
Journal of Computer Science 2012, 8 (12), 2098-2105 

ISSN 1549-3636  

© 2012 Science Publications 

doi:10.3844/jcssp.2012.2098.2105 Published Online 8 (12) 2012 (http://www.thescipub.com/jcs.toc) 

Corresponding Author: Ali Muhammad Ali Rushdi, Department of Electrical and Computer Engineering,  

 Faculty of Engineering, King Abdulaziz University, P.O. Box 80204, Jeddah 21589, Saudi Arabia  

 

2098 Science Publications

 
JCS 

The Inverse Problem for Boolean Equations 

Ali Muhammad Ali Rushdi and Hussain Mobarak Albarakati 

 
Department of Electrical and Computer Engineering, Faculty of Engineering, 

King Abdulaziz University, P.O. Box 80204, Jeddah 21589, Saudi Arabia 

 
Received 2012-10-15, Revised 2012-12-29; Accepted 2012-12-29 

ABSTRACT 

The Forward Problem (FB) of Boolean equations consists of finding solutions of a system of Boolean 

equations, or equivalently, a single Boolean equation of the form f(X) = 0 where f(X): B
n
 → B and B is 

an arbitrary Boolean algebra. By contrast, the Inverse Problem (IB) of Boolean equations aims to 

reconstruct the equation f (X) = 0 given the set of solutions and hence to verify the correctness of this 

set. This study derives methods that handle this inverse problem for the main types of solutions of 

Boolean equations. These include: (a) Subsumptive general solutions, in which each of the variables is 

expressed as an interval by deriving successive conjunctive or disjunctive eliminants of the original 

function, (b) Parametric general solutions, in which each of the variables is expressed via arbitrary 

parameters which are freely chosen elements of the underlying Boolean algebra and (c) Particular 

solutions, each of which is an assignment from the underlying Boolean algebra to every pertinent 

variable that makes the Boolean equation an identity.  The reconstructed function f(X) in every case is 

set in a canonical form, such as the complete-sum form, to facilitate proving its equivalence to the 

original function. The methods presented herein are demonstrated with carefully-chosen illustrative 

examples over big Boolean algebras of various sizes. Among the methods utilized in handling the 

inverse problem for Boolean equations, the ones utilizing the variable-entered Karnaugh map offered 

pictorial insight and exhibited an efficient divide-and-conquer strategy. 

 

Keywords: Inverse Problem, Boolean Equations, Subsumptive General Solutions, Parametric General 

Solutions, Particular Solutions 

1. INTRODUCTION 

Boolean-equation solving permeates many areas of 

modern science such as logical design, biology, 

grammars, chemistry, law, medicine, spectroscopy and 

graph theory (Brown, 2003). Many important problems 

in operations research can be reduced to the problem of 

solving a system of Boolean equations. The solutions 

of Boolean equations serve also as an important tool in 

the treatment of pseudo-Boolean equations and 

inequalities and their associated problems in integer 

linear programming (Hammer and Rudeanu, 1968). 

Boolean-equation solving is also an indispensable tool 

in the cryptanalysis and breaking of ciphers (Chai et al., 

2008), Boolean Satisfiability (SAT) problem solving 

(He and Zhang, 1999), the synthesis, simulation and 

testing of digital networks and VLSI systems (Abdel-

Gawad et al., 2010; Woods and Casinovi, 2001), output 

encoding and state assignments of finite state machines 

(Devadas and Newton, 1990) and automatic test-pattern 

generation (Larabee, 1992). 

The Forward Problem (FB) of Boolean equations 
consists of finding solutions of a system of Boolean 
equations, or equivalently, a single Boolean equation of 
the form f (X) = 0 where f (X): B

n
 → B and B is an 

arbitrary Boolean algebra. By contrast, the Inverse 
Problem (IV) of Boolean equations aims at 
reconstructing the equation f (X) = 0 given the set of 
solutions and hence verifying the correctness of this 
set. Naturally, the Forward Problem of Boolean 
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equations has been extensively treated in the literature 
(see, for example, (Brown, 2003; Rudeanu, 1974; 
2001; 2003; 2010; Tucker and Tapia, 1992; 1995; 
Trabado et al., 1993; Unger, 1994; Jung, 1995; Woods 
and Casinovi, 1996; Brusentsov and Vladimirova, 
1998; Levchenkov, 2000a; 2000b; Rushdi, 2001a; 
2004; Baneres et al., 2009; Rushdi and Amashah, 
2011), while the inverse problem seems to have 
received no or little attention. 

