
Journal of Computer Science 8 (3): 382-388, 2012
ISSN 1549-3636
© 2012 Science Publications

Corresponding Author: Murugan, S., Faculty of Computer Science and Engineering Sathyabama University Jeppiaar Nagar,
Rajiv Gandhi Salai Chennai, 600 119 Tamilnadu, India

382

Aspect Oriented Decision

Making Model for Byzantine Agreement

1Murugan, S. and 2V. Ramachandran
1Faculty of Computer Science and Engineering,

Sathyabama University, Jeppiaar Nagar, Rajiv Gandhi Salai,
Chennai-600 119 Tamilnadu, India

2Department of Information Science and Technology,
Anna University, College of Engineering, Guindy,

Chennai-600 025 Tamilnadu, India

Abstract: Problem statement: The main aim of this research study is to develop an enhanced strategy
for decision making whether to commit or rollback a request to a Web service in the presence of
Byzantine faults using aspects. The proposed study extends the Lamport’s algorithm for Byzantine
agreement to have an effective decision while handling the service request. When the service is
initiated based on the request, its execution behaviour is being monitored before, after and at the time
of execution and being handled with aspect concerns to provide the corresponding responses as input
to the Lamport’s Byzantine agreement algorithm. The decision on the client requests is based on the
outcome of the aspect advices before, after and around the execution of the services. Approach: This
approach identifies the inception of the process which starts to exhibit abnormal behaviour before,
after or during the execution of the service and instigates that helps in resolving the faulty service and
identifies the root cause of the problem to rectify it. Aspect oriented advices do not require any
external invocation as it executes with the service and hence no additional overhead involved in
processing the service request. Results: In the existing methodology only the around advice decision is
considered for reaching an agreement in the presence of Byzantine faults. An enhancement in the
decision making process is proposed by including the state of the services: before, after and around
advices of the aspects. Conclusion: The obtained experimental results based on the proposed
methodology depict that the performance measure, Round Trip Time is slightly increased when
compared with the existing Lamport’s algorithm for Byzantine Agreement and this performance
overhead is not a major concern as the proposed approach produces an enhanced decision by
considering aspect concerns and also determines the origin of the fault. The change in execution
behaviour of Byzantine algorithm when aspects are introduced is compared with the implementation of
the algorithm without aspects in various distributed environments.

Key words: Agreement algorithm, various distributed environments, computing environment, Aspect

Oriented Programming (AOP), Round Trip Time (RTT), Model View Controller
Framework (MVC)

INTRODUCTION

 In today’s complex distributed business system,
reliability of individual element is of major concern
which is to be maintained at higher level to keep the
other components in the system intact and hence to
make the entire system available. Identifying and
elimination of faults in the complex business system is
a major challenging task. Sometimes the identified
faults behave abnormally by exhibiting Byzantine

behaviour, which may go undetected often, as it
continues to study and produces results which are
illegitimate that causes business loss, customer
dissatisfaction, loss of reputation and various other
factors. Fault handling is the major issue in the
distributed computing environment. The fault detection
and elimination is a straight forward process when the
service stops its execution or throws exception or when
the hardware begins to malfunction. But when the
system executes with faults without any notification or

J. Computer Sci., 8 (3): 382-388, 2012

383

not revealing any symptom and produces inappropriate
results, it becomes more complicated to identify and fix
those faults. This kind of uncharacteristic behaviour of
faults is referred to as Byzantine fault or Byzantine
behaviour which is more common in this age of
Internet, where systems are infused with faults that are
very difficult to identify, locate and eliminate.
 The Byzantine Generals problem (Lamport et al.,
1982) is built around an imaginary General in defense
who makes a decision to attack or retreat and must
communicate the decision to his lieutenants. The
general and some of the lieutenants may be traitors.
Traitors cannot be relied for proper communication of
orders; worse yet, they may actively alter messages in
an attempt to subvert the process. The generals are
collectively known as processes. The general who
initiates the order is the source process. The orders sent
to the other processes are messages. The general and
lieutenants those send faulty messages are traitorous
and termed as faulty processes. Loyal general and loyal
lieutenants are correct processes. The order to retreat or
attack is a message with a single bit of information: 1 or
0. Lamport et al. (1982) proposed an algorithm to
eliminate the Byzantine fault in which an agreement is
arrived based on the messages that are exchanged
among the processes.
 In order to identify and handle the faults
effectively, the proposed model allows the system to
maintain the state and values of the parameters before,
after and during execution of the services that are
invoked for accomplishing a task. The current object
oriented programming paradigms are capable of
handling exceptions effectively but explicit instructions
are to be written to handle abnormalities, which is a
tedious process. The method of capturing the state of
the service for fault handling is referred to as cross-
cutting concerns. Fault tolerance mechanisms that are
implemented using software are capable of handling
both hardware and software failures. Software based
fault tolerant techniques have been developed using
reflection and meta-programming. Aspect Oriented
Programming (AOP) is an extension of meta-
programming that offers a provision for handling cross-
cutting concerns that can be plugged into any of the
widely adopted programming languages. AOP
improves the software quality by reducing code
tangling and separating the concerns. By using AOP,
fault handling code is separated from the actual
implementation of the business logic and the aspect’s
advices do not require any explicit invocation as they
get triggered along with the service and does the
appropriate process of collecting the required
information. As the aspects are modularized, the fault

handling mechanism using aspects doesn’t require any
modification even when the application modules are
either extended or altered and this nature makes aspects
more flexible and extensible.
 Many aspect oriented application programming
interfaces are available as open source for different
programming paradigms. AspectJ, 2011 is used for
implementation of the proposed decision making model
for Byzantine agreement. In AOP, Joinpoints are well
defined check points in the flow of the application,
which may be (i) method call or return, (ii) bean
operations (set and get) and (iii) exception handler entry
point. A collection of joinpoints is termed as pointcuts.
Advices are codes that will execute on some conditions
like before, after or around the joinpoint. Aspect is like
a class which includes pointcuts and advices for
implementing the cross-cutting concerns. Concern refers
to a specific purpose i.e., a portion of code for which the
aspect is introduced. Weaver combines the classes and
aspects for constructing the actual application.
 Ji-De and Ying (2010) have developed an
exception softening methodology to handle the
exception faults effectively in AspectJ environment.
They have analyzed and summarized several exception
fault types of AspectJ and illustrated the way with
appropriate examples to analyze the impact of
exception faults on program control flow. Sevilla et al.
(2007) envisaged the role of Aspect Oriented
Programming in distributed component services with
respect to distribution, fault tolerance and load
balancing. Usually the code for providing QoS
parameters (both functional and non-functional) is
merged with the business logic and hence it is harder to
develop, maintain and reuse the code. In the proposed
aspects based model for Byzantine agreement, the
Byzantine behaviour identification module is
completely decoupled from the Web service, which is
meant for its intended task (Domokos and Majzik,
2005) have modelled the fault tolerant structures using
aspects and this framework is extended for automatic
construction of an analysis model, which is a
dependability model that is used to determine the non-
functional properties of the system. In order to improve
the reliability and availability of distributed object
oriented systems, Herrero et al. (2001) have introduced
object replication mechanisms and presented a
replication model, JReplica, which is a Java fault
tolerance language based on Aspect Oriented
Programming. This replication model separates the
specification of the replication code from the functional
behaviour of objects by providing a high degree of
transparency. JReplica provides facilities to the
programmers to introduce new behaviors for specifying
different fault tolerant requirements. To enhance the

J. Computer Sci., 8 (3): 382-388, 2012

384

reliability of the Web services, it is not only necessary
to handle the crash faults but also efforts should be
taken to monitor and to handle the Byzantine faults due
to the untrusted communication environment in which
they operate. Zhao (2007) had developed a Byzantine
Fault Tolerance framework for Web services, which
operates on top of the standard SOAP messaging
framework with minimum changes in the Web
applications. The Byzantine Fault Tolerance
framework is implemented as a pluggable module
and hence this model also supports inclusion of new
fault tolerance requirements.

Byzantine agreement using aspect oriented
programming: The proposed model is an extension to
the existing Lamport’s algorithm for elimination of
Byzantine behaviour and this approach uses inherent
aspects for tolerating Byzantine type of faults in the Web
services application environment. The proposed aspects
oriented model for elimination of Byzantine behaviour is
shown in Fig. 1, in which there are ‘n’ Web services
coordinating with each other, against which the Aspect
Advices (a(α, β, γ)) are defined and are labeled as α
(before advice), β (around advice) and γ (after advice).
These advices are weaved together and provided as input
to Lamport’s algorithm for eliminating Byzantine faults
and the final decision taken is based on the response {αd,
βd, γd}. In the response set obtained using Lamport’s
algorithm, each entity refers to the “commit” or “rollback”
decision based on the collection of ‘before advice (α)’,
‘after advice (β)’ and ‘around advice (γ)’ values separately
as provided by the Web services in association with
aspects those have been weaved inherently. The entity
which occurs many times in the response set will lead to
the final decision, i.e., the output of the Lamport’s
algorithm, which is having a set of three values, the
maximum occurrence of the value either ‘commit’ or
‘rollback’ is considered as the final decision. The response
due to an advice which is different from other advices is
the one that behaves abnormally and the service, for which
this advice belongs to, is the faulty service.

