
Journal of Computer Science 2012, 8 (12), 2075-2082

ISSN 1549-3636

© 2012 Science Publications

doi:10.3844/jcssp.2012.2075.2082 Published Online 8 (12) 2012 (http://www.thescipub.com/jcs.toc)

Corresponding Author: Neelamegam, C., Department of Computer Applications, Sri Venkateswara College of Computer

Aplications and Management, Coimbatore, India

2075 Science Publications

JCS

Enhanced Ensemble Prediction Algorithms for Detecting Faulty

Modules in Object Oriented Systems Using Quality Metrics

1
Neelamegam, C. and

2
M. Punithavalli

1Department of Computer Applications,

Sri Venkateswara College of Computer Aplications and Management, Coimbatore, India
2Department of Computer Applications,

Ramakrishna Engineering College, Coimbatore, India

Received 2012-02-20, Revised 2012-12-20; Accepted 2012-12-20

ABSTRACT

The high usage of software system poses high quality demand from users, which results in increased

software complexity. To address these complexities, software quality engineering methods should be

updated accordingly and enhance their quality assuring methods. Fault prediction, a sub-task of SQE, is

designed to solve this issue and provide a strategy to identify faulty parts of a program, so that the testing

process can concentrate only on those regions. This will improve the testing process and indirectly help to

reduce development life cycle, project risks, resource and infrastructure costs. Measuring quality using

software metrics for fault identification is gaining wide interest in software industry as they help to reduce

time and cost. Existing system use either traditional simple metrics or object oriented metrics during fault

detection combined with single classifier prediction system. This study combines the use of simple and

object oriented metrics and uses a multiple classifier prediction system to identify module faults. In this

study, a total of 20 metrics combining both traditional and OO metrics are used for fault detection. To

analyze the performance of these metrics on fault module detection, the study proposes the use of ensemble

classifiers that uses three frequently used classifiers, Back Propagation Neural Network (BPNN), Support

Vector Machine (SVM) and K-Nearest Neighbour (KNN). A novel classifier aggregation method is

proposed to combine the classification results. Four methods, Sequential Selection, Random Selection with

No Replacement, Selection with Bagging and Selection with Boosting, are used to generate different

variants of input dataset. The three classifiers were grouped together as 2-classifier and 3-classifier

prediction ensemble models. A total of 16 ensemble models were proposed for fault prediction. The

performance of the proposed prediciton models was analyzed using accuracy, precision, recall and F-

measure. When comparing with single classifier systems all the proposed models produced improved

classification performance and among the 16 multiple classifier models, the 3-classifier model that

combined BPNN, SVM and KNN produced best results. Prediction of software module defection can be

improved by combining simple and object oriented metrics with multiple classifiers.

Keywords: Multiple Classifiers, Defect Detection, Ensemble Aggregation, Software Quality Metrics

1. INTRODUCTION

 IN today’s revolution oriented environment,

software systems play a vital role in a wide range of

applications, products and services in day-to-day

activities. The high usage of software system poses high

quality demand from users, which results in increased

software complexity. In order to meet this increasing

quality demand, an engineering discipline called

“Software Quality Engineering (SQE)” is used. SQE

Neelamegam, C. and M. Punithavalli / Journal of Computer Science 8 (12) (2012) 2075-2082

2076 Science Publications

JCS

consists of many quality assurance activities like testing,

fault prevention, fault inspection, fault tolerance, formal

verification and fault prediction (Lee et al., 2009).

Testing, a frequently used SQE task to identify faults in

software systems, has the drawback of being time

consuming and expensive. This necessitates the need for

alternative methods. Fault prediction, another sub-task of

SQE, is designed to solve this issue and provide a

strategy to identify faulty parts of a program, so that the

testing process can concentrate only on those regions.

This will improve the testing process and indirectly help

to reduce development life cycle, project risks, resource

and infrastructure costs.

 Fault prediction models can be either process

oriented or product oriented. Process oriented models

focus on development and maintenance while product

oriented models focus on design and usability issues.

