
Journal of Computer Science 8 (3): 316-322, 2012
ISSN 1549-3636
© 2012 Science Publications

Corresponding Author: Jinhyung Kim, Department of Information Technology Research,

 Korea Institute of Science and Technology Information, 52-11, Eoeun Dong,
 Yuseong Gu, Daejeon, Republic of Korea Tel: +82-42-869-1699 Fax: +82-42-869-0077

316

Effective Hierarchical Information Management in Mobile Environment

Jinhyung Kim, Myunggwon Hwang and Hanmin Jung

Department of Information Technology Research,
Korea Institute of Science and Technology Information,

52-11, Eoeun dong, Yuseong gu, Daejeon, Republic of Korea

Abstract: Problem statement: As performance of mobile devices is developed highly, several kinds
of data is stored in mobile devices. For effective data management and information retrieval, some
researches to apply ontology concept to mobile devices are progressed. However, in conventional
researches, they apply conventional ontology storage structure used in PC environment to mobile
platform. Conclusion/Recommendations: Therefore, performance of search about data is low and not
effective. Therefore, we suggested new ontology storage schema with ontology path for effective
hierarchical information in mobile environment.

Key words: Ontology path, hierarchical information, mobile environment, information retrieval

INTRODUCTION

 As a specification (ex. CPU speed, storage capacity,
memory capacity) of mobile phone is getting higher
revolutionarily as Fig. 1, current mobile phones manage
various kinds of data in the phone such as contacts,
calendar, email, schedule, multimedia (ex. image, music,
video), application lists. In 20 years, mobile processor
was progressed from 1MHz to 1GHz and the storage
capacity was developed more than 100 times. However,
precise searching of requested information is becoming
more difficult since there is a considerable increase in the
volume of data in mobile phones. Precise information
retrieval of the requested information is more important
than just fast search of the data (Herman, 2003; Decker et
al., 2000; Shadbolt et al., 2006).
 For overcoming above limitations, there are many
researches regarding ontology modeling and ontology
construction in the mobile platform (D’Aquin et al.,
2008, Carroll et al., 2004; Carroll and Stickler, 2004;
Beckett and McBride, 2004). By the ontology modeling
and construction in the mobile platform, we can manage
mass data effectively and support rich information
retrieval for users. However, because mobile devices
have lower processing capacity than PC and laptop,
effective information retrieval or information
recommendation services based on the ontology cannot
be provided in performance aspect until now. The most
important thing in the information retrieval based on
ontology is fast and precise information search about
hierarchical structured information.

Fig. 1: Mobile multi-core processor progress

 Therefore, in this study, we suggest new ontology
storage schema for effective information retrieval about
ontology data in the mobile platform. Additionally, we
perform a comparative evaluation regarding
hierarchical information retrieval.

MOntoPath: Basically, the MOntoPath model is based
on relational database as ontology storage (Koffina et
al., 2005; Lausen et al., 2008; Zhuan and Yuanzhen,
2006; McKenzie et al., 2006; Park et al., 2007; Liu and
Li, 2008). The MOntoPath model consists of a class
table, a property table, a triples table and an instance
table. The storage schema of the OM-HI model is
similar to that of Sesame, excluding the class_path and
prop_path attributes, which include hierarchical
structural information. The class and property tables
include an ID attribute for classes/properties

J. Computer Sci., 8 (3): 316-322, 2012

317

identification and a name attribute for specific names of
classes/properties. The class and property tables contain
a path attribute and a root_id attribute, for information
about hierarchical structure between classes and
properties. In the path attribute, information about
hierarchical structure is stored in path form (e.g.,
Student/Graduate School Student/Ph.D. Student). The
instance table includes an inst_id attribute for instance
identification, an inst_name attribute and a class
attribute, in which instances are included. The triples
table contains relationships among classes, instances
and properties. In the subject and object attributes,
values of class_id and inste_id can be stored. In a
predicate attribute, values in prop_id can be stored.

