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ABSTRACT 

The high usage of software system poses high quality demand from users, which results in increased 

software complexity. To address these complexities, software quality engineering methods should be 

updated accordingly and enhance their quality assuring methods. Fault prediction, a sub-task of SQE, is 

designed to solve this issue and provide a strategy to identify faulty parts of a program, so that the testing 

process can concentrate only on those regions. This will improve the testing process and indirectly help to 

reduce development life cycle, project risks, resource and infrastructure costs. Measuring quality using 

software metrics for fault identification is gaining wide interest in software industry as they help to reduce 

time and cost. Existing system use either traditional simple metrics or object oriented metrics during fault 

detection combined with single classifier prediction system. This study combines the use of simple and 

object oriented metrics and uses a multiple classifier prediction system to identify module faults. In this 

study, a total of 20 metrics combining both traditional and OO metrics are used for fault detection. To 

analyze the performance of these metrics on fault module detection, the study proposes the use of ensemble 

classifiers that uses three frequently used classifiers, Back Propagation Neural Network (BPNN), Support 

Vector Machine (SVM) and K-Nearest Neighbour (KNN). A novel classifier aggregation method is 

proposed to combine the classification results. Four methods, Sequential Selection, Random Selection with 

No Replacement, Selection with Bagging and Selection with Boosting, are used to generate different 

variants of input dataset. The three classifiers were grouped together as 2-classifier and 3-classifier 

prediction ensemble models. A total of 16 ensemble models were proposed for fault prediction. The 

performance of the proposed prediciton models was analyzed using accuracy, precision, recall and F-

measure. When comparing with single classifier systems all the proposed models produced improved 

classification performance and among the 16 multiple classifier models, the 3-classifier model that 

combined BPNN, SVM and KNN produced best results. Prediction of software module defection can be 

improved by combining simple and object oriented metrics with multiple classifiers.  

 

Keywords: Multiple Classifiers, Defect Detection, Ensemble Aggregation, Software Quality Metrics 

 

1. INTRODUCTION 

 IN today’s revolution oriented environment, 

software systems play a vital role in a wide range of 

applications, products and services in day-to-day 

activities. The high usage of software system poses high 

quality demand from users, which results in increased 

software complexity. In order to meet this increasing 

quality demand, an engineering discipline called 

“Software Quality Engineering (SQE)” is used. SQE 
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consists of many quality assurance activities like testing, 

fault prevention, fault inspection, fault tolerance, formal 

verification and fault prediction (Lee et al., 2009). 

Testing, a frequently used SQE task to identify faults in 

software systems, has the drawback of being time 

consuming and expensive. This necessitates the need for 

alternative methods. Fault prediction, another sub-task of 

SQE, is designed to solve this issue and provide a 

strategy to identify faulty parts of a program, so that the 

testing process can concentrate only on those regions. 

This will improve the testing process and indirectly help 

to reduce development life cycle, project risks, resource 

and infrastructure costs. 

 Fault prediction models can be either process 

oriented or product oriented. Process oriented models 

focus on development and maintenance while product 

oriented models focus on design and usability issues. 

Software design is a task in software life cycle and is 

involved in developing alternatives, comparing them and 

selecting one alternative that provides maximum 

advantage in terms of cost and time. Inspite of careful 

design, a software system may have faults or bugs in 

design because of bad design practices. They include 

problems ranging from high-level (high complexity) to 

low-level (low complexity) problems. Design defects 

arise because often software design decays after some 

years and changes are applied in hasty manner and affect 

software tasks like maintenance, reusability and 

comprehensibility.  

 Usage of software metrics to evaluate the quality of 

software design has attracted software industries as they 

help to assess large software system quickly at low cost. 

Several studies have focused on evaluating the 

usefulness of software metrics to predict software design 

faults. These techniques can be loosely categorized as 

statistical techniques, structural patterns based 

techniques, software metrics based techniques, 

formal/relational concept analysis and software 

inconsistency management techniques. Classification, a 

frequently used data mining technique, has found wide 

usage in a range of problem domains such as finance, 

medicine, engineering, geology and physics. 