Software design is a task in software life cycle and is

involved in developing alternatives, comparing them and

selecting one alternative that provides maximum

advantage in terms of cost and time. Inspite of careful

design, a software system may have faults or bugs in

design because of bad design practices. They include

problems ranging from high-level (high complexity) to

low-level (low complexity) problems. Design defects

arise because often software design decays after some

years and changes are applied in hasty manner and affect

software tasks like maintenance, reusability and

comprehensibility.

 Usage of software metrics to evaluate the quality of

software design has attracted software industries as they

help to assess large software system quickly at low cost.

Several studies have focused on evaluating the

usefulness of software metrics to predict software design

faults. These techniques can be loosely categorized as

statistical techniques, structural patterns based

techniques, software metrics based techniques,

formal/relational concept analysis and software

inconsistency management techniques. Classification, a

frequently used data mining technique, has found wide

usage in a range of problem domains such as finance,

medicine, engineering, geology and physics.

Combining software metrics and classification is a

methodology that has gained attention recently. This

study proposes a methodology that combines software

metrics and a suite of classifiers (ensembling) to design

a fault prediction model.

 Existing design metrics include traditional simple

metrics, program complexity metrics, CK Metrics and

Mood Metrics all of which have been extensively used in

prediction of faulty modules both in general non-Object

Oriented (non-OO) systems and Object Oriented (OO)

systems. The non-OO metrics have the disadvantage that

they have no firm theoretical base for demonstrating

normal fault prediction behavior (Babu and Parvathi,

2011) and do not consider object oriented paradigms like

inheritance, encapsulation and passing of message. This

makes them unsuitable for OO systems. Because of these

reasons, the traditional metrics are normally combined

with OO metrics while using with OO systems. The

study combines traditional simple metrics with OO-

metrics MOOD and MK metrics. A feature selection

algorithm is used to select only those features that are

relevant for fault detection during classification. To

analyze the performance of these metrics on fault module

detection, the study proposes the use of ensemble

classifier that uses three frequently used classifiers, Back

Propagation Neural Network (BPNN), Support Vector

Machine (SVM) and K-Nearest Neighbour (KNN). A

novel classifier aggregation method is also proposed.

2. MATERIALS AND METHODS

 The main task of classifiers in fault prediction model

is to identify software models as either defective or

defect-free modules by performing binary classification.

The proposed ensemble model fuses the efficiency of

several single binary classifiers to improve the prediction

efficiency. In a binary classification model the input data

for a classification task is a collection of software design

metrics collected from one or more object oriented

software projects. The collected metrics are arranged in

row-wise fashion (records). Each record is denoted as a

set (X, y) where X is the set of metric values and y is the

designated class label also known as target attribute. The

binary classifier maps the input metrics to any of the two

labels, defective and defect-free. Binary classification

can be performed using several models like naïve-bayes,

artificial neural network, support vector machine,

decision trees and k-nearest neighbor.

 According to (Park, 2010), when a perfect set of

feature metrics that best describe the software set is

given, the accuracy of the resultant classification

depends on the classifier adopted. Thus, selection of an

appropriate classifier is crucial and challenging task

while designing the prediction model. One way to

accommodate this challenge is by the use of multiple

classifiers (Neeba and Jawahar, 2009) and then fuse their

results. Using multiple classifiers (either different

types of classifiers or different instantiations of the

same classifier) improve the success rate of the

prediction model. The concept is termed as fusion or

Neelamegam, C. and M. Punithavalli / Journal of Computer Science 8 (12) (2012) 2075-2082

2077 Science Publications

JCS

ensemble classification. According to (Oza and

Tumer, 2008), intuitively, fusion classification allows

the different needs of a difficult problem to be

handled by classifiers suited to those particular needs.

Mathematically, fusion classifier provide an extra

degree of freedom in the classical bias/variance

tradeoff, allowing solutions that would be difficult (if

not impossible) to reach with only a single classifier.