MOntoPath model schema:

• T = {Class, Property, Instance, Triples}
• Aclass = {class_id, class_name, class_path, root_id}
• Aproperty = {property_id, property_name,

property_path, root_id}
• A instance = {inst_id, inst_name, class}
• Atriples = {subject, predicate, object}
• R(Class, Instnace) = {instantiation}, R(Class, Triples) =

{Subject || Object}
• R(Property, Triples) = {Predicate}, R(Instance, Triples) =

{Subject || Object}
• C(Class, Triples) = {*,*}, C (Class, Instance) = {1,*},
• C(Property, Triples) = {1.*}, C (Instance, Triples) = {*,*}

 Above formal description represents the storage
schema for the MOntoPath model. T describes table
lists and A illustrates attributes lists in a specific table.
R means a relation name between two tables and C
represents cardinality information between two tables.
 For extraction of information about the hierarchical
structure between classes or properties from OWL
documents, the following processes are needed. First,
we analyze the schema for the OWL document and
create a data graph with a hierarchical relationship
between classes and properties (Jang et al., 1999;
Kobayashi et al., 2005; Zhou et al., 2006; Hepp, 2006).
Second, we perform a depth-first search from root
classes/properties to leaf classes/properties, based on
the created data graph and create paths for each node.
When we create paths for each node, we search from
root nodes to leaf nodes. Then, if we arrive at a leaf
node, we create a path for the leaf node and the
intermediate nodes. However, we create paths for
intermediate nodes just once and thus we can avoid
duplicate path creation. Extracted path information is
stored in a path attribute in the class and property
tables. In the data graph, each node consists of the

following elements. Definition 1 presents the node
constitution in the data graph.

Definition 1 (Node constitution in the data graph)
Each node in the data graph is denoted by a 5-tuple:
N(name)=(Na, Nu, Vf, Cf, Sf), where Na represents a
specific name for each node, Nu represents a specific
node number assigned by DFS searching when the data
graph is created, Vf represents whether a node has been
visited and a path has been created for the node or not,
Cf represents whether a node has child nodes or not and
Sf represents whether a node has sibling nodes or not. If
a node has been visited and a path has been created for
the node, the visiting_flag of this node is 1, otherwise 0;
a node that has no child nodes has a flag set to 0,
otherwise 1; a node that has no sibling nodes has a flag
set to 0, otherwise 1.

Definition 2 (Case definition in the path creation)
When we create a path for each node from a data
graph, there are two representative cases (1 and 2)
and four detailed cases (1, 2-1, 2-2 and 2-3):

Case 1: Node.visiting_flag=0 and Node.child_flag=1.
Case 2: Node.visiting_flag=0 and Node.child_flag=0.
Case 2-1: Node.sibling_flag=1 and Sibling_node.
visiting_flag=0.
Case 2-2: Parent_node.sibling_flag=0 and
Parent_node.sibling_nod e.visiting_flag=0.
Case 2-3: Ascendant_node.sibling_flag=0 and
Ascendant_node.sibling _node.visiting_flag=0.

 Definition 2 defines various cases of path creation.
Cases 2-1, 2-2 and 2-3 are backtracking cases, after we
search leaf nodes. Case 2-1 illustrates the case where a
leaf node has sibling nodes that have not been visited.
In this case, we perform backtracking to a parent node
and search sibling nodes in the next ordering. Case 2-2
represents the case where a leaf node does not have
sibling nodes that have not been visited. In this case, we
perform backtracking to a parent node that has sibling
nodes that have not been visited and search sibling
nodes of the parent node. If there are no sibling nodes
of the parent node that have not been visited, we
perform backtracking to the ascendant node. If the
ascendant node has unvisited sibling nodes that have
not been visited, we search these nodes, as in case 2-3.
This process is iterated until we have searched every
node in the data graph and path creation is completed
when there are no nodes in cases 1, 2-1, 2-2 and 2-3.
 In addition, we store the ID of the root
class/property in the root_id attribute in the class and
property tables, for efficient access and searching of