Combining software metrics and classification is a 

methodology that has gained attention recently. This 

study proposes a methodology that combines software 

metrics and a suite of classifiers (ensembling) to design 

a fault prediction model.  

 Existing design metrics include traditional simple 

metrics, program complexity metrics, CK Metrics and 

Mood Metrics all of which have been extensively used in 

prediction of faulty modules both in general non-Object 

Oriented (non-OO) systems and Object Oriented (OO) 

systems. The non-OO metrics have the disadvantage that 

they have no firm theoretical base for demonstrating 

normal fault prediction behavior (Babu and Parvathi, 

2011) and do not consider object oriented paradigms like 

inheritance, encapsulation and passing of message. This 

makes them unsuitable for OO systems. Because of these 

reasons, the traditional metrics are normally combined 

with OO metrics while using with OO systems. The 

study combines traditional simple metrics with OO-

metrics MOOD and MK metrics. A feature selection 

algorithm is used to select only those features that are 

relevant for fault detection during classification. To 

analyze the performance of these metrics on fault module 

detection, the study proposes the use of ensemble 

classifier that uses three frequently used classifiers, Back 

Propagation Neural Network (BPNN), Support Vector 

Machine (SVM) and K-Nearest Neighbour (KNN). A 

novel classifier aggregation method is also proposed.  

2. MATERIALS AND METHODS 

 The main task of classifiers in fault prediction model 

is to identify software models as either defective or 

defect-free modules by performing binary classification. 

The proposed ensemble model fuses the efficiency of 

several single binary classifiers to improve the prediction 

efficiency. In a binary classification model the input data 

for a classification task is a collection of software design 

metrics collected from one or more object oriented 

software projects. The collected metrics are arranged in 

row-wise fashion (records). Each record is denoted as a 

set (X, y) where X is the set of metric values and y is the 

designated class label also known as target attribute. The 

binary classifier maps the input metrics to any of the two 

labels, defective and defect-free. Binary classification 

can be performed using several models like naïve-bayes, 

artificial neural network, support vector machine, 

decision trees and k-nearest neighbor.  

 According to (Park, 2010), when a perfect set of 

feature metrics that best describe the software set is 

given, the accuracy of the resultant classification 

depends on the classifier adopted. Thus, selection of an 

appropriate classifier is crucial and challenging task 

while designing the prediction model. One way to 

accommodate this challenge is by the use of multiple 

classifiers (Neeba and Jawahar, 2009) and then fuse their 

results. Using multiple classifiers (either different 

types of classifiers or different instantiations of the 

same classifier) improve the success rate of the 

prediction model. The concept is termed as fusion or 
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ensemble classification. According to (Oza and 

Tumer, 2008), intuitively, fusion classification allows 

the different needs of a difficult problem to be 

handled by classifiers suited to those particular needs. 

Mathematically, fusion classifier provide an extra 

degree of freedom in the classical bias/variance 

tradeoff, allowing solutions that would be difficult (if 

not impossible) to reach with only a single classifier. 

A general model of fusion classification is presented 

in Fig. 1. 

 The accuracy of a fusion prediction model depends 

on several factors like (i) Classifier Details (number of 

classifiers and type of classifier) (ii) Metrics used by the 

individual classifiers (iii) Partitioning method (Training 

and Testing sets) (iv) the aggregation method and (v) 

Type of training. The techniques and methods used for 

each of the above factor are discussed below. 

2.1. Classifier Details 

 Three classifiers are considered, namely, Feed 

Forward Back Propagation Artificial Neural Network 

(BPNN), Support Vector Machine (SVM) and K-

Nearest Neighbour (KNN). BackPropagation Neural 

Network (BPNN) described by (Bryson and Ho, 1969) 

gained recognition only after 1974 (Alpaydin, 2004) is 

an Artificial Neural Network (ANN) where input data 

moves in only one direction, forward, from the input 

nodes, through the hidden nodes, to the output nodes. 