A general model of fusion classification is presented

in Fig. 1.

 The accuracy of a fusion prediction model depends

on several factors like (i) Classifier Details (number of

classifiers and type of classifier) (ii) Metrics used by the

individual classifiers (iii) Partitioning method (Training

and Testing sets) (iv) the aggregation method and (v)

Type of training. The techniques and methods used for

each of the above factor are discussed below.

2.1. Classifier Details

 Three classifiers are considered, namely, Feed

Forward Back Propagation Artificial Neural Network

(BPNN), Support Vector Machine (SVM) and K-

Nearest Neighbour (KNN). BackPropagation Neural

Network (BPNN) described by (Bryson and Ho, 1969)

gained recognition only after 1974 (Alpaydin, 2004) is

an Artificial Neural Network (ANN) where input data

moves in only one direction, forward, from the input

nodes, through the hidden nodes, to the output nodes.

The BPNN is the most commonly used ANN where

given a network with a fixed set of units and

interconnections, employs rules that attempts to

minimize the Mean Squared Error (MSE) between the

network output values and the target values for these

outputs. The BPNN training algorithm consists of two

phases: Propagation and weight update

(www.wikipedia.org). The propagation phase consists of

forward and backward propagation. Forward propagation

generates the propagation’s output activations, while

backward propagation uses the training dataset to

generate the deltas of all output and hidden neurons. The

weight update phase multiply its output delta and input

activation to get the gradient of the weight and then bring

the weight in the opposite direction of the gradient by

subtracting a ratio of it from the weight. This ratio

influences the speed and quality of learning and is

called the learning rate. The sign of a weight indicates

where the error is increasing. Phases 1 and 2 are

repeated until performance of the network is satisfied.

In this study, the training is stopped at the minimum

of the Mean Squared Error (MSE) on the validation

set. The MSE is the average error over all samples in

the set. During experimentation, it was found that

after 150 cycles, the MSE value reached its minimum

(0.67 and 0.73 for training and testing respectively)

and generalized the network. After this point,

performance of BPNN decreased.

Fig. 1. Fusion classifier model

Neelamegam, C. and M. Punithavalli / Journal of Computer Science 8 (12) (2012) 2075-2082

2078 Science Publications

JCS

 The second classifier used is Support Vector
Machine (SVM), which given a set of input data and
predicts, for each given input, which of two possible
classes the input is a member (Gondra, 2008). This
makes SVM a non-probabilistic binary linear classifier.
Given a set of training examples, each marked as
belonging to one of two categories (faulty or not-faulty),
an SVM training algorithm builds a model that assigns
new examples into one category or the other. An SVM
model is a representation of the examples as points in
space, mapped so that the examples of the separate
categories are divided by a clear gap that is as wide as
possible. New examples are then mapped into that same
space and predicted to belong to a category based on
which side of the gap they fall on. .
 The third classifier considered is the K-Nearest

Neighbour Classifier (Cover and Hart, 1967), which has

the advantage of achieving consistently high

performance, without a priori assumptions about the

distributions from which the training examples are

drawn. The k-NN classifier considers the k nearest points

of a data point and assigning the sign of the majority. It

is common to select k small and odd to break ties

(typically 1, 3 or 5). Larger k values help to reduce the

effects of noisy points within the training data set and the

choice of k is often performed through cross-validation.

It is a non-parametric classification model, where the

training dataset is used to classify each member of a

“target” dataset. The algorithm (Purohit et al., 2011) is

given below:

• For each row (case) in the target dataset (the set to

be classified), locate the k closest members (the k

nearest neighbors) of the training dataset

• A Euclidean Distance measure is used to calculate

how close each member of the training set is to the

target row that is being examined

• Examine the k nearest neighbors to find the class

that is very near to the category and assign this

category to the row being examined

• Repeat this procedure for the remaining rows (cases)

in the target set

• The best choice of k depends upon the data;

generally, larger values of k reduce the effect of

noise on the classification, but make boundaries

between classes less distinct. In experiments, a value

of 3 was set to ‘k’ (k = 3)

2.2. Metrics Used

 In this study, the four proposed metrics are

combined with existing metrics during fault prediction.

