 5. Modified metadata.txt

Fig. 6. Data txt

If the text in the Fig. 6 is modified as “cloud

computing is not an emerging technology” and when the

user retrieves the file, the verifier can read only the

modified text without knowing the modification of the

text. In order to avoid this difficulty, our integrity

checking algorithm can be used.

 For checking the computation integrity, request

consisting of some functions like addition, multiplication,

maximum, minimum, average is given to the server. The

computation results and signature are received from the

server. The computation results and signature is verified

and security of computation is assured.

4. DISCUSSION

4.1. Computation and Storage Cost

The client generates the meta data, encrypt the meta-

data and append the data to the original data and store

the data at the server. This incurs some extra

computation cost in the client side. After the

computation, the size of the file is doubled. So the client

has to get double the file size of storage space from the

cloud service provider. Even though the storage cost is

increasing, the integrity of data stored in the cloud server

is assured here. The comparison of file sizes for the

original data and metadata is depicted in the Fig. 7.

Data security risk stems primarily from loss of

physical, personnel and logical control of data. Issues

include virtualization vulnerabilities (STA, 2008), SaaS

vulnerabilities (e.g., a case in which Google Docs

exposed private user files) Google Docs Glitch Exposes

Private Files, 2011, phishing scams (McMillan, 2007)

and other potential data breaches.

Veeralakshmi Ponnuramu and Latha Tamilselvan / Journal of Computer Science 8 (12) (2012) 1987-1995

1994 Science Publications

JCS

Fig. 7. Comparison the data size of files with meta- data and without meta-data

Table 3. Probability of integrity assurance for the data stored

in the cloud serve

Files Data stored Data stored in

stored in the as plain text the server

cloud server (without metadata) along with metadata

File 1 0.590 1

File 2 0.634 1

File 3 0.950 1

File 4 0.204 1

File 5 1.000 1

File 6 0.500 1

Other data security risks mentioned in (Catteddu and

Hogben, 2009) include data leakage and interception,

economic and distributed denial of service and loss of

encryption keys. Unique risks also arise due to the

multi-tenancy and resource-sharing models. The

inability to fully segregate data or isolate separate users

can lead to undesired exposure of confidential data in

the investigation of a situation involving co-tenants.

Hypervisor vulnerabilities can also be leveraged to

launch attacks across tenant accounts. Data containing

social and national insurance details, health data and

financial information raise issues about authorization,

rights management, authentication and access controls.

 After the detailed analysis, it is found that only a

small percentage of files stored in the cloud server is

integrity assured if the data is stored as the plaindata

(Jensen et al., 2009). From the example 3, the probability

of data integrity assurance is assumed as shown in the

Table 3. But our proposal is giving 100% assurance for all

the files stored in the cloud server.

5. CONCLUSION

In this study a method for checking the integrity of
stored data and the correctness of computations done by
the cloud server is proposed. This scheme is introduced
to reduce the computational and storage overhead of the
client. The main advantage of this method is that, storage
at the client side is minimal, because the client has to
remember only two functions f (i,j) and f’(i,j). This
method works only to static storage of data. It cannot
handle the case when the data need to be dynamically
changed. Future works may be concentrated on working
with dynamically changing data.

6. REFERENCES

Armbrust, M., F. Armando, R. Griffith, D. Anthony and
R. Joseph et al., 2009. Above the clouds: A
Berkeley view of cloud computing. University of
California, Berkeley.
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/
EECS-2009-28.html

Ateniese, G., R. Burns, R. Curtmola, J. Herring and L.
Kissner et al., 2007. Provable data possession at
untrusted stores. Proceedings of the 14th ACM
Conference on Computer and Communications
Security, Oct. 28-31, ACM Press, New York, pp:
598-609. DOI: 10.1145/1315245.1315318

Catteddu, D. and G. Hogben, 2009. Cloud computing risk

assessment. Eur. Netw. Inform. Security Agency.

Veeralakshmi Ponnuramu and Latha Tamilselvan / Journal of Computer Science 8 (12) (2012) 1987-1995

1995 Science Publications

JCS

Chang, E.C. and J. Xu, 2008. Remote integrity check
with dishonest storage server. Proceedings of the
13th European Symposium on Research in
Computer Security: Computer Security, (ESORICS’
08), ACM Press, Heidelberg, pp: 223-237. DOI:
10.1007/978-3-540-88313-5_15

Jensen, M., J. Schwenk, N. Gruschka and L.L. Iacono,

2009. On technical security issues in cloud

computing. Proceedings of the IEEE International

Conference on Cloud Computing, (CLOUD-II

2009), Sept. 21-25, IEEE Xplore Press, Bangalore,

pp: 109-116. DOI: 10.1109/CLOUD.2009.60

Juels, A. and B.S. Kaliski, 2007. Pors: Proofs of

retrievability for large files. Proceedings of the 14th

ACM Conference on Computer and

Communications Security, (CCS’ 07), ACM Press,

New York, pp: 584-597. DOI:

10.1145/1315245.1315317
Lifei, W., H. Zhu, C. Zhenfu and W. Jia, 2010.

SecCloud: Bridging secure storage and computation
in cloud. Proceedings of the 2010 IEEE 30th
International Conference on Distributed Computing
Systems Workshops, Jun., 21-25, IEEE Xplore
Press, Genova, pp: 52-61. DOI:
10.1109/ICDCSW.2010.36

McMillan, R., 2007. Salesforce.com warns customers of

phishing scam.
Pearson, S., 2009. Taking account of privacy when

designing cloud computing services. Proceedings of
the ICSE Workshop on Software Engineering
Challenges of Cloud Computing, (CLOUD’ 09),
ACM Press, USA., pp: 44-52. DOI:
10.1109/CLOUD.2009.5071532

Shacham, H. and B. Waters, 2008. Compact proofs of

retrievability. Proceedings of the 14th International
Conference on the Theory and Application of
Cryptology and Information Security: Advances in
Cryptology, (ASIACRYPT’ 08), ACM Press,
Heidelberg, pp: 90-107. DOI: 10.1007/978-3-540-
89255-7_7

STA, 2008. VMware shared folder bug lets local users on

the guest OS gain elevated privileges on the host OS.

http://securitytracker.com/id/1019493
Wang, C., Q. Wang, K. Ren and W. Lou, 2009a.

Ensuring data storage security in cloud computing.
Proceedings of the17th International Workshop on

Quality of Service, Jul. 13-15, IEEE Xplore Press,
Charleston, SC., pp: 1-9. DOI:
10.1109/IWQoS.2009.5201385

Wang, Q., C. Wang, J. Li, K. Ren and W. Lou, 2009b.

Enabling public verifiability and data dynamics for

storage security in cloud computing. Proceedings of

the 14th European Conference on Research in

Computer Security, (ESORICS’ 09), ACM Press,

Heidelberg, pp: 355-370.
Wang, Q., C. Wang, J. Li, K. Ren and W. Lou, 2011.

Enabling public auditability and data dynamics for
storage security in cloud computing. IEEE Trans.
Parall. Distrib. Syst., 22: 847-858. DOI:
10.1109/TPDS.2010.183