The BPNN is the most commonly used ANN where 

given a network with a fixed set of units and 

interconnections, employs rules that attempts to 

minimize the Mean Squared Error (MSE) between the 

network output values and the target values for these 

outputs. The BPNN training algorithm consists of two 

phases: Propagation and weight update 

(www.wikipedia.org). The propagation phase consists of 

forward and backward propagation. Forward propagation 

generates the propagation’s output activations, while 

backward propagation uses the training dataset to 

generate the deltas of all output and hidden neurons. The 

weight update phase multiply its output delta and input 

activation to get the gradient of the weight and then bring 

the weight in the opposite direction of the gradient by 

subtracting a ratio of it from the weight. This ratio 

influences the speed and quality of learning and is 

called the learning rate. The sign of a weight indicates 

where the error is increasing. Phases 1 and 2 are 

repeated until performance of the network is satisfied. 

In this study, the training is stopped at the minimum 

of the Mean Squared Error (MSE) on the validation 

set. The MSE is the average error over all samples in 

the set. During experimentation, it was found that 

after 150 cycles, the MSE value reached its minimum 

(0.67 and 0.73 for training and testing respectively) 

and generalized the network. After this point, 

performance of BPNN decreased. 

 

 
 

Fig. 1. Fusion classifier model 
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 The second classifier used is Support Vector 
Machine (SVM), which given a set of input data and 
predicts, for each given input, which of two possible 
classes the input is a member (Gondra, 2008). This 
makes SVM a non-probabilistic binary linear classifier. 
Given a set of training examples, each marked as 
belonging to one of two categories (faulty or not-faulty), 
an SVM training algorithm builds a model that assigns 
new examples into one category or the other. An SVM 
model is a representation of the examples as points in 
space, mapped so that the examples of the separate 
categories are divided by a clear gap that is as wide as 
possible. New examples are then mapped into that same 
space and predicted to belong to a category based on 
which side of the gap they fall on. . 
 The third classifier considered is the K-Nearest 

Neighbour Classifier (Cover and Hart, 1967), which has 

the advantage of achieving consistently high 

performance, without a priori assumptions about the 

distributions from which the training examples are 

drawn. The k-NN classifier considers the k nearest points 

of a data point and assigning the sign of the majority. It 

is common to select k small and odd to break ties 

(typically 1, 3 or 5). Larger k values help to reduce the 

effects of noisy points within the training data set and the 

choice of k is often performed through cross-validation. 

It is a non-parametric classification model, where the 

training dataset is used to classify each member of a 

“target” dataset. The algorithm (Purohit et al., 2011) is 

given below: 
 

• For each row (case) in the target dataset (the set to 

be classified), locate the k closest members (the k 

nearest neighbors) of the training dataset 

• A Euclidean Distance measure is used to calculate 

how close each member of the training set is to the 

target row that is being examined 

• Examine the k nearest neighbors to find the class 

that is very near to the category and assign this 

category to the row being examined 

• Repeat this procedure for the remaining rows (cases) 

in the target set 

• The best choice of k depends upon the data; 

generally, larger values of k reduce the effect of 

noise on the classification, but make boundaries 

between classes less distinct. In experiments, a value 

of 3 was set to ‘k’ (k = 3) 
 

2.2. Metrics Used 

 In this study, the four proposed metrics are 

combined with existing metrics during fault prediction. 

Twenty existing metrics, namely, simple metrics, Mood 

Metrics, CK Metrics and Program Complexity Metrics 

(PCM), were selected for each module. These metrics 

were selected because of their wide usage in fault 

detection. Apart from this, the four proposed metrics 

explained in the previous section are also used. Table 1 

summarizes the selected metrics.  