Twenty existing metrics, namely, simple metrics, Mood

Metrics, CK Metrics and Program Complexity Metrics

(PCM), were selected for each module. These metrics

were selected because of their wide usage in fault

detection. Apart from this, the four proposed metrics

explained in the previous section are also used. Table 1

summarizes the selected metrics.

2.3. Dimensionality Reduction

 Dimensionality reduction is performed to avoid the

complexity and degradation introduced by the

phenomenon called “Curse of Dimensionaility”. A

Dimensionality reduction algorithm aims to reduce the

dimension by retaining only those data that are most

relevant for the classification task. For this purpose, this

study uses Sensitivity Analysis of data. Sensitivity

analysis analyzes the importance of each input data in

relation to a particular model and estimates the rate of

change of output as a result of varying the inpu values.

The resulting estimates can be used to determine the

importance of each input variable (Saltelli et al., 2008).

This study adopts the Sensitivity Casual Index (SCI)

proposed by (Goh, 1993) and can be calculated as

follows. For a classifier, given a set of input Vectors,

{Vi, n ≤i ≥0}, where Vi belongs to the set of metric

values collected from the input dataset with ‘d’

dimensions, for a classifier with single output Y = f(xi),

the SCI for each input dimension is calculated using

Equation 1:

n

j i i ij

i 1

SCI | f (V) f (V) |
=

= − + ∆∑ (1)

where, |.| denotes absolute value and ∆ij is a small

constant added to the jth component Vj of Vi.

2.4. Normalization

 This step is used to normalize each input to the

same range and makes sure that the initial default

parameter values are appropriate and every input at

the start has equal important. Further, normalization

of input data is performed to improve the training

process of the classifier. A common practice followed

is to perform normalization by estimating the upper

and lower bounds for each metric value and then scale

them using Equation 2:

j j'

j

j j

V min(V)
V

max(V) min(V)

−
=

−
 (2)

Neelamegam, C. and M. Punithavalli / Journal of Computer Science 8 (12) (2012) 2075-2082

2079 Science Publications

JCS

Table 1. Design metrics

Simple metrics RC (Response for a Class)

Total number Of Lines (LOC) Lack of Cohesion in Methods (LCM)

BR (Number of methods) Mood Metrics

NOP (Total Number of Unique Operators) Method Hiding Factor (MHF)

NOPE (Total Number of Unique Operands) Attribute Hiding Factor (AHF)

RE (Readability with Comment percentage) Method Inheritance Factor (MIF)

VO (Volume) Attribute Inheritance Factor (AIF)

CK Metrics Polymorphism Factor (PF)

WMC (Weighted Methods per Class) Coupling Factor (CF)

DIT (Depth of Inheritance Tree) Program Complexity Metrics

NC (Number of children) Cyclomatic Complexity (CC)

COC (Coupling between object classes) Fan-In Fan-Out Complexity

 - Henry’s and Kafura’s (FI-FO)

where, '

jV is the normalized or scaled value, min(Vj) and

max(Vj) are the maximum and minimum bounds of the

metric ‘j’ from ‘n’ observations respectively. The result

of normalization thus, maps each input value to a closed

interval [0, 1].

2.5. Partitioning Method

 Four methods are used in this work to generate

different variants of input dataset that can be used as

input to classifiers. The selected methods are Sequential

Selection (SS), Random Selection with No Replacement

(RSNR), Selection with Bagging (SBA) (Breiman,

1996) and Selection with Boosting (SBO) (Freund and

Schapire, 1996). The resultant dataset is then

partitioned into training and testing set using hold

method. The holdout method randomly partitions the

dataset into two independent sets, training and testing.

Generally, two-thirds of the data are allocated to be

the training set and remaining one-third is allocated as

test set. The method is pessimistic because only a

portion of the initial data is used to derive the model.