2. MATERIALS AND METHODS 

This study presents methods that handle the inverse 
problem for the main types of solutions of Boolean 
equations. These include: (a) Subsumptive general 
solutions, in which each of the variables is expressed as 
an interval by deriving successive conjunctive or 
disjunctive eliminants of the original function, (b) 
Parametric general solutions, in which each of the 
variables is expressed via arbitrary parameters which 
are freely chosen elements of the underlying Boolean 
algebra and (c) Particular solutions, each of which is 
an assignment from the underlying Boolean algebra to 
every pertinent variable that makes the Boolean 
equation an identity (Brown, 2003). The reconstructed 
function f (X) in every case is set in a canonical form, 
such as the complete-sum form (the Blake Canonical 
from) (Brown, 2003; Rudeanu, 1974; 2001; Blake, 
1938; Tison, 1967; Reusch, 1975; Cutler et al., 1979; 
Muroga, 1979; Gregg, 1998; Rushdi and Al-Yahya, 
2001; Rushdi, 2001b), to facilitate proving its 
equivalence to the original function. The methods 
presented herein are a mixture of purely-algebraic 
methods and map methods that utilize the variable-
entered Karnaugh map (Rushdi, 1983; 1985; 1986; 
1987; 1997;  2001a; 2004; Rushdi and Amashah, 
2011; Rushdi and Al-Yahya, 2000a; 2000b; 2001). 
These methods are demonstrated with carefully-
chosen illustrative examples over big Boolean 
algebras of various sizes. Both methods and examples 
demonstrate and utilize the basic concepts of Boolean 
reasoning as introduced and exposed in the seminal 
text (Brown, 2003). 

The organization of the rest of this study is as 

follows. We start by outlining our methodology. Then 

we present the derivation of the original Boolean 

equation f(X) = 0 (with f (X) cast in the CS-form F(X)) 

from the set of its particular solutions. Subsequently, 

we discuss the derivation of F(X) = 0 from the 

subsumptive and parametric general solutions, 

respectively. Finally, we discuss our results and 

conclude the study. 

3. RESULTS 

3.1. Derivation of the Boolean Equation from 

its Subsumptive Solution 

Let the Boolean equation f (X) = 0, where X = [X1 

X2… Xn]
T
 and f (X): B

n
 → B, have a consistency 

condition in Equation 1: 
 

0
s 0=  (1) 

 
And the subsumptive solution in Equation 2a: 

 

n 1 2 n 1 n n 1 2 n 1

n 1 2 n 2 n 1 n 1 1 2 n 2

s (X ,X ,...,X ) X t (X ,X ,...,X ),

s (X ,X ,...,X ) X t (X ,X ,...,X )

− −

− − − −

≤ ≤

≤ ≤
 

 

2 1 2 2 1

1 1 1

s (X ) X t (X )

s X t

≤ ≤

≤ ≤
 (2a) 

 

Or equivalently in Equation 2b: 

 

i i i
s X t , 1 i n≤ ≤ ≤ ≤  (2b) 

 

The relations (1b) are equivalent to Equation 3: 

 

i i i i
s X 0, X t 0,1 i n= = ≤ ≤  (3) 

 

Which can be ORed together and then ORed with 

(1) to reconstruct the original equation as Equation 4: 

 
n

0 i 1 i i i i
f (X) s V (s X t X )== ∨  (4) 

 

Note that in (4) if si = 0 then 
i i

(s X 0)=  reduces to 

the identity 
i

(0X 0)=  and should be discarded. 

Similarly, if ti = 1, the requirement 
i i

(X t 0)=  becomes 

an identity 
i

(X (1) 0)=  and is also discarded. 

 

Example 1: A Boolean equation of the form f (X1, X2, 

X3) = 0, where f: B
3
16 → B16, where  B16 = FB (a, b) 

has the subsumptive solutions of Equation 5a-d: 
 
ab 0=  (5a) 
 

3
b X a≤ ≤  (5b) 
 

2
0 X (a b)≤ ≤ ∨  (5c) 
 

1
0 X 0≤ ≤  (5d) 
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The original function f (X1, X2, X3) can be 

reconstructed via (4) as Equation 6: 
 

1 2 3 3 3 2 1
f (X ,X ,X ) ab bX aX abX X 0= ∨ ∨ ∨ ∨ =  (6) 

 
The expression (6) for f (X1, X2, X3) is in complete-

sum form since it is a syllogistic absorptive formula (a 

sum-of products formula with no term that can be 

absorbed in other terms) and the consensus w.r.t. to the 

sole biform variable X3 is ab which is already in the 

disjunction (6) (Brown, 2003; Rushdi and Al-Yahya, 

2000b). 