2.3. Dimensionality Reduction 

 Dimensionality reduction is performed to avoid the 

complexity and degradation introduced by the 

phenomenon called “Curse of Dimensionaility”. A 

Dimensionality reduction algorithm aims to reduce the 

dimension by retaining only those data that are most 

relevant for the classification task. For this purpose, this 

study uses Sensitivity Analysis of data. Sensitivity 

analysis analyzes the importance of each input data in 

relation to a particular model and estimates the rate of 

change of output as a result of varying the inpu values. 

The resulting estimates can be used to determine the 

importance of each input variable (Saltelli et al., 2008). 

This study adopts the Sensitivity Casual Index (SCI) 

proposed by (Goh, 1993) and can be calculated as 

follows. For a classifier, given a set of input Vectors, 

{Vi, n ≤i ≥0}, where Vi belongs to the set of metric 

values collected from the input dataset with ‘d’ 

dimensions, for a classifier with single output Y = f(xi), 

the SCI for each input dimension is calculated using 

Equation 1:  

 
n

j i i ij

i 1

SCI | f (V ) f (V ) |
=

= − + ∆∑  (1) 

 

where, |.| denotes absolute value and ∆ij is a small 

constant added to the jth component Vj of Vi. 

2.4. Normalization 

 This step is used to normalize each input to the 

same range and makes sure that the initial default 

parameter values are appropriate and every input at 

the start has equal important. Further, normalization 

of input data is performed to improve the training 

process of the classifier. A common practice followed 

is to perform normalization by estimating the upper 

and lower bounds for each metric value and then scale 

them using Equation 2: 

 

j j'

j

j j

V min(V )
V

max(V ) min(V )

−
=

−
 (2) 
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Table 1. Design metrics 

Simple metrics RC (Response for a Class) 

Total number Of Lines (LOC) Lack of Cohesion in Methods (LCM) 

BR (Number of methods) Mood Metrics 

NOP (Total Number of Unique Operators) Method Hiding Factor (MHF) 

NOPE (Total Number of Unique Operands) Attribute Hiding Factor (AHF)  

RE (Readability with Comment percentage) Method Inheritance Factor (MIF) 

VO (Volume) Attribute Inheritance Factor (AIF) 

CK Metrics Polymorphism Factor (PF) 

WMC (Weighted Methods per Class) Coupling Factor (CF) 

DIT (Depth of Inheritance Tree) Program Complexity Metrics 

NC (Number of children) Cyclomatic Complexity (CC) 

COC (Coupling between object classes) Fan-In Fan-Out Complexity  

 - Henry’s and Kafura’s (FI-FO) 

 

where, '

jV  is the normalized or scaled value, min(Vj) and 

max(Vj) are the maximum and minimum bounds of the 

metric ‘j’ from ‘n’ observations respectively. The result 

of normalization thus, maps each input value to a closed 

interval [0, 1]. 

2.5. Partitioning Method 

 Four methods are used in this work to generate 

different variants of input dataset that can be used as 

input to classifiers. The selected methods are Sequential 

Selection (SS), Random Selection with No Replacement 

(RSNR), Selection with Bagging (SBA) (Breiman, 

1996) and Selection with Boosting (SBO) (Freund and 

Schapire, 1996). The resultant dataset is then 

partitioned into training and testing set using hold 

method. The holdout method randomly partitions the 

dataset into two independent sets, training and testing. 

Generally, two-thirds of the data are allocated to be 

the training set and remaining one-third is allocated as 

test set. The method is pessimistic because only a 

portion of the initial data is used to derive the model. 