2.6. Proposed Aggregation Method

 The study uses a combination of majority voting and
weighting scheme for aggregating the results of the
classifiers. The modified majority vote scheme that
combines weighting scheme is explained below. Let the

decision of the i
th

 classifier be defined as dt, j ∈ {0, 1}, t
= 1, …, T and j = 1, …, C, where T is the number of
classifiers and C is the number of classes. If the i

th

classifier chooses class ωj, then dt,j = 1 and 0, otherwise.
In majority voting scheme, a class ωj is chosen, if
Equation 3:

T Tc
t

t ,J t , j
j 1

t 1 t 1

d max d * w
=

= =

=∑ ∑ (3)

Here w
t
 is the weight assigned to the classifier t and is

calculated using Kuncheva (2004) method (Equation 4):

t

t

t

p
w log

1 p
=

−
 (4)

2.7. Type of Training

 There are various methods used while training a

multiple classifier system. They are, (i) Training of the

individual classifiers and applying aggregation that does

not require further training (ii) Training of the individual

classifiers followed by training the aggregation (iii)

Simultaneous training of the whole scheme. The present

scheme uses the first method where after training the

individual classifier, further classification is not required.

This method is selected because the fusion classification

depends on the result of the individual classifier.

3. RESULTS

 The proposed fault-detection classifier systems

using software metrics was developed using MATLAB

2009 and all the experiments were conducted on a

Pentium IV machine with 4GM RAM. The NASA IV

and V Facility MDP data (http://mdp.ivv.nasa.gov/

repository.html), consists of error data from several

projects. This study uses KC1 project, which consist of

records related to a real-time project written in C++

consisting of 43000 LOC. The dataset has a total of 1571

modules out of which 319 are faulty modules while 1252

are non-faulty modules. The feature vector created has

20 dimensions each representing one selected metric.

This vector was first normalized to an interval [0, 1] to

ensure that all the 20 values have equal importance.

Dimensionality reduction was next performed on this set

to select discriminating metrics by calculating SCI of

Neelamegam, C. and M. Punithavalli / Journal of Computer Science 8 (12) (2012) 2075-2082

2080 Science Publications

JCS

each input dimension over the entire normalized dataset

with ∆ = 0.1. After calculation of SSI, the metrics were

arranged in descending order of SSI and the top 15

metrics were selected. The resultant feature vector, after

dimensionality reduction consists of LOC, BR, RE,

WMC, DIT, NC, COC, RC, LCM, MHF, AHF, MIF,

AIF, PF and CF. It can be seen that the resultant reduced

dataset consists of only those metrics which has impact

on complexity measure. The reduced dataset with 15

metrics is then divided into training (943 modules) and

testing (628) datasets.

 Four classification performance metrics were used

during evaluation. They are accuracy, precision, recall

and F-measure, which are derived from the confusion

matrix. A 10-fold cross validation method was used with

all experiments. The performance of the single classifiers

was compared with that of ensemble classifiers. For

SVM classifier, the regularization parameter was set to 1,

the kernel function used was Gaussian and bandwidth of

the kernet was set to 0.5. For K-NN classifier, k was set

to 3. For BPNN classifier, 2 hidden nodes with learning

rate of 0.2 were used. T-Test was performjed at 95%

confidence level (0.05 level) to analyze the significant

difference between SVM and BPNN, SVM and KNN.

The T-test method adopted was proposed by Nadeau and

Bengio (2003). This method was adopted because it is

more suited for classifiers adapting 10-fold cross-

validation method (Dietterich, 1998). The traditional

student ‘t’ test, method produces more false significant

differences due to the dependencies that exists in the

estimates. Further, the affect of the proposed metrics in

classification performance is ascertained by running the

experiments with the existing metric set containing 20

metrics and analyzing the classification accuracy. From

the three single classifiers, 16 ensemble prediction

models as listed in Table 2 were built. Models 1-3 are

single classifiers BPNN, KNN and SVM. Models 4-15

are single classifiers with different variants created using

SS, RSNR, SBA and SBO techniques. Models 16-19 (2-

and 3- classifiers) use full normalized data set and do not

use of SS, RSNR, SBA and SBO techniques.