J. Computer Sci., 8 (3): 316-322, 2012

318

ontology data. If several ontologies are included in the
OWL document, information about the root_id attribute
enables us to search and modify the ontology easily.
Also, when we modify or reconstruct the ontology, we
check the root class/property of the ontology. Then, we
just modify or reconstruct classes/properties included
in the root class/property. Using the root_id attribute,
we can reduce ontology modification and
reconstruction time.
 However, recently, terabyte or petabyte volumes of
data are being stored and managed in a database. Mass
data storage can be very complicated and data can have
a high level of depth. Therefore, mass data storage can
result in a storage capacity problem, in terms of path
attributes. Nevertheless, information stored in the path
attribute in the class and property tables is simple string
data and the capacity of mass data storage is not based
on the complexity of the structure, but the quantity of
instance values. Therefore, we will consider the storage
capacity problem concerning the path attribute in the
class and property tables as a part of future studies.

Performance test:
Ontology modeling for test dataset: The ontology
includes relationship and hierarchical information
among data sources applications such as contacts, SMS,
MMS. email, music. picture, video. The ontology is
focusing on the definition about classes in the ontology.
The data source class is based on various kinds of
applications in the smart mobile platform and can be
divided four typical sub data source classes: the key
data sources class, the message data sources class, the
multimedia data sources class and the web data sources
class. The key data sources class includes indispensable
instances such as contacts data and application data.
The data sources in the key data source class affect
many other data sources. The contacts data affects
information stored in the SMS, MMS, Email and the
application data affects all of application information in
the smart mobile platform. If any of data in the key data
sources class is changed, the data affected by those data
must be modified. As shown in the Fig. 2, the contacts
data and the application data included in the key data
sources class have many ‘DS: Affected By’
relationships with many instances included in other
classes. The dataset for the experiment is contacts,
SMS, MMS, music, image, video, schedule data. We
perform experiment from 1,000-10,000 data (Shoaib
adn Basharat, 2010; Stuckenschmidt et al., 2004;
Uanhui et al., 2009; Valencia-Garcia and Garcia-
Sanchez, 2011).

Test SPARQL queries: We use 3 queries for
performance experiment. Every query is related to
hierarchical information retrieval. Table 1 represents

SPARQL representations used for comparative
performance. Query 1 is a query for search all of sub-
classes of the MobData class and Query 2 searches all
of sub-classes of the Mobdata class and all instances
included in each subclasss. Query 3 is a query for
search all of instances as object when all instances of
the Mobdata and subclasses are subject. As described
before, all queries in performance evaluation are related
to search about hierarchical structure between classes.
Therefore, we execute experiment focusing on
comparative evaluation regarding the query processing
performance difference among storage systems which
have difference storage structure about hierarchical
structure information.

Performance evaluation: In this study, we execute
comparative performance evaluation with 3 storage
structure: Sesame structure (Broekstra and Harmelen,
2001), Dual (Data Info. + Hierarchical Info.) structure
(Woo et al., 2008) and suggested structure.
 Sesame structure stores hierarchical information
into relational database as additional table. The table
consists of super-class and sub-class attributes. In this
case, searching all of hierarchical information needs
many repeat operations. Dual structure stores class,
instance information and hierarchical information of
class and property separately. That is, class and instance
information is stored in relational database and the
hierarchical information is stored in an additional XML
file. In Dual structure, for a query processing, we need
access the relational database and XML file.
Additionally, user queries must be converted SQL and
XQuery format. Results from two databases also have
to be merged. However, because the suggested system
contains hierarchical information as a Path form, the
system can recognize hierarchical location and
information of a specific class easily.
 Though the size of the dataset increases, the
number of classes remains constant. The experimental
results of query 1 are unrelated to the size of the test
dataset. To process query 1, in Sesame structure we
perform an iterative search of sub-classes, to search
sub-classes of the MobData class. In the dual structure,
we access the XML file acquire hierarchical structural
information. Then, we search class information in the
relational database. However, in the case of the
MOntoPath structure, we can search sub-classes by
searching the path attribute in the class table. Therefore,
the suggested system shows the best performance in
terms of the processing time of query 1, because of
searching only one table without any join operation, for
performing query 1.