2.6. Proposed Aggregation Method 

 The study uses a combination of majority voting and 
weighting scheme for aggregating the results of the 
classifiers. The modified majority vote scheme that 
combines weighting scheme is explained below. Let the 

decision of the i
th

 classifier be defined as dt, j ∈ {0, 1}, t 
= 1, …, T and j = 1, …, C, where T is the number of 
classifiers and C is the number of classes. If the i

th
 

classifier chooses class ωj, then dt,j = 1 and 0, otherwise. 
In majority voting scheme, a class ωj is chosen, if 
Equation 3: 
 

T Tc
t

t ,J t , j
j 1

t 1 t 1

d max d * w
=

= =

=∑ ∑  (3) 

Here w
t
 is the weight assigned to the classifier t and is 

calculated using Kuncheva (2004) method (Equation 4): 

 
t

t

t

p
w log

1 p
=

−
 (4) 

 

2.7. Type of Training 

 There are various methods used while training a 

multiple classifier system. They are, (i) Training of the 

individual classifiers and applying aggregation that does 

not require further training (ii) Training of the individual 

classifiers followed by training the aggregation (iii) 

Simultaneous training of the whole scheme. The present 

scheme uses the first method where after training the 

individual classifier, further classification is not required. 

This method is selected because the fusion classification 

depends on the result of the individual classifier. 

3. RESULTS 

 The proposed fault-detection classifier systems 

using software metrics was developed using MATLAB 

2009 and all the experiments were conducted on a 

Pentium IV machine with 4GM RAM. The NASA IV 

and V Facility MDP data (http://mdp.ivv.nasa.gov/ 

repository.html), consists of error data from several 

projects. This study uses KC1 project, which consist of 

records related to a real-time project written in C++ 

consisting of 43000 LOC. The dataset has a total of 1571 

modules out of which 319 are faulty modules while 1252 

are non-faulty modules. The feature vector created has 

20 dimensions each representing one selected metric. 

This vector was first normalized to an interval [0, 1] to 

ensure that all the 20 values have equal importance. 

Dimensionality reduction was next performed on this set 

to select discriminating metrics by calculating SCI of 
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each input dimension over the entire normalized dataset 

with ∆ = 0.1. After calculation of SSI, the metrics were 

arranged in descending order of SSI and the top 15 

metrics were selected. The resultant feature vector, after 

dimensionality reduction consists of LOC, BR, RE, 

WMC, DIT, NC, COC, RC, LCM, MHF, AHF, MIF, 

AIF, PF and CF. It can be seen that the resultant reduced 

dataset consists of only those metrics which has impact 

on complexity measure. The reduced dataset with 15 

metrics is then divided into training (943 modules) and 

testing (628) datasets.  

 Four classification performance metrics were used 

during evaluation. They are accuracy, precision, recall 

and F-measure, which are derived from the confusion 

matrix. A 10-fold cross validation method was used with 

all experiments. The performance of the single classifiers 

was compared with that of ensemble classifiers. For 

SVM classifier, the regularization parameter was set to 1, 

the kernel function used was Gaussian and bandwidth of 

the kernet was set to 0.5. For K-NN classifier, k was set 

to 3. For BPNN classifier, 2 hidden nodes with learning 

rate of 0.2 were used. T-Test was performjed at 95% 

confidence level (0.05 level) to analyze the significant 

difference between SVM and BPNN, SVM and KNN. 

The T-test method adopted was proposed by Nadeau and 

Bengio (2003). This method was adopted because it is 

more suited for classifiers adapting 10-fold cross-

validation method (Dietterich, 1998). The traditional 

student ‘t’ test, method produces more false significant 

differences due to the dependencies that exists in the 

estimates. Further, the affect of the proposed metrics in 

classification performance is ascertained by running the 

experiments with the existing metric set containing 20 

metrics and analyzing the classification accuracy. From 

the three single classifiers, 16 ensemble prediction 

models as listed in Table 2 were built. Models 1-3 are 

single classifiers BPNN, KNN and SVM. Models 4-15 

are single classifiers with different variants created using 

SS, RSNR, SBA and SBO techniques. Models 16-19 (2- 

and 3- classifiers) use full normalized data set and do not 

use of SS, RSNR, SBA and SBO techniques.

 Table 3-5 shows the 1-classifier, 2-classifer and 3-

classifier PEM performance of the proposed BPNN, 

KNN and SVM based ensemble predictors based on 

Accuracy, Precision, Recall and F Measure. To 

analyze the advantage obtained by the proposed 

predictors the proposed models are compared with 

their traditional single classifier counterparts. In these 

tables, SD denotes the standard deviation and the 

column Sig denotes the status of significance. 
 

Table 2. Proposed Prediction Ensemble Models (PEM)  

Single classification models: 1. BPNN, 2. KNN, 3. SVM 

---------------------------------------------------------------------------------------------------------------------------------------------------------------- 

 1-Classifier PEM 

 ------------------------------------------------------------------------------------------------ 

BPNN  KNN  SVM  

4. BPNN + SS 8. KNN + SS 12. SVM + SS 

5. BPNN + RSNR 9. KNN + RSNR 13. SVM + RSNR 

6. BPNN + SBA 10. KNN + SBA 14. SVM + SBA 

7. BPNN + SBO 11. KNN + SBO 15. SVM + SBO 

2-Classifier PEM 3-Classifier PEM 

16. BPNN + KNN  19. BPNN + KNN + SVM  

17. KNN + SVM  

18. BPNN + SVM 

 

Table 3. Performance of BPNN based ensemble prediction models 

 Accuracy   Precision   Recall   F Measure 

 ---------------------------------- ---------------------------------- ------------------------------- ------------------------------------ 

Model Mean SD Sig Mean SD Sig Mean SD Sig Mean SD Sig 

1 77.38 3.562  80.12 2.981  84.01 3.015  82.02 3.298 

4 84.26 2.1 Yes (+) 85.74 2.441 Yes (+) 89.87 2.64 Yes (+) 87.76 2.221 Yes (+) 

5 81.92 0.96 Yes (+) 84.11 1.569 No (-) 88.14 1.01 Yes (+) 86.08 0.674 Yes (+) 

6 82.74 1.703 Yes (+) 85.18 2.258 No (-) 88.57 1.27 Yes (+) 86.84 1.188 Yes (+) 

7 82.16 1.201 Yes (+) 84.76 2.697 No (-) 88.22 1.18 Yes (+) 86.46 1.047 Yes (+) 

16 89.91 1.236 Yes (+) 97.36 0.899 Yes (+) 93.44 0.587 Yes (+) 95.36 0.745 Yes (+) 

18 94.55 1.579 Yes (+) 98.93 0.371 Yes (+) 92.94 1.574 Yes (+) 95.84 0.361 Yes (+) 

19 96.17 1.314 Yes (+) 99.94 0.012 Yes (+) 94.16 1.122 Yes (+) 96.96 0.202 Yes (+) 
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Table 4. Performance of KNN based ensemble prediction models 

 Accuracy   Precision   Recall   F Measure 

 ------------------------------------- --------------------------------- ----------------------------- ----------------------------------- 

Model Mean SD Sig Mean SD Sig Mean SD Sig Mean SD Sig 

2 84.98 2.416  89.72 0.126  95.42 0.124  92.48 0.397 

8 89.26 1.841 Yes (+) 91.76 0.441 Yes (+) 96.42 0.441 Yes (+) 94.03 0.241 Yes (+) 

9 87.89 0.306 Yes (+) 89.97 0.314 Yes (+) 95.89 0.467 No (-) 92.84 0.978 Yes (+) 

10 88.98 0.566 Yes (+) 91.12 0.876 Yes (+) 96.16 0.978 No (-) 93.57 0.618 Yes (+) 

11 87.81 0.382 Yes (+) 90.76 0.924 Yes (+) 96.02 0.997 No (-) 93.32 0.344 Yes (+) 

16 89.91 1.236 Yes (+) 97.36 0.899 Yes (+) 93.44 0.587 Yes (+) 95.36 0.745 Yes (+) 

17 90.26 1.077 Yes (+) 97.94 0.821 Yes (+) 92.67 0.687 Yes (+) 95.23 0.798 Yes (+) 

19 96.17 1.314 Yes (+) 99.94 0.012 Yes (+) 94.16 1.122 Yes (+) 96.96 0.202 Yes (+) 