 Table 3-5 shows the 1-classifier, 2-classifer and 3-

classifier PEM performance of the proposed BPNN,

KNN and SVM based ensemble predictors based on

Accuracy, Precision, Recall and F Measure. To

analyze the advantage obtained by the proposed

predictors the proposed models are compared with

their traditional single classifier counterparts. In these

tables, SD denotes the standard deviation and the

column Sig denotes the status of significance.

Table 2. Proposed Prediction Ensemble Models (PEM)

Single classification models: 1. BPNN, 2. KNN, 3. SVM

--

 1-Classifier PEM

 --

BPNN KNN SVM

4. BPNN + SS 8. KNN + SS 12. SVM + SS

5. BPNN + RSNR 9. KNN + RSNR 13. SVM + RSNR

6. BPNN + SBA 10. KNN + SBA 14. SVM + SBA

7. BPNN + SBO 11. KNN + SBO 15. SVM + SBO

2-Classifier PEM 3-Classifier PEM

16. BPNN + KNN 19. BPNN + KNN + SVM

17. KNN + SVM

18. BPNN + SVM

Table 3. Performance of BPNN based ensemble prediction models

 Accuracy Precision Recall F Measure

 ---------------------------------- ---------------------------------- ------------------------------- ------------------------------------

Model Mean SD Sig Mean SD Sig Mean SD Sig Mean SD Sig

1 77.38 3.562 80.12 2.981 84.01 3.015 82.02 3.298

4 84.26 2.1 Yes (+) 85.74 2.441 Yes (+) 89.87 2.64 Yes (+) 87.76 2.221 Yes (+)

5 81.92 0.96 Yes (+) 84.11 1.569 No (-) 88.14 1.01 Yes (+) 86.08 0.674 Yes (+)

6 82.74 1.703 Yes (+) 85.18 2.258 No (-) 88.57 1.27 Yes (+) 86.84 1.188 Yes (+)

7 82.16 1.201 Yes (+) 84.76 2.697 No (-) 88.22 1.18 Yes (+) 86.46 1.047 Yes (+)

16 89.91 1.236 Yes (+) 97.36 0.899 Yes (+) 93.44 0.587 Yes (+) 95.36 0.745 Yes (+)

18 94.55 1.579 Yes (+) 98.93 0.371 Yes (+) 92.94 1.574 Yes (+) 95.84 0.361 Yes (+)

19 96.17 1.314 Yes (+) 99.94 0.012 Yes (+) 94.16 1.122 Yes (+) 96.96 0.202 Yes (+)

Neelamegam, C. and M. Punithavalli / Journal of Computer Science 8 (12) (2012) 2075-2082

2081 Science Publications

JCS

Table 4. Performance of KNN based ensemble prediction models

 Accuracy Precision Recall F Measure

 ------------------------------------- --------------------------------- ----------------------------- -----------------------------------

Model Mean SD Sig Mean SD Sig Mean SD Sig Mean SD Sig

2 84.98 2.416 89.72 0.126 95.42 0.124 92.48 0.397

8 89.26 1.841 Yes (+) 91.76 0.441 Yes (+) 96.42 0.441 Yes (+) 94.03 0.241 Yes (+)

9 87.89 0.306 Yes (+) 89.97 0.314 Yes (+) 95.89 0.467 No (-) 92.84 0.978 Yes (+)

10 88.98 0.566 Yes (+) 91.12 0.876 Yes (+) 96.16 0.978 No (-) 93.57 0.618 Yes (+)

11 87.81 0.382 Yes (+) 90.76 0.924 Yes (+) 96.02 0.997 No (-) 93.32 0.344 Yes (+)

16 89.91 1.236 Yes (+) 97.36 0.899 Yes (+) 93.44 0.587 Yes (+) 95.36 0.745 Yes (+)

17 90.26 1.077 Yes (+) 97.94 0.821 Yes (+) 92.67 0.687 Yes (+) 95.23 0.798 Yes (+)

19 96.17 1.314 Yes (+) 99.94 0.012 Yes (+) 94.16 1.122 Yes (+) 96.96 0.202 Yes (+)

Table 5. Performance of SVM based ensemble prediction models

 Accuracy Precision Recall F Measure

 ------------------------------------ ------------------------------ ------------------------------- ---------------------------------------

Model Mean SD Sig Mean SD Sig Mean SD Sig Mean SD Sig

3 90.62 1.161 90.34 0.04 98.43 0.068 94.21 1.014

12 93.99 1.991 Yes (+) 92.34 1.461 Yes (+) 98.77 0.241 Yes (+) 95.45 0.166 Yes (+)

13 92.96 0.989 Yes (+) 91.27 0.785 Yes (+) 98.01 0.114 No (-) 94.52 0.045 Yes (+)

14 93.41 1.562 Yes (+) 92.08 1.318 Yes (+) 98.54 0.981 No (-) 95.2 0.681 Yes (+)

15 93.16 1.199 Yes (+) 91.76 0.978 Yes (+) 98.12 0.457 No (-) 94.83 0.457 Yes (+)

17 90.26 1.077 Yes (+) 97.94 0.821 Yes (+) 92.67 0.687 Yes (+) 95.23 0.798 Yes (+)

18 94.55 1.579 Yes (+) 98.93 0.371 Yes (+) 92.94 1.574 Yes (+) 95.84 0.361 Yes (+)

19 96.17 1.314 Yes (+) 99.94 0.012 Yes (+) 94.16 1.122 Yes (+) 96.96 0.202 Yes (+)

In the Sig column, ‘Yes’ denotes that there is a

significance performance difference between single

prediction model and the corresponding ensemble

prediction model, while a ‘No’ represents insignificant

performance. A ‘+’ sign at the end denotes that

ensemble prediction model has outperformed the

corresponding single prediction model, while ‘– ‘ sign

denotes the opposite.

4. DISCUSSION

 From the results it could be seen that the application

of ensembling concept to predict faulty modules in

object oriented systems has improved the performance of

the prediction classifiers. Among the four data selection

algorithms, the Sequential Selection method produced

significant improvement to classification performance.

The statistical result of models 5, 6 and 7 showed

negative insignificance with respect to precision when

compared with its base model. But, the recall parameter,

which plays more important role in classification,

achieved positive significant difference. The same

models when compared with F measure (which is

amalgamation of precision and recall) also showed

significant difference and outperformed the base model.

While comparing the three classifiers, the performance

of SVM-based prediction models is better when

compared with BPNN and KNN. While considering the

number of classifiers, the 3-classifier ensemble model

ranked first when compared with all other models. Thus,

among the 16 proposed models, the best performance

was produced by the model that used fusion techniques

that combines BPNN, KNN and SVM classifiers.

5. CONCLUSION

 This study analyzes the application of ensemble

classification prediction algorithm to predict faulty

modules in object oriented systems using design metrics.

For this purpose, 20 metrics that are related to with the

complexity factor of a system were selected. Sensitivity

index was used to select relevant metrics for

classification after normalization. Three classifiers,

namely, BPNN, SVM and KNN with four data selection

algorithms, namely, SS, RSNR, SBA and SBO, were

used to generate ensemble classifiers. These classifiers

are termed as 1-classifier ensemble prediction models.

The three classifiers were grouped together to form four

ensemble models and these were identified as 2-classifier

and 3-classifier prediction ensemble models. Thus, a

total of 16 ensemble models were proposed for fault

prediction in OO systems using design metrics. The

performance was analyzed using accuracy, precision,

recall and F-measure. When comparing with single

Neelamegam, C. and M. Punithavalli / Journal of Computer Science 8 (12) (2012) 2075-2082

2082 Science Publications

JCS

classifier systems all the proposed models produced

improved classification performance and among the 16

models, the 3-classifier model that combined BPNN,

SVM and KNN produced best results. Future research is

planned in the direction of development of new design

metrics and their use with the proposed classifiers.

6. REFERENCES

Alpaydin, E., 2004. Introduction to Machine Learning.

1st Edn., MIT Press, Cambridge, Mass., ISBN-10:

0262012111, pp: 415.

Babu, S. and R.M.S. Parvathi, 2011. Design dynamic

coupling measurement of distributed object oriented

software using trace events. J. Comput. Sci., 7: 770-

778. DOI: 10.3844/jcssp.2011.770.778

Breiman, L., 1996. Bagging predictors. Mach. Learn.,

24: 123-140. DOI: 10.1007/BF00058655

Bryson, A.E. and Y.C. Ho, 1969. Applied Optimal

Control: Optimization, Estimation and Control. 1st

Edn., Blaisdell Publishing Company, Waltham, pp:

481.

Cover, T. and P. Hart, 1967. Nearest neighbor pattern

classification. IEEE Trans. Inform. Theory, 3: 21-

27. DOI: 10.1109/TIT.1967.1053964

Dietterich, T.G., 1998. Approximate statistical tests for

comparing supervised classification learning

algorithms. Neural Comput., 10: 1895-1923. DOI:

10.1162/089976698300017197

Freund, Y. and R.E. Schapire, 1996. Experiments with a

new boosting algorithm. Proceedings of the 13th

International Conference on Machine Learning,

(ML’ 96), Morgan Kaufmann, pp: 148-156.

Goh, T.H., 1993. Semantic extraction using neural

network modelling and sensitivity analysis.

Proceedings of the International Joint Conference on

Neural Networks, Oct. 25-29, IEEE Xplore Press,

pp: 1031-1034. DOI: 10.1109/IJCNN.1993.714088

Gondra, I., 2008. Applying machine learning to software

fault-proneness prediction. J. Syst. Software, 81:

186-195. DOI: 10.1016/j.jss.2007.05.035

Kuncheva, L.I., 2004. Combining Pattern Classifiers:

Methods and Algorithms. 1st Edn., John Wiley and

Sons, Hoboken, New Jersey, ISBN-10: 0471660256,

pp: 300.

Lee, J.S., O. Jeong and J. Ryu, 2009. Performance

evaluation framework for software quality

engineering. Proceedings of the 9th International

Conference on Quality Software, Aug. 24-25, IEEE

Xplore Press, Jeju, pp: 438-443. DOI:

10.1109/QSIC.2009.65

Nadeau, C. and Y. Bengio, 2003. Inference for the

generalization error. Mach. Lear., 52: 239-281. DOI:

10.1023/A:1024068626366

Neeba, N.V. and C.V. Jawahar, 2009. Empirical

evaluation of character classification schemes.

Proceedings of the 7th International Conference on

Advances in Pattern Recognition, Feb. 4-6, IEEE

Xplore Press, Kolkata, pp: 310-313. DOI:

10.1109/ICAPR.2009.41

Oza, N.C. and K. Tumer, 2008. Classifier ensembles:

Select real-world applications. J. Inform. Fusion, 9:

4-20. DOI: 10.1016/j.inffus.2007.07.002

Park, D.C., 2010. Image classification using partitioned-

feature based classifier model. Proceedings of the

IEEE/ACS International Conference on Computer

Systems and Applications, May 16-19, IEEE Xplore

Press, Hammamet, pp: 1-6. DOI:

10.1109/AICCSA.2010.5586971

Purohit, A., K. Arora, N. Pandit, S. Sharma and S.

Bansal, 2011. Genetic algorithm for classification of

web documents. Int. J. Comput. Sci. Appli.

Saltelli, A., K. Chan and E.M. Scott, 2008. Sensitivity

Analysis. 1st Edn., John Wiley and Sons, New York,

ISBN-10: 0470743824, pp: 494.