J. Computer Sci., 8 (3): 316-322, 2012

319

Fig. 2: Test dataset ontology

Table 1: SPARQL queries for experiment
 SPARQL query
Query 1 select ?class
 where {
 {?class MO::http://www.w3.org/2000/01/rdf-schema#subClassOf ?x.
 ?x MO::http://www.w3.org/2000/01/rdf-schema#subClassOf ?y
 ?y MO::http://www.w3.org/2000/01/rdf-schema#subClassOf
 MO::http://software.korea.ac.kr/koolmania/montopath.owl#MobData }union all
 {?class MO::http://www.w3.org/2000/01/rdf-schema#subClassOf ?y
 ?y MO::http://www.w3.org/2000/01/rdf-schema#subClassOf
 MO::http://software.korea.ac.kr/koolmania/montopath.owl#MobData }union all
 {?class MO::http://www.w3.org/2000/01/rdf-schema#subClassOf
 MO::http://software.korea.ac.kr/koolmania/montopath.owl#MobData }
 Query for all of sub-classes of the MobData class
Query 2 select ?instance
 where {
 ?instance MO::http://www.w3.org/2000/01/rdf-schema#instanceOf ?class {
 {?class MO::http://www.w3.org/2000/01/rdf-schema#subClassOf ?x.
 ?x MO::http://www.w3.org/2000/01/rdf-schema#subClassOf ?y
 ?y MO::http://www.w3.org/2000/01/rdf-schema#subClassOf
 MO::http://software.korea.ac.kr/koolmania/montopath.owl#MobData } union all
 {?class MO::http://www.w3.org/2000/01/rdf-schema#subClassOf ?y
 ?y MO::http://www.w3.org/2000/01/rdf-schema#subClassOf
 MO::http://software.korea.ac.kr/koolmania/montopath.owl#MobData} union all
 {?class MO::http://www.w3.org/2000/01/rdf-schema#subClassOf
 MO::http://software.korea.ac.kr/koolmania/montopath.owl#MobData }
 Query for instances in MobData and sub-classes of MobData
Query 3 select ?x
 where {
 ?x ?y ?instance {
 ?instance MO::http://www.w3.org/2000/01/rdf-schema#instanceOf ?class {
 {?class MO::http://www.w3.org/2000/01/rdf-schema#subClassOf ?x.

J. Computer Sci., 8 (3): 316-322, 2012

320

Table 1: Continuous
 ?x MO::http://www.w3.org/2000/01/rdf-schema#subClassOf ?y
 ?y MO::http://www.w3.org/2000/01/rdf-schema#subClassOf
 MO::http://software.korea.ac.kr/koolmania/montopath.owl#MobData} union all
 {?class MO::http://www.w3.org/2000/01/rdf-schema#subClassOf ?y
 ?y MO::http://www.w3.org/2000/01/rdf-schema#subClassOf
 MO::http://software.korea.ac.kr/koolmania/montopath.owl#MobData }
 Query for instance as a subject when instances in MobData and sub-classes of MobData is object

Fig. 3: Test result of query 1

Fig. 4: Test result of query 2

 As the size of the dataset increases, the number of
instances also increases; if the size of the dataset
increases, the query response time for query 2 also
increases. In the Sesame structure and the MOntoPath
structure, we retrieve instances by searching the
instanceOf/instance table, based on the results of query
1. However, as shown Fig. 3, the system requires more
iteration for searching sub-classes in Sesame structure
than the MOntoPath structure. Therefore, query
processing performance for query 2 of the MOntoPath
structure is better than that of Sesame structure as Fig. 4.
However, in the dual structure, the system requires
many more join operations because instances are stored
in many classes and property tables.
 In case of query 3, we need execute query 2 and
additional operation for search triple data. Triple
information in stored separately in all of structure.
Therefore, result of query 3 is almost similar to that
of query 2. Fig. 5 shows the result of query 3.