 
Table 5. Performance of SVM based ensemble prediction models 

 Accuracy   Precision  Recall   F Measure 

 ------------------------------------ ------------------------------ ------------------------------- --------------------------------------- 

Model Mean SD Sig Mean SD Sig Mean SD Sig Mean SD Sig 

3 90.62 1.161  90.34 0.04  98.43 0.068  94.21 1.014 

12 93.99 1.991 Yes (+) 92.34 1.461 Yes (+) 98.77 0.241 Yes (+) 95.45 0.166 Yes (+) 

13 92.96 0.989 Yes (+) 91.27 0.785 Yes (+) 98.01 0.114 No (-) 94.52 0.045 Yes (+) 

14 93.41 1.562 Yes (+) 92.08 1.318 Yes (+) 98.54 0.981 No (-) 95.2 0.681 Yes (+) 

15 93.16 1.199 Yes (+) 91.76 0.978 Yes (+) 98.12 0.457 No (-) 94.83 0.457 Yes (+) 

17 90.26 1.077 Yes (+) 97.94 0.821 Yes (+) 92.67 0.687 Yes (+) 95.23 0.798 Yes (+) 

18 94.55 1.579 Yes (+) 98.93 0.371 Yes (+) 92.94 1.574 Yes (+) 95.84 0.361 Yes (+) 

19 96.17 1.314 Yes (+) 99.94 0.012 Yes (+) 94.16 1.122 Yes (+) 96.96 0.202 Yes (+) 

 
In the Sig column, ‘Yes’ denotes that there is a 

significance performance difference between single 

prediction model and the corresponding ensemble 

prediction model, while a ‘No’ represents insignificant 

performance. A ‘+’ sign at the end denotes that 

ensemble prediction model has outperformed the 

corresponding single prediction model, while ‘– ‘ sign 

denotes the opposite.  

4. DISCUSSION 

 From the results it could be seen that the application 

of ensembling concept to predict faulty modules in 

object oriented systems has improved the performance of 

the prediction classifiers. Among the four data selection 

algorithms, the Sequential Selection method produced 

significant improvement to classification performance. 

The statistical result of models 5, 6 and 7 showed 

negative insignificance with respect to precision when 

compared with its base model. But, the recall parameter, 

which plays more important role in classification, 

achieved positive significant difference. The same 

models when compared with F measure (which is 

amalgamation of precision and recall) also showed 

significant difference and outperformed the base model. 

While comparing the three classifiers, the performance 

of SVM-based prediction models is better when 

compared with BPNN and KNN. While considering the 

number of classifiers, the 3-classifier ensemble model 

ranked first when compared with all other models. Thus, 

among the 16 proposed models, the best performance 

was produced by the model that used fusion techniques 

that combines BPNN, KNN and SVM classifiers. 

5. CONCLUSION 

 This study analyzes the application of ensemble 

classification prediction algorithm to predict faulty 

modules in object oriented systems using design metrics. 

For this purpose, 20 metrics that are related to with the 

complexity factor of a system were selected. Sensitivity 

index was used to select relevant metrics for 

classification after normalization. Three classifiers, 

namely, BPNN, SVM and KNN with four data selection 

algorithms, namely, SS, RSNR, SBA and SBO, were 

used to generate ensemble classifiers. These classifiers 

are termed as 1-classifier ensemble prediction models. 

The three classifiers were grouped together to form four 

ensemble models and these were identified as 2-classifier 

and 3-classifier prediction ensemble models. Thus, a 

total of 16 ensemble models were proposed for fault 

prediction in OO systems using design metrics. The 

performance was analyzed using accuracy, precision, 

recall and F-measure. When comparing with single 
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classifier systems all the proposed models produced 

improved classification performance and among the 16 

models, the 3-classifier model that combined BPNN, 

SVM and KNN produced best results. Future research is 

planned in the direction of development of new design 

metrics and their use with the proposed classifiers.  