3.2. Derivation of the Boolean Equation from 

its Parametric Solution 

Let the Boolean equation f(X) = 0, where X = [X1 

X2… Xn]
T
 and f(X): B

n
 → B, have a consistency 

condition (1) and the parametric solution of Equation 7: 
 

i i
X f (P),1 i n= ≤ ≤  (7) 

 
Now, reduce (1) and (7) to the single equivalent 

Equation 8: 
 

n

0 i 1 i jG(X;P) s V (X f (P))== ⊕  (8) 

 
Then, we use Conjunctive Elimination (CE) 

(Brown, 2003) to eliminate P from (8) and obtain the 

following resultant which represents f (X) in Equation 

9: 
 

n
C {0,1}

CE(G)(X,P),P) G(X,C)
∈

= Λ  (9) 

 
The expression in (9) is called the conjunctive 

eliminant of G with respect to P (Brown, 2003) or the 

meet derivative of G with respect to P (Thayse, 1978). 

We reexpress (9) as a Complete Sum in Equation 10: 
 
CS(G(X)) CS(CE(G (X,P),P))=  (10) 

 
We use a VEKM as a divide-and-conquer strategy 

for handling the above steps and to allow the two steps 

of conjunctive elimination and complete-sum 

derivation to run concurrently. Specifically, we note 

that in equation (10), one can commute (interchange) 

the operation of deriving the Complete Sum (CS) 

and Conjunctive Elimination (CE) (Rushdi and Al-

Shehri, 2004), to obtain Equation 11: 

 

CS(G (X)) CE(CS(G(X,P),P))=  (11) 

However with conventional algebraic or computer 

manipulation, (11) is more tedious than (10). With 

VEKM representation , the CE and CS operations can 

be made to go hand in hand , thereby making (11) more 

advantageous than (10). 

Our procedure utilizes an adaptation of a VEKM 

folding technique for complete-sum derivation (Rushdi 

and Al-Yahya, 2000b). Let a VEKM be used to 
represent the pertinent function. Entries of the VEKM 

are converted into complete-sum entries via algebraic 
methods employing consensus generation and 

absorption. Figure 1a and 1b demonstrate the basic 
step in VEKM folding which converts a map variable 

Xi into an entered variable, while retaining CS entries 

in the new VEKM representation of the pertinent 
function. In Fig. 1b, we use ABS (F) to denote an 

equivalent absorptive formula of F, i.e., a formula 
obtained from F by successive deletion of terms 

absorbed in other terms of F. The formula in Fig. 1b 

uses ANDing (multiplication) of CS formulas as an 
alternative for consensus generation. This 

multiplication is implemented via a multiplication 
matrix which allows an easy tracking of absorptions 

because of the fact that if a term is to be ever absorbed, 
then one of its absorbing terms will belong to either its 

row or to its column (Rushdi and Al-Yahya, 2000b). 

The current procedure adapts VEKM folding to 
produce the conjunctive eliminant of thepertinent 

function rather than the function itself, as shown in Fig. 

1c. If the subfunctions F0 and F1 have some terms in 

common, i.e., if they can be written as F0 = G∨H0 and 

F1 = G∨H1, where G is a disjunction of common terms, 
then “intelligent multiplication” (Brown, 2003; Rushdi 

and Al-Yahya, 2000b) replaces ABS (F0F1) in Fig. 1c 
by ABS (G∨H0 H1). Note that CE (G (X, P), P) can be 

obtained by ANDing the VEKM cells of G (X, P) all at 
once, but we choose to implement this gradually by 

eliminating one map variable at a time. This allows the 

use of multiplication matrices at each step and hence 
simplifies the search for potentially absorbed terms. 

The VEKM procedure can now be stated as follows. 
Use a VEKM of map variables P and entered 

variables X to represent G (X, P). Make use of the fact: 
 

i i

i i

i i

X when f (P) 0
X f (P)

X when f (P) 1

 =
⊕ = 

=
 (12) 

 

Equation (12) means that the term (Xi  ⊕ fi (P)) is 

replaced by Xi itself in all map cells in which fi (P) is 

not asserted and by the complement of Xi in all map 

cells in which fi (P) is asserted: 
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(a) 

 

 
(b) 

 

 
(c) 

 

Fig. 1. The typical step of VEKM folding modified to obtain 

the conjunctive eliminant of the pertinent function (a) 

f (X) with CS subfunctions F0 and F1 (b) f (X) in CS 

form (c) CE {f (X), Xi} 

 

Make sure that VEKM entries in the VEKM for 

G(X, P) are represented by CS formulas. If they are 

not, use a simple algebraic technique, such as the 

Improved Tison Method (Rushdi and Al-Yahya, 

2000b) to cast them in CS form. Now conjunctively 

eliminate the map variables of the VEKM, one by one, 

till a VEKM of 0 map variables and a single cell is 

obtained. This is a purely-algebraic formula for CE (CS 

(G (X, P)), P) or CS (CE (G (X, P), P)). In each 

folding, use a multiplication matrix for the conjunction 

shown in Fig. 1c and restrict your application of the 

ABS (.) operator to comparing a potentially absorbable 

term to terms in its row and its column. 