Fig. 5: Test result of query 3

 The results of the aforementioned experiments for
queries 1~3 prove that the performance of the
MOntoPath model for searching hierarchical structural
information is superior to that of Sesame and the dual
structure. Sesame structure must perform an iterative
search of sub-classes in the subClassOf table. The dual
structure accesses the XML file and always performs an
XPath query for extracting hierarchical structural
information. In addition, the dual structure has to access
RDBMS and search ontology information based on the
extracted hierarchical structural information. However,
in the MOntoPath structure only values of the path
attribute in the class and property tables to extract
hierarchical structural information. Therefore, in terms
of query processing performance with respect to
hierarchical structure, the MOntoPath model always
shows better performance than the other two systems.

CONCLUSION

 In this study, we suggested the new ontology
storage model for effective hierarchical information
retrieval in mobile platform. In mobile platform,
because fast and precise information retrieval is the
most important factor, the suggested model is focusing
on those points. Additionally, we performed the
comparative performance evaluation among diverse
ontology storage structures such as Sesame structure
and dual structure. As shown in the performance test,
the suggested MOntoPath model shows the best
performance regarding hierarchical information
processing.

J. Computer Sci., 8 (3): 316-322, 2012

321

 For future studies, we need to consider the trade-
off between storage efficiency and query processing
time for hierarchical structural information. In general,
if the storage efficiency is good, the query processing
time is long because it does not consider hierarchical
structure in detail. Conversely, if the query processing
time is short the loading time is long because this
system has complex pre-processing steps. Therefore,
we must research both of these cases, with
consideration of the trade-off between storage
efficiency and query processing time.

REFERENCES

Beckett, D. and B. McBride, 2004. RDF/XML syntax

specification. World Wide Web Consortium.
Broekstra, J. and F.V. Harmelen, 2001. Sesame: An

architecture for storing and querying RDF data and
schema information. Comput. Inform. Sci., 2342:
1-16.

Carroll, J.J. and P. Stickler, 2004. RDF triples in XML.
Proceedings of the 13th International World Wide
Web Conference on Alternate Track Papers and
Posters, May 17-22, ACM, New York, USA., pp:
412-413. DOI: 10.1145/1013367.1013501

Carroll, J.J., I. Dickinson, C. Dollin, D. Reynolds and
A. Seaborne et al., 2004. Jena: Implementing the
semantic web recommendations. Proceedings of
the 13th International World Wide Web
Conference on Alternate Track Papers and Posters,
May 17-22, ACM, New York, USA., pp: 74-83.
DOI: 10.1145/1013367.1013381

D’Aquin, M., E. Motta, M. Sabou, S. Angeletou and L.
Gridinoc et al., 2008. Toward a new generation of
semantic web applications. IEEE Intell. Syst., 23:
20-28. DOI: 10.1109/MIS.2008.54

Decker, S., S. Melnik, F.V. Hermelen, D. Fensel and
M. Klein et al., 2000. The semantic web: The
Roles of XML and RDF. IEEE Internet Comput.,
4: 63-73. DOI: 10.1109/4236.877487

Hepp, M., 2006. Semantic web and semantic web
services: Father and son or indivisible twins? IEEE
Internet Comput., 10: 85-88. DOI:
10.1109/MIC.2006.42

Herman, I., 2003. Introduction to the semantic web. W3C.
Jang, H., Y. Kim and D. Shin, 1999. An effective

mechanism for index update in structured
documents. Proceedings of the 8th International
Conference on Information and Knowledge
Management, Nov. 02-06, ACM, USA., pp: 383-
390. DOI: 10.1145/319950.320031