6. REFERENCES 

Alpaydin, E., 2004. Introduction to Machine Learning. 

1st Edn., MIT Press, Cambridge, Mass., ISBN-10: 

0262012111, pp: 415.  

Babu, S. and R.M.S. Parvathi, 2011. Design dynamic 

coupling measurement of distributed object oriented 

software using trace events. J. Comput. Sci., 7: 770-

778. DOI: 10.3844/jcssp.2011.770.778 

Breiman, L., 1996. Bagging predictors. Mach. Learn., 

24: 123-140. DOI: 10.1007/BF00058655 

Bryson, A.E. and Y.C. Ho, 1969. Applied Optimal 

Control: Optimization, Estimation and Control. 1st 

Edn., Blaisdell Publishing Company, Waltham, pp: 

481. 

Cover, T. and P. Hart, 1967. Nearest neighbor pattern 

classification. IEEE Trans. Inform. Theory, 3: 21-

27. DOI: 10.1109/TIT.1967.1053964 

Dietterich, T.G., 1998. Approximate statistical tests for 

comparing supervised classification learning 

algorithms. Neural Comput., 10: 1895-1923. DOI: 

10.1162/089976698300017197 

Freund, Y. and R.E. Schapire, 1996. Experiments with a 

new boosting algorithm. Proceedings of the 13th 

International Conference on Machine Learning, 

(ML’ 96), Morgan Kaufmann, pp: 148-156.  

Goh, T.H., 1993. Semantic extraction using neural 

network modelling and sensitivity analysis. 

Proceedings of the International Joint Conference on 

Neural Networks, Oct. 25-29, IEEE Xplore Press, 

pp: 1031-1034. DOI: 10.1109/IJCNN.1993.714088 

 

 

 

 

 

 

 

 

 

 

 

Gondra, I., 2008. Applying machine learning to software 

fault-proneness prediction. J. Syst. Software, 81: 

186-195. DOI: 10.1016/j.jss.2007.05.035 

Kuncheva, L.I., 2004. Combining Pattern Classifiers: 

Methods and Algorithms. 1st Edn., John Wiley and 

Sons, Hoboken, New Jersey, ISBN-10: 0471660256, 

pp: 300. 

Lee, J.S., O. Jeong and J. Ryu, 2009. Performance 

evaluation framework for software quality 

engineering. Proceedings of the 9th International 

Conference on Quality Software, Aug. 24-25, IEEE 

Xplore Press, Jeju, pp: 438-443. DOI: 

10.1109/QSIC.2009.65 

Nadeau, C. and Y. Bengio, 2003. Inference for the 

generalization error. Mach. Lear., 52: 239-281. DOI: 

10.1023/A:1024068626366 

Neeba, N.V. and C.V. Jawahar, 2009. Empirical 

evaluation of character classification schemes. 

Proceedings of the 7th International Conference on 

Advances in Pattern Recognition, Feb. 4-6, IEEE 

Xplore Press, Kolkata, pp: 310-313. DOI: 

10.1109/ICAPR.2009.41 

Oza, N.C. and K. Tumer, 2008. Classifier ensembles: 

Select real-world applications. J. Inform. Fusion, 9: 

4-20. DOI: 10.1016/j.inffus.2007.07.002 

Park, D.C., 2010. Image classification using partitioned-

feature based classifier model. Proceedings of the 

IEEE/ACS International Conference on Computer 

Systems and Applications, May 16-19, IEEE Xplore 

Press, Hammamet, pp: 1-6. DOI: 

10.1109/AICCSA.2010.5586971 

Purohit, A., K. Arora, N. Pandit, S. Sharma and S. 

Bansal, 2011. Genetic algorithm for classification of 

web documents. Int. J. Comput. Sci. Appli. 

Saltelli, A., K. Chan and E.M. Scott, 2008. Sensitivity 

Analysis. 1st Edn., John Wiley and Sons, New York, 

ISBN-10: 0470743824, pp: 494. 

 

 