Example 2 

 A Boolean equation of the form f (X1, X2, X3) = 0, 

where f: B
3
16 → B16, B16 = FB (a, b) has the single-

parameter parametric general solution Equation 13a-d: 

ab 0=  (13a) 

 

3
X bP aP= ∨  (13b) 

 

2
X bP aP= ∨  (13c) 

 

1
X 0=  (13d) 

 

Construct the equivalent single Equation 14: 

 

1 2 3 3

2 1

G(X ,X X ;P) (ab) (X (aP bP))

(X aP bP) (X 0) 0

= ∨ ⊕ ∨

∨ ⊕ ∨ ∨ ⊕ =
 (14) 

 

Figure 2 is a VEKM representation of the function 

G (X1, X2, X3; P) with map variable P and entered 

variables X1, X2 and X3. The entries of this VEKM are 

rewritten in CS form with the aid the Improved Tison 

Method (Rushdi and Al-Yahya, 2000b). 

Figure 3 shows an ANDing table (Multiplication 

table) for the two VEKM entries in Fig. 2 to produce CE 

(G (X, P), P) in CS form. Absorbed terms are deleted by 

circling them, while retained terms are highlighted by 

writing them in bold. In the spirit of Fig. 1c, common 

terms of these entries are kept aside and noncommon 

terms are multiplied. As seen in Fig. 3 absorptions take 

place within individual rows or within individual 

columns. The final result is Equation 15: 

 

1 3

3 3 2 3 2 2 3

CS(CE)(G (X,P),P)) ab X aX

bX aX aX X abX bX X

= ∨ ∨

∨ ∨ ∨ ∨ ∨
 (15) 

 

3.3. Derivation of the Boolean Equation from 

its Particular Solutions 

 Let the Boolean equation f (X) = 0, where X = [X1 

X2,…,Xn]
T
 and f (X): B

n
 → B, (where B is a big 

Boolean algebra) has a consistency condition (1) and a 

set of m particular solutions. The j th such solution uj = 

[u1j u2j …unj ]
T
 (1 ≤ j ≤ m) is given by Equation 16: 

 

ij ijX u , 1 i n= ≤ ≤  (16) 

 

where, uij are elements of the underlying Boolean 

algebra B (collapsed to a smaller algebra if s0 ≠ 0). The 

conditions (16) for a particular solution j are equivalent to 

Equation 17: 
 

ij ijx u 0, 1 i n⊕ = ≤ ≤  (17) 
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where, ⊕ stands for the exclusive-OR (XOR) operation 

or modulo-2 addition. Conditions (17) and (1) can be 

disjuncted (ORed) together to form a single equation 

(Equation 18) whose unique solution is solution uj 

(Rudeanu, 2001): 

 
n

i 1 ij ij 0V (X u ) s 0= ⊕ ∨ =  (18) 

 

There are m conditions of the form (18) since 1 ≤ j 

≤ m. The conjunction (ANDing) of equations (18) 

produces an equation which has m solutions uj (1 ≤ j≤ 

n) (Rudeanu, 2001). Hence, the function f(X) can be 

reconstructed by the formula of Equation 19: 

 
m n

j 1 i 1 ij ij 0f (X) ( [V (X u )] s )= == Λ ⊕ ∨  (19) 

 

 
 
Fig. 2. A VEKM representation of the function G (X1, X2, 

X3; P) with map variable P and CS entries 

 

 
 
Fig. 3. The conjunctive eliminant of the function in Fig. 2 

obtained in CS form 

Whish reduces by intelligent multiplication (Brown, 

2003; Rushdi and Al-Yahya, 2000b) to Equation 20: 

 
m n

j 1 i 1 ij ij 0f (X) ( (V (X u ))) s= == Λ ⊕ ∨  (20) 

 

Use of purely-algebraic manipulations to (a) 

construct f(X) via (6) and (b) convert it into a canonical 

form, can be somewhat cumbersome. Instead we 

construct the natural map or VEKM for f(X). We 

obtain the map entries which are the discriminants of 

f(X) and cast them in complete-sum form. Then we 

apply the conventional procedure of VEKM folding 

that retains complete-sum entries in the cells of the 

folded VEKM as in Fig. 1a and b (Rushdi and Al-

Yahya, 2001). Finally, we end with a VEKM of 0 map 

variables, i.e., a purely algebraic expression, that 

represents the complete sum F (X) = CS (f(X)). 