Kobayashi, K., W. Wenxin, D. Kobayashi, A.
Watanabe and H. Yokota, 2005. VLEI code: An
efficient labeling method for handling XML
documents in an RDB. Proceedings of the 21st
International Conference on Data Engineering,
Apr. 05-08, IEEE Xplore Press, pp: 386-387. DOI:
10.1109/ICDE.2005.153

Koffina, I., G. Serfiotis, V. Christophides, V. Tannen
and A. Deutsch, 2005. Integrating XML data
sources using RDF/S schemas: The ICS-FORTH
Semantic Web Integration Middleware (SWIM).
Dagstuhl Seminar Semantic Interop. Integr.

Lausen, G., M. Meier and M. Schmidt, 2008.
SPARQLing constraints for RDF. Proceedings of
the 11th International Conference on Extending
Database Technology: Advances in Database
Technology, Mar. 25-30, ACM, Nantes, France,
pp: 499-509. DOI: 10.1145/1353343.1353404

McKenzie, C., A. Preece and P. Gray, 2006.
Implementing a semantic web blackboard system
using jena. University of Aberdeen.

Park, M.J., J. Lee, C.H. Lee, J. Lin and O. Serres et al.,
2007. An efficient and scalable management of
ontology. Adv. Databas.: Concepts, Syst. Appli.,
4443: 975-980. DOI: 10.1007/978-3-540-71703-
4_88

Shadbolt, N., W. Hall and T. Berners-Lee, 2006. The
semantic web revisited. IEEE Intell. Syst., 21: 96-
101. DOI: 10.1109/MIS.2006.62

Shoaib, M. and A. Basharat, 2010. ERMOS: An
efficient relational mapping for ontology storage.
Proceedings of the IEEE International Conference
on Advanced Management Science, Jul. 9-11,
IEEE Xplore Press, Chengdu, pp: 399-403. DOI:
10.1109/ICAMS.2010.5553141

Stuckenschmidt, H., F.V. Harmelen, A.D. Waard, T.
Scerri and R. Bhogal et al., 2004. Exploring large
document repositories with RDF technology: The
DOPE project. IEEE Intell. Syst., 19: 34-40. DOI:
10.1109/MIS.2004.9

Uanhui, L., Z.M. Ma and X. Zhang, 2009. Fuzzy
ontology storage in fuzzy relational database.
Proceedings of the 6th International Conference on
Fuzzy Systems and Knowledge Discovery, Aug.
14-16, IEEE Xplore Press, Tianjin, pp: 242-246.
DOI: 10.1109/FSKD.2009.701

Valencia-Garcia, R., F. Garcia-Sanchez, D.
Castellanos-Nieves and J.T. Fernandez-Breis,
2011. OWLPath: An OWL ontology-guided query
editor. IEEE Trans. Syst. Man Cybernetics, 41:
121-136. DOI: 10.1109/TSMCA.2010.2048029

J. Computer Sci., 8 (3): 316-322, 2012

322

Woo, E.M., M.J. Park and C.W. Chung, 2008. An
efficient storage schema construction and retrieval
technique for querying OWL data (2008). Korean
Information Science Society.

Liu, Z. and H. Li, 2008. An ontology-based virtual
storage system. Proceedings of the IEEE
International Conference on Networking,
Architecture and Storage, Jun. 12-14, IEEE Xplore
Press, Chongqing, pp: 185-186. DOI:
10.1109/NAS.2008.47

Zhou, J., M. Wang, S. Zhang and H. Sun, 2006. Semi-
structure Data Management by Bi-directional
Integration between XML and RDB. Proceedings
of the 10th International Conference on Computer
Supported Cooperative Work in Design, May 3-5,
IEEE Xplore Press, Nanjing, pp: 1-5. DOI:
10.1109/CSCWD.2006.253208

Zhuan, L. and W. Yuanzhen, 2006. An approach for
XML inference control based on RDFDatabase
Exp. Syst. Appli., 4080: 338-347. DOI:
10.1007/11827405_33