Fig. 1: Aspect oriented model for byzantine agreement

 The instance at which the service exhibits the
faulty value or behaves abnormally i.e., before, after
and around the execution of the service is determined in
a straight forward manner.
 An on-line debit transaction from a customer
account in a bank is considered as a case study to
analyze and to test the aspects oriented decision making
model for Byzantine agreement. It is assumed that four
services namely primary service (receives and
processes the request from the client), authentication
service, transaction service and balance verification
service are involved for processing the transaction
request. When all the services agreed mutually, the
amount is debited from the customer account. When
any one of the services provides a negative response,
the transaction is declined. When there is a malicious
service which exhibits Byzantine behaviour then the
genuine transactions are also declined.
 In order to apply Lamport’s algorithm for
Byzantine Agreement in distributed services
environment, the minimum requirement is 3f+1 (f ≥1)
processes (Lamport et al., 1982) and hence in the case
study, a total of four processes (one primary service +
three services) are considered. In this Web application,
the client provides the initial set of input for transaction
like authentication (customer and pin verification),
selection of account type, transaction type (only
withdrawal is considered) and amount to be withdrawn.
Once the request for the transaction is initiated, the
“before advice” of the primary service gets triggered
and also the “before advice” of the coordinating
services. The messages that are exchanged during
“before advice” among the services (including primary
service) have been fetched at this stage and weaved
together. The Lamport’s Byzantine Agreement
Algorithm is invoked using the set of “before advice”
responses to reach possible agreement. The decision
taken in this phase is labeled as “αd”. The next process
starts with verifying the account balance and at this
point of time the “around advice” of all the involved
services get activated and the messages that are
collected are weaved together. The set of “around
advice” responses is fed into the Byzantine Agreement
Algorithm and the result obtained is identified as “βd”.
When all the processes have completed the request,
post commit transactions are performed with which the
“after advice” messages are collected and weaved to
pass them to Byzantine Agreement Algorithm and
“after advice” result is available in “γd”.
 In this case study, each response αd, βd, or γd
represents a value “commit” or “rollback” and the final
decision whether to debit or not is arrived based on the
value which occurs more times in the set. The

J. Computer Sci., 8 (3): 382-388, 2012

385

checkpoint at which the system starts violating or
exhibiting abnormal behaviour is identified and
appropriate action is taken against the traitorous service
by reporting it to the concerned authority by the way of
generating fault reports.

Implementation: A set of interfaces has been defined
while implementing the proposed aspect oriented
decision making model for Byzantine agreement. The
interfaces used for implementing the Byzantine
algorithm are:

Service interface - For maintaining the list of

participant services
NodeValue interface - For retrieving current

message value that is
passed from one service to
another service

MapRepository interface - For defining the services
hierarchy, for identifying
the path in which the
message communication
takes place, for specifying
the number of messages
exchanged between the
participant services

Broadcast interface - For maintaining the number
of repetitions and the
message transfer details

AspectValue interface - For storing the advices
message value - Vector based parameters are
 used for before, after and

around advices

 The above interfaces except AspectValue interface
are implemented to establish the Lamport’s algorithm
as a Web service in the distributed environments such
as RMI, Servlets and AXIS2 based SOAP communication
environment. The Web service designed for Lamport’s
algorithm is further extended and deployed in the public
cloud environment. Aspects are introduced to enhance the
decision arrived by the Lamport’s algorithm for Byzantine
agreement by the way of injecting before, after and around
advices to the developed Web service.
 To elucidate aspects with Web service for
Byzantine agreement, “AuthenticationService” for
verifying the user credentials is considered. The
“AuthenticationService” declares a method “verifyUser
()” for validating the user credential and its signature is
given below:

Public boolean verifyUser(String username, String
password)

 The aspect and the “AuthenticationService” are
weaved together through “pointcuts”. The pointcut
processMessage () inherently monitors the state and
parameters of the method “verifyUser()” as defined in
the service “AuthenticationService”. The method
signature of “verifyUser ()” specifies two parameters
both of type String, hence pointcut is also defined
with the same number and type of parameters which is
given below:

public pointcut processMessage(String uname, String
pwd): execution(public
boolean verifyUser(String, String)) and args (uname,
pwd);

 The advices before, after and around are
associated with the pointcut. The following code
fragment shows the around advice of the pointcut
“processMessage()”. The state of the parameters are
logged and depends on the service the logging
variable is different. In case of
AuthenticationService the parameter “username” is
logged. The response generated by the
“AuthenticationService” is captured by the around
advice and passed to Lamport’s algorithm. The
message from all the other services of around advice
is transferred in this manner. A similar kind of
approach is adopted for other aspects with before and
after advices. The around advice of the service
“AuthenticationService” is given below:

boolean around(String uname, String
pwd):processMessage(uname, pwd) {
 // write the String variable uname (user name) into
the log
 // obtain the response created by the service
 // pass the message to the Lamport’s Algorithm for
further processing
 }

 The values received from the aspect advices are
processed separately to arrive at an agreement and
for reporting the faults. The aspect code is shown in
Fig. 2, which consists of two pointcuts for processing
the messages and for identifying the faulty node.
Three advices before, after and around are defined
for message processing pointcut and the after advice
is defined for fault node identification. The pointcut
processMessage() is defined and it is associated with
the method “BFTSolution ()”, which is the
implementation of the Byzantine Agreement
Algorithm.

J. Computer Sci., 8 (3): 382-388, 2012

386

Fig. 2: Pointcut and advices for byzantine agreement

algorithm

 For the advices before, after and around, the
respective methods are invoked for taking the decision
at that instance and the results are retained for taking the
final decision. Based on the values collected for
identifying and reporting the faulty node, a pointcut called
“afterDecision ()” is used. The functionality of this aspect
is to identify the service which behaves abnormally.
 The anomalies are analyzed for abnormal behavior
with respect to any external force, which is responsible
for the fault or due to human intervention or due to any
other factors. The information gathered helps in
eliminating the Byzantine behaviour of the faulty
service and thereby extended to prevent other services
from being affected by similar kind of behaviour.

Performance analysis: The performance measures
namely Round Trip Time (RTT) and throughput has
been computed for execution of the proposed Byzantine
Agreement algorithm with advices (before, around and
after). Round trip time is the time that elapses between
the initiation and obtaining the response of the service
by the client. Throughput is estimated as the total size
of the data transferred divided by the duration of the
test run. In the proposed study, RTT gradually
decreases in the order of the advices (before, around
and after) associated with the Lamport’s algorithm and
throughput increases in the order after, around and
before advices, which is shown in Fig. 3.
 The average round trip time and throughput for
Lamport’s algorithm for Byzantine Agreement is 0.081
ms and 12.53 kbps respectively. Introducing aspects
into Lamport’s algorithm doesn’t show any major
impact in terms of execution.

Fig. 3: Throughput and RTT of aspect advices for

byzantine agreement algorithm

 RTT is decreased on subsequent invocation of
Byzantine algorithm for aspect advices before, around
and after. This analysis reveals that introducing aspect
advices for tolerating Byzantine behavior doesn’t show
any increase in RTT or decrease in throughput. Since
there is no external invocation and hence no additional
overhead in processing these advices are required.
 A comparison study has been carried out on the
performance of Byzantine Agreement algorithm with
injection of around advice aspects and without
involving any aspect in various distributed environment
paradigms. Figure 4 shows the execution behavior of
Byzantine Agreement Algorithm in Remote Method
Invocation (RMI) with and without aspects. The
average round trip time (log based) is moderately low if
the algorithm is implemented with aspects when
compared with the implementation without aspects. The
testing is done by varying the number of processes and
number of messages.
 The performance measure, round trip time for the
Byzantine agreement algorithm using Web servlets by
varying the number of messages is shown in Fig. 5.
RMI exhibits a better execution time when compared
with servlets.
 While the Byzantine Agreement algorithm is
implemented as a Web service using AXIS2 Apache the
Fig. 6 shows that the average round trip time is very
less when compared with implementations using RMI
and Web servlets. Involving aspects in Web services
reduces the execution time considerably than any other
environment.
 The execution times of the Byzantine Agreement
algorithm with and without aspects while implementing
the same in the Model View Controller Framework
(MVC) using Struts and in the public Cloud
environment using Google App Engine are shown in
Fig. 7 and 8 respectively. These two environments
exhibit a higher execution time when compared
with RMI, Web servlets and Web services.

J. Computer Sci., 8 (3): 382-388, 2012

387

Fig. 4: Round Trip Time for Byzantine Agreement with

and without Aspects in Remote Method
Invocation (RMI) Environment

Fig. 5: Log Based Round Trip Time for Byzantine

Agreement with and without Aspects in Web
Servlets Environment

Fig. 6: Round Trip Time for Byzantine Agreement with

and without Aspects in Web Services
Environment

Inducing aspects into Model View Controller
Framework and in public cloud environment consumes
higher execution time than the Lamport’s algorithm for
Byzantine agreement is implemented without aspects.
 Table 1 shows the average throughput for the
Byzantine agreement algorithm implemented using
various distributed environment paradigms. Among
the tested distributed environments, it is observed
that the Web service implementation provides a
better throughput which is followed by Java Remote
Method Invocation when aspects are introduced for
achieving Byzantine agreement whereas cloud
platform generates low throughput.

Fig. 7: Round Trip Time for Byzantine Agreement with

and without Aspects in Model View Controller
Framework (using Struts)

Fig. 8: Round Trip Time for Byzantine Agreement with

and without Aspects in Public Cloud
Environment

Table 1: QoS measure-throughput of the proposed byzantine fault tolerance model in distributed environment paradigms
 Number of services (ns)

 Throughput with aspects (kbps) Throughput thou aspects (sec)
 -- --
Platform ns = 6 ns = 7 ns = 8 ns = 9 ns = 6 ns = 7 ns = 8 ns = 9
RMI 2.0313 0.3963 0.0301 0.0034 0.3533 0.1195 0.0261 0.0032
Web container 0.4514 0.1641 0.0366 0.0035 0.4063 0.1280 0.0193 0.0023
Web service 2.0313 0.4924 0.0453 0.0038 0.8125 0.3009 0.0341 0.0035
MVC 4.0625 0.2462 0.0356 0.0032 1.0156 0.3779 0.0409 0.0037
Cloud platform 2.0313 0.2083 0.0166 0.0018 2.0313 0.2621 0.0330 0.0035

J. Computer Sci., 8 (3): 382-388, 2012

388

 The case is reverse when the agreement algorithm
is implemented without aspects i.e., the throughput of
Struts based implementation is high which is followed
by the cloud environment. Even though cloud
environment yields a low throughput, the aspects can
still be introduced because of the features supported by
the cloud platform are not available in the other
distributed paradigms.

CONCLUSION

 An enhanced model for identifying Byzantine
behaviour of Web services using aspects is proposed in
this study. The proposed approach is an extension to the
existing Lamport’s algorithm for Byzantine Agreement,
in which the state and parameters before, after and at
the time of execution of the services are considered for
decision making process. The proposed model enhances
the decision making in the presence of Byzantine faults
and also determines the checkpoint where the fault
transpires. The origin of the fault location is identified
and appropriate action is taken against the faulty service
by the way of generating the fault reports and notifying
to the authorities. By introducing aspects into the
Byzantine agreement algorithm, performance issues do
not arise, as the advices are not invoked by any other
external resources, as they are being triggered along with
the service itself. The methodology adopts an enhanced
decision making approach for tolerating Byzantine
faults using aspects by considering the advices before,
after and around the execution of the service and therefore
an accurate decision is arrived rather than the decision
taken considering only the around advice as is the case in
the existing Lamport’s algorithm.

REFERENCES

Domokos, P. and I. Majzik, 2005. Design and Analysis

of Fault Tolerant Architectures by Model Weaving.
Proceedings of the 9th IEEE International
Symposium on High-Assurance Systems
Engineering, Oct. 12-14, IEEE Xplore Press,
Germany, pp: 15-24. DOI: 10.1109/HASE.2005.8

Herrero, J.L., F. Sanchez, O. Sanchez and M. Toro,
2001. Fault Tolerance AOP Approach. The
Pennsylvania State University.

Ji-De, Z. and Y. Ying, 2010. Analysis of exception fault
types based on AspectJ. Proceedings of the
International Conference on Computer Application
and System Modeling, Oct. 22-24, IEEE Xplore
Press, Taiyuan, pp: 287-289. IEEE. DOI:
10.1109/ICCASM.2010.5619408

Lamport, L., R. Shostak and M. Pease, 1982. The
byzantine generals problem. ACM Trans.
Programm. Languages Syst., 4: 382-401. DOI:
10.1145/357172.357176

Sevilla, D., J.M. Garcia and A. Gomez, 2007. Aspect-
oriented programing techniques to support
distribution, fault tolerance and load balancing in
the CORBA-LC component model. Proceedings of
the 6th IEEE International Symposium on Network
Computing and Applications, Jul. 12-14, IEEE
Xplore Press, Cambridge MA, pp: 195-204. DOI:
10.1109/NCA.2007.8

Zhao, W., 2007. BFT-WS: A byzantine fault tolerance
framework for web services. Proceedings of the
11th International IEEE EDOC Conference
Workshop, Oct. 15-16, IEEE Xplore Press,
Annapolis, Maryland, pp: 89-96. DOI:
10.1109/EDOCW.2007.6