Example 3 

 Consider the equation f(X, Y) = 0 over B16 = FB (a, 

b), whose solution in (Rudeanu, 1974) indicated that it 

has a consistency condition 0 = 0 and a set S of 

particular solutions (X, Y) given by Equation 21: 

 

S {(ab, ab),(a,b),(b, a),(a b),(a b)}= ∨ ∨
 

(21) 

 

According to (21), an expression for the function 

f(X, Y) is Equation 22: 
 

f (X,Y) 0 [((X ab) (Y ab))((X a)

(Y b))((X b) (Y a))((X (a b))

(Y (a b)))]

= ∨ ⊕ ∨ ⊕ ⊕

∨ ⊕ ⊕ ∨ ⊕ ⊕ ∨ ∨

⊕ ∨

 (22) 

 

 
 
Fig. 4.  A VEKM representation of the function whose 

particular solutions are given by the set S in (21), 

subject to consistency condition 0 = 0 
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(a) 

 

 
(b) 

 

 
(c) 

 

Fig. 5. The VEKM in Fig. 4: (a) with each of its entries 

reduced to simplified from which is also complete- sum 

(CS) form, (b) folded w.r.t X with entries still in CS form 

and (c) further folded w.r.t Y with entry in CS form  

A simpler expression for the function f (X, Y) can 

be obtained by representing this function via the 

VEKM in Fig. 4, which has map variables X and Y. 

Each of the entries of this VEKM is a product-of-sums 

(pos) expression that can be multiplied out into a 

simplified sum-of-products (sop) expression as shown 

in Fig. 5a. The VEKM in Fig. 5 can be used to yield 

the following expression for f(X, Y) in Equation 23: 

 

f (X,Y) ab (X Y) ab

(X Y) (a b)X Y (a b)XY

= ∨ ∨

∨ ∨ ∨ ∨ ∨
 (23) 

 

The VEKM can also be folded twice with the CS 

nature of entries retained Fig. 5b and c to yield the 

following expression for the complete sum F(X) of the 

function f(X) in Equation 24: 

 

F(X) CS(f (X)) aXY

bXY abY abX aXY bXY abY abX

= = ∨

∨ ∨ ∨ ∨ ∨ ∨
 (24) 

 

The minimal sum formula for f(X) in (23) is the 

same as its complete-sum formula in (24). The VEKM 

representations for f(X) in Fig. 5 and its formula (24) 

can be shown to be equivalent to the corresponding 

ones for the original function in (Rudeanu, 1974). 

4. DISCUSSION  

In all cases, the VEKM proved very useful as a 

natural map for the pertinent function and as an 

efficient implementation of the required procedures. 

Not only did the VEKM offer pictorial insight for 

clarifying the pertinent concepts, but it also acted as a 

divide-and-conquer strategy for implementing the 

required procedures. The VEKM proved to be highly 

suitable for implementing the tasks constituting the 

required procedures. In particular, the VEKM allowed 

the combination of the two major tasks of conjunctive 

elimination and complete-sum derivation. In addition, 

use of the VEKM resulted in a considerable reduction 

of the complexity of complete-sum derivation. 

Consensus generation was restricted to the initial 

entries of the VEKM and subsequently avoided 

through the use of multiplication (ANDing) during 

VEKM folding. Tracking of absorbable terms was 

considerably simplified by restricting elimination to 

one variable at a time, or equivalenty by implementing 

multiplication via a two-dimensional matrix form. 
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5. CONCLUSION 

 This study presented methods that handle the 

inverse problem for the three main types of solutions of 

Boolean equations: (a) Subsumptive general solutions, 

(b) Parametric general solutions and (c) Particular 

solutions. The reconstructed function f(X) in every case 

was set in a canonical form, namely, the complete-sum 

form (the Blake Canonical from), to facilitate proving 

its equivalence to the original function. The methods 

presented herein are a mixture of purely-algebraic 

methods and map methods that utilize the 

variableentered Karnaugh map. These methods are 

demonstrated with carefully-chosen illustrative 

examples over big Boolean algebras of various sizes. 
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