
Journal of Computer Science 8 (5): 665-672, 2012
ISSN 1549-3636
© 2012 Science Publications

Corresponding Author: Suresh, Y., Department of Information Technology, Sona College of Technology, Salem-636005, India
665

A Forager Bee’s Intelligence Inspired

Dynamic Queue Scheduling for the Internet Traffic

1Suresh, Y., 2S. Arumugam and 3M.A. Bhagyaveni
1Department of Information Technology,

Sona College of Technology, Salem-636005, India
2Department of CEO, Nandha Engineering College, Erode, India

3Department of ECE, Anna University, Chennai, India

Abstract: Problem statement: In the present evolution of large scale internet communication,
per flow control scheme faces scalability issue due to tremendous number of flows. The
aggregation based approaches such as differentiated architecture relieve the storage of state of
flows in core router. TCP is the dominating protocol that carries majority of the total internet
traffic. Recent internet traffic measurement shows most of the TCP flows are short lived. The
performance improvement in the internet traffic can be achieved by the advantages of scheduling
algorithms to favor short TCP flows first However long TCP flows competing against short TCP
flows starve at some point. Approach: In this study we propose aggregation based scheduling
algorithm namely Guaranteed Dynamic Queue Scheduling (G-DQS) that estimates the available
bandwidth of the network using the forager bee’s intelligence for providing guaranteed
throughput. In addition, G-DQS algorithm is proposed to favor the short TCP flows without
penalizing the performance of long flows using dynamic scheduling ratio. Results: Simulation of the
proposed scheduling method show that mean transmission time of flows and packet loss significantly
decrease in comparison with FIFO and RuN2C. Conclusion: Proposed forager bee’s intelligence
inspired scheduling approach achieves the guaranteed throughput in the large scale network.

Key words: TCP flows, aggregated scheduling, large scale networks, Internet Guaranteed Dynamic

Queue Scheduling (G-DQS), guaranteed throughput

INTRODUCTION

 An explosive growth in business applications
using the Internet have resulted in a strong demand
for some notion of reliability or quality of service.
During periods of congestion or failure, the quality
of service of all flows is degraded. As a result, a
strong need for service differentiation in the flows to
provide guarantees and/or assuring minimum
throughput guarantees.
 To provide quality of service QoS, the Internet
Engineering Task Force (IETF) has proposed the
Integrated Services (Int-Serv) model (Braden et al.,
1994) and the Differentiated Services (Diff-Serv)
model (Bernet et al., 1999). The Int-Serv model
provides per-flow QOS guarantees, but does not
scale well with the number of users. The Diff-Serv
model on the other hand provides per hop behavior
based on aggregates (or classes) at the core routers and
hence scales well at the core routers.
 The internet carries different types of traffic with
the increased use of peer to peer, Web, Telnet, VoIP,

FTP applications. These traffics are differentiated as
short flows and long flows. Short flows are mainly
generated by the delay sensitive applications such as
Web, Telnet and VoIP. The long flows are generated
in the internet originate from peer to peer
applications (Rai et al., 2005).
 A flow is defined as a group of packets with a
common set of attributes such as source address,
destination address, source port, destination port. The
existing internet uses TCP as a Transport Control
protocol and FIFO scheduling in routers. TCP is
connection oriented transport layer protocol that
provides end to end delivery across the internet (Floyd,
2001). The studies (Guo and Matta, 2002) shows that
TCP conveys about 80-90% of traffic over the internet.
Internet traffic exhibits that most of the TCP flows are
short, while more than 50% of the flows are carried by
less than 5% of largest flows (Paxson and Floyd, 1995).
 Offering service guarantees to existing and
emerging applications in the Internet has been a big
challenge to Internet designers. One of the most
important mechanisms to provide service guarantees

J. Computer Sci., 8 (5): 665-672, 2012

666

(Zhang, 1995) is scheduling. Scheduling determines
the order in which the packets from different flows are
served. Packet scheduling in routers has been an
active area of research in the last two decades and
most of the attention has focused on Processor Sharing
(PS) type of scheduling algorithms.
 From queuing theory point of you it has been
shown that choosing an appropriate scheduling
algorithm significantly improves the performance of the
system. The studies (Chen and Heidemann, 2003)
shows that short flows should be given highest priority
over the long flows. The issues in the design of a
scheduling algorithm are (a) Classification of short
flows and long flows (Avrachenkov et al., 2004)
Favoring short flows without penalizing the
performance of long flows (c) available bandwidth
estimation for achieving the guaranteed throughput.
 Aiming these issues we propose a Forager bee’s
intelligence Guaranteed Dynamic Queue Scheduling
algorithm (G-DQS) which classifies internet flows into
a short flows and long flows. The G-DQS estimates the
available end to end bandwidth across the link by
adapting the forager bee’s intelligence into the monitor
component of architecture and uses the Dynamic packet
Scheduling ratio to schedule the short and long flows
for achieving the guaranteed throughput.

MATERIALS AND METHODS

 Two queue threshold based approaches has been
proposed (Wierman and Harchol-Balter, 2003) that
gives highest service priority to the short flow. TCP
flows are differentiated as short and long flows using a
threshold value and short flows are en queued in one
queue and remaining long flows are en queued in the
second queue. Service priority is given to the first
queue in First In First Out (FIFO) discipline and the
second queue are only served if the first queue is
empty. This approach reduces the mean transfer time
however leads to starvation of long flows.
 Bandwidth Adaptive Stratified Round Robin
(BASRR) packet scheduling algorithm has been
proposed in this study for enhancing quality of service
of real-time multimedia applications. Embedded
Network Processors (NP) has recently emerged with
flexibility and speed to reduce the stress of the router by
effectively processing the packets. The main objective
of this study was to implement the proposed packet
scheduling algorithm in a Network Processor (NP)
based router for enhancing quality of service of real-
time multimedia applications
 In RuN2C (Avrachenkov et al., 2004), using
TCP sequence number the packets are put in first

queue or second queue. Packets from the second
queue were not served unless the first queue was
empty. Limitation of this protocol is TCP sequence
number should start from a set of possible initial
numbers and would lead to security problems such as
IP address spoofing and session hijacking.
 In LAS (Rai et al., 2004), the next packet to be
served is one belonging to the flow that has received the
least amount of service. By this definition, LAS will
serve packets from a newly arriving flow until that flow
has received an amount of service equal to the amount
of least service received by flow in the system before its
arrival. The long lived TCP flows competing against
short TCP flows shows starvation in LAS. LAS reduces
the loss rate for the short flows and approximately
doubles the loss rate of long flows as compared with the
loss rate under FIFO. Similarly, a Dynamic Packet
Scheduling algorithm (Suresh et al., 2011) was
proposed to treat the short and long flows in fair
manner during the scheduling and avoids the starvation
of long flows.
 Another protocol Context Aware
Transport/Network Internet Protocol (CATNIP)
(Williamson and Wu, 2002) requires application
layer information, the web document size to provide
explicit context information to the TCP and IP
protocol. While this approach violates the traditional
layered Internet protocol architecture, it enables
informed decision-making; both at network endpoints
and at network routers, regarding flow control,
congestion control and packet discard decisions.
 Cprobe (Carter and Crovel, 1996) estimated the
available bandwidth based on the dispersion of long
packet trains at the receiver. A similar approach was
taken in pipechar (Jin et al., 2001). The underlying
assumption in these works is that the dispersion of long
packet trains is inversely proportional to the available
bandwidth. The dispersion of long packet trains does
not measure available bandwidth in a path; instead, it
measures a different throughput metric that is referred
to as Asymptotic Dispersion Rate (ADR).
 Another technique, called TOPP, for measuring
available bandwidth was proposed in (Melander et al.,
2000). TOPP uses sequences of packet pairs sent to the
path at increasing rates. From the relation between the
input and output rates of different packet pairs, one can
estimate the available bandwidth and the capacity of the
tight link in the path.
 From the survey, it is revealed that accurately
estimating the best profitable bandwidth value is very
important for the scheduler to achieve the guaranteed
throughput in the large scale network. The bandwidth
estimation carried out by the scheduler is considered to

J. Computer Sci., 8 (5): 665-672, 2012

667

be a typical search optimization i.e., finding the most
profitable bandwidth value among the available.
 Evolutionary and Meta-heuristic algorithms
(Afshar et al., 2007) have been extensively used as
search and optimization tools in various problem
domains. The broad applicability, ease of use and
global perspective of meta-heuristic algorithms (Ghoul
et al., 2007) may be considered as the primary reason
for their extensive application and success as search and
optimization tools in various problem domains. Among
them, Genetic Algorithms (Jalilzadeh et al., 2009) have
been extensively employed as search and optimization
methods in various problem domains, including
science, commerce and engineering (Ahrari et al.,
2009). Genetic Algorithms are search and optimization
procedures that are motivated by the principle of
natural genetics and natural selection. Fundamental
ideas of genetics are borrowed and used artificially to
construct search algorithms that are robust and require
minimal problem information. Over the last decade,
modeling the behavior of social insects, such as ants
(Ismail and Loh, 2009) and bees, for the purpose of
search and problem solving has been the context of
the emerging area of swarm intelligence.
 Honey-bee (Karaboga and Akay, 2009) is among
the most closely studied social insects. The
intelligent behaviors of bee swarm such as bees
foraging, bees mating, have inspired the researchers
to develop new algorithms. In a recent work, Blum
and Merkle (2008) developed an optimization
algorithm based on the honeybee marriage process.
Honey-bee mating is considered as a typical swarm-
based approach to optimization, in which the search
algorithm is inspired by the process of marriage in real
honey-bee.
 Another important behavior in Bees colony is
Foraging concept. Foraging behaviour of Artificial Bee
System (Bonabeau et al., 1999) is relatively new
member of swarm intelligence. It tries to model natural
behavior of real honey bee in food foraging. Honey bee
uses several dancing methods to exchange information
about location and profitability of food source. This
food searching bee’s behavior is a good candidate for
developing new intelligent search algorithms. In the
bee’s foraging behavior, the best profitable food source
can be found using the collective intelligence of forager
bees. In similar way, the best profitable bandwidth
value can be found from large solution space by
mimicking the foraging behavior of honey bees.
 In proposed G-DQS architecture, bee’s foraging
intelligence is adapted into the monitor component to
find the best profitable bandwidth value for calculating
the admissible flow to ensure the guaranteed

throughput. Further, the proposed architecture uses the
G-DQS algorithm to de queue the packets from the
SFQ and LFQ based on the novel dynamic queue
scheduling ratio. The proposed G-DQS is based on
periodic rate-controlled streams, rather than window-
controlled transmissions, allowing us to compare a
certain rate with the available bandwidth more reliably
and schedules the packets in two queues.

Proposed G-DQS architecture: Proposed
scheduling algorithm G-DQS is suitable across
varying traffic flows. The algorithm uses Dynamic
Scheduling Ratio Q(r) for the efficient scheduling.
Here our classification of short and long flow is as
follows: Short flows are those with the flow size less
than the threshold th and otherwise long flows. Flow
size is the total number of packets or bytes of the flow
i. We divide queue into two groups: SFQ and LFQ. If
a flow i and its packets to be scheduled are less than
the threshold th then the flow i is inserted in SFQ and
if a flow i and its packets to be scheduled is not less than
the threshold th then the flow i is inserted in LFQ. On the
arrival of a packet if the buffer if full, a selected packet
will be dropped using buffer stealin g (Zhang, 1995).
Unlike Short Flow Highest Priority Scheduling
algorithms, we use Dynamic Scheduling Ratio Q(r) to
schedule the packets in the two queues. Q(r) decides the
number of packets to be scheduled in each queue.
 The Architecture components are explained as
follows.

Classifier: On arrival of a packet p from flow i the
classifier uses the threshold value th to each packet and
dispatches it to the proper queue.

Monitor: The Monitor collect statistics about number
of packets of all the flows in each queue and estimate
the available bandwidth by adapting the forager bee’s
intelligence and report it to the Controller periodically.

Controller: Controller is the soul of G-DQS. It
calculates dynamic scheduling ratio Q(r) for the each
round based on the packets (packets) in two queue and
commands scheduler to schedule the number of packets
in each queue. It consists of a State Variable Counter
DCI. The counter is initialized with the total number of
flows in SFQ. Whenever the scheduler schedules
packets from SFQ, the Q(r) value is decremented from
DCi. The controller makes decision according to the
information that other components report.

Scheduler: The scheduler decides the service order of
packets in two queues according to the Controller’s
command.

J. Computer Sci., 8 (5): 665-672, 2012

668

Adapting forager bee’s intelligence for finding the
profitable bandwidth measure:
 Input: All the flows in the SFQ and LFQ and it is
denoted by Flow List (FL) = {FL1, FL2,.., FLn }.

Output: Profitable Bandwidth measure that provides
the best throughput.

Algorithm:

• Initialize the flow list by choosing the random

policy on the current flows in the SFQ and LFQ.
• Onlooker Agent (OA) in the Monitor initiates the

Forager Agents (FAn) corresponding to the number
of flows in the FL.

• Each Forager Agent on its assigned flow does the
following

• Each FAi receives the flow data size (dk) as
reinforcement from the OA

• Each FAi applies the following fitness function to find
profitable bandwidth measure on its assigned flow

 FAi sends its dk to destination host and receives the
acknowledgement at time point tk. The initial
bandwidth measure can be computed using the
following Eq. 1:

IBWFAi(dk) = ()
kd

k k 1t t −−
 (1)

 FAi applies the smoothing filter called
Exponential Weighting Moving Average (EWMA)
on the initial bandwidth measure (IBWFAi(dk)) to find
the final bandwidth measure (FBMFAi(dk)) using the
following Eq. 2:

() ()
() ()

FAi k FAi k 1

FAi k

FBM d IBW d

* IBW d * 1 –

−=

β + β
 (2)

where, β value is chosen based on the current status in
the network. It is computed as shown in the Eq. 3 and 4:
 If IBWFAi(dk) ≥ FBMFAi(dk-1) then:

i

i

FA k 1

FA k

FBM (d)

IBM (d)
−β = (3)

 Else if IBWFAi(dk) ≤ FBMFAi(dk-1) then:

i

i

FA k

FA k 1

IBM (d)

FBM (d)−

β = (4)

 After each Forager Agent (FAi) executed the step
(3), it sends the computed FBMFai (dk) to the Onlooker
Agent (OA). After receiving the profitable bandwidth
measure from each agent (FAi), it selects the best
profitable final bandwidth measure.
 According to the above algorithm, selected profitable
bandwidth measure of OA is used by the Monitor
component to find the admissible flow Fmax as follows.

Calculation of Fmax: Conceptually, G-DQS
attempts to bound the instantaneous throughput of
flows on an edge-to-edge basis to less than BWg.
Fmax represents the maximum number of active
flows which is to be scheduled on the edge-to-edge
path without sacrificing the QOS.
 To derive Fmax, an edge router first computes
the predicted Flow Completion Time (FCT) and the
throughput for a flow with no packet loss. Thus, the
FCT of a short flow with size Sf can be computed
using the Eq. 5:

2

FCT C DTx

sf
FCT 1.5 RTT log RTT

MSS

= +

 = × + ×

 (5)

where, C is the time for connection establishment with
the three-way handshake, DTx represents the data
transmission time, MSS is the maximum segment size
and RTT is the estimated end-to-end round trip time.
Besides the computation of Eq. 1, the FCT for short-
lived flows can also be gathered at the edge router
through passive monitoring.
 With Sf and FCT, the throughput Tf can be
computed using the Eq. 6:

f
f

s (MSS H)
T

FCT MSS

× +=
×

 (6)

where, H is the estimated header size. Thus, the maximum
number of active fast admitted flows on an edge to-edge
path, Fmax, can be computed using the Eq. 7:

 g g
max

f f

BW BW FCTXMSS
F

T s (MSS H)

×
= =

× +
 (7)

G-DQS algorithm: This algorithm is implemented by
the scheduler

Begin: Differentiate TCP flows as short flows and long
flows using threshold th and insert in two queues SFQ
and LFQ respectively.

J. Computer Sci., 8 (5): 665-672, 2012

669

S:
• Calculate number of flows in SFQ =

n

SFQi 1
B ()

=
τ∑ and number of flows in

• LFQ =
n

LFQi 1
B ()

=
τ∑

• Initialize a State Variable Counter DCi (r) =

SFQ =
n

SFQi 1
B ()

=
τ∑

• Calculate Dynamic Packet Scheduling Ratio Q

(r)
n n

SFQ LFQi 1 i 1
n

LFQi 1

B () B ()
Q(R)

B ()
= =

=

τ + τ
=

τ
∑ ∑

∑

• Estimate the available bandwidth BWg on the
edge to edge path using Eq. 2

• Using BWg calculate maximum number of
flows to be on the path Fmax using Eq. 5

If Fmax >Q(r) and

• If
n

LFQi 1
B ()

=
τ∑ =0 then flows scheduled in the

queue LFQ = Q(r) else flows scheduled in the
queue SFQ = Q(r) and flows scheduled in the
queue LFQ =1

• Perform DCi (r) = DCi (r) − Q(r)
• The main observation is: DCi (r−1) −Q(r) =

DCi (r)
• If DCi (r)> Q(r) then return to D: else return to

S: for the calculation of Q(r) and BWg for the
next round

If Fmax<Q(r) and:

• If n

LFQi 1
B ()

=
τ∑ = 0 then flows scheduled in the

queue LFQ = Q(r) else flows scheduled in the
queue SFQ = Fmax

• Perform DCi (r) = DCi (r) -Fmax
• The main observation is DCi (r-1)-fmax
• If DCi (r)> Q(r) then return to D: else return to

S: for the calculation of Q(r) and BWg for the
next round

End

 A state variable counter DCi (r) is initialized with a
value of total number of flows (packets) in the short
flow queue SFQ. The dynamic scheduling ratio Q(r) is
calculated from the number of flows in SFQ and LFQ.
Maximum flows to be available on edge to edge path
are calculated using BWg (k) and Fmax. If Q(r)<Fmax
then the flows in the SFQ are scheduled using the
calculated value of Q(r) The Q(r) value of flows are
scheduled in SFQ and one flow is scheduled in LFQ.
This approach is continued until total number of flows
in the queue SFQ becomes zero and then LFQ is
completely scheduled. The condition DCi (r) <Q(r) is
checked during whenever the flows are scheduled in

SFQ. If the condition is not satisfied then the new value
of Q(r) and Fmax will be calculated for the next round.
 If Q(r)>Fmax then the flows in the SFQ are

scheduled using the calculated value of FmaxThe
condition Q(r)>Fmax indicates that the number of flows
is to be scheduled is more than the number of flows to
be available on the edge to edge path. This is needed to
provide a guaranteed throughput because when more
flows are scheduled than Fmax the packet loss occurs
and requires the retransmission of flows. This reduces
the mean transmission time and throughput .Hence
number of flows are scheduled in SFQ is Fmax. During
this period flows are scheduled only from SFQ and not
in LFQ. The G-DQS gives priority to short flows when
the available bandwidth is minimum compared to the
flows to be scheduled. The condition DCi (r) <Fmax is
checked whenever the packets are scheduled in SFQ. If
the condition is not satisfied then the new value of Q(r)
Fmax will be calculated for the next round.
 This dynamic changing behavior of Q(r) is the
main difference between our approach and other
threshold approach. The Q(r) always changes according
to the total number of flows in the two queues. This
adaptive ratio Q(r) significantly improves the
performance than the constant packet scheduling ratio
used in QSPS (Paxson and Floyd, 1995) algorithm. The
results shows that short TCP flows are treated without
penalizing the performance of long TCP flows.

RESULTS

 The practical networks normally will have many
bottleneck links interconnecting the router. Hence, the
proposed G-DQS is tested for their performance in the
network topology with multiple bottleneck links. This
model is shown in Fig. 1. In this configuration TCP
sources traversing three bottleneck links and
terminating at R3. The routers also shares the cross
traffic. The bottleneck link capacities are 50Mbps,
30ms and other sources are connected with 10Mbps,
10ms. Here we refer to the packets that belonging to
one TCP connection as a flow.
 For studying the performance of Guaranteed-
Dynamic Queue Scheduling (G-DQS), we test the
following relations with the other protocols like First in
First out (FIFO) and RuN2C.
 Figure 2 Depicts that G-DQS reduces the mean
transmission time of flows by treating long flows
fairly. The transmission time of a flow is time interval
starting when a first packet leaves a server and ending
when a last packet of flow is reduced by the
corresponding client.

J. Computer Sci., 8 (5): 665-672, 2012

670

Fig. 1: G-DQS Architecture

 It is evident from the figure that G-DQS approach
reduces the mean transmission time compared to the
simple FIFO and short flow highest priority scheduling.
The transmission time of RuN2C almost same up to the
threshold and G-DQS approach improves the
performance for long flows. Figure 3 shows the mean
transmission time of short flows. It indicates that the
mean transmission time of flows with flow size less
than the threshold under G-DQS is almost the same as
that under RuN2C. But G-DQS shows better
performance for short flows larger than the threshold.
From Fig 4 we observe both G-DQS and RuN2C
significantly reduce the mean transmission time of short
flows compared with FIFO. As RuN2C follows strict
short flow priority scheduling, the mean transmission
time of short flows is minimum under G-DQS. Figure 5
Depicts comparison of Constant Q and Dynamic Q(r) in
terms of the mean transmission time of number of flows
using various constant Packet Scheduling Ratio values.
When Q =1 increases the mean transmission time of
large flows because the packets in two queues are
served with the equal priority.
 When Q value is increased to 5 the mean transmission
time reduces up to the threshold value th and it is increases
during large TCP flows. But the Dynamic Q(r) decreases
the mean transmission time during large TCP flows. The
mean transmission time is almost same up to the threshold
when Q = 5 and in G-DQS. This shows G-DQS algorithm
treats short flows fairly without penalizing the
performance of long TCP flows.
 Figure 6 shows the number of packets dropped
for the various flow sizes. It is evident from the
figure that short flows of size less than 40 packets
not experiences packet loss in G-DQS, whereas for
the similar size of flows FIFO experience packet
loss. The packet loss is less in G-DQS compared to
RuN2C for the large flows because of adaptive
nature of the scheduling ratio used in G-DQS.

Fig. 2: Network topology with multiple bottleneck links

Fig. 3: Number of flow Vs mean transmission time

Fig. 4: Number of flow Vs mean transmission time

Figure 7 shows throughput of flows by the number of
received packets per seconds (counting every 10 sec).
We can see that the throughput of FIFO decreases
suddenly during simulation period between 100 and
150 sec. This is because The FIFO and Ru2Nc
approach schedules the packets not considering the
large flows but in G-DQS packets are scheduled from
two queues. Hence large flows are also getting service
in addition to the short flows. This reduces the packet
loss in large flows.

J. Computer Sci., 8 (5): 665-672, 2012

671

Fig. 5: Comparison of constant Q and dynamic Q(r)

Fig. 6: Number of flows Vs packets dropped

Fig. 7: Throughput Vs simulation time

 The long flows are penalized and starved. It also
indicates the throughput of FIFO and RuN2C is not
constant during the complete simulation period. The

throughput of proposed G-DQS is almost constant and
it provides the guaranteed throughput.

DISCUSSION

 The G-DQS avoids the starvation problem as
shown in RuN2C because G-DQS schedules the packet
both in short flows as well as long flows based on the
bandwidth measure. This measure is estimated using
swarm intelligence inspired honeybee’s foraging
behavior which provides the optimum profitable
bandwidth compared to the other existing techniques.
The proposed method reduces the mean transmission
time and also packet loss compared with the other
techniques as it uses the forager intelligence. It also
shows that throughput does not change rapidly
throughout the simulation time and it is almost
constant. The proposed scheme is an aggregated flow
scheduling and hence it can be adopted for large scale
network.

CONCLUSION

 Scheduling has been known for several years and
attention has been given to use scheduling for the
packet switched networks. In this study we presented a
Forager bee’s intelligence inspired Guaranteed-
Dynamic Queue Scheduling approach namely G-DQS
to improve performance of short flows without
penalizing long flows much. Unlike other scheduling
approaches, the TCP flows are scheduled with a
Dynamic Packet Scheduling Ratio Q (r) and with
accurate bandwidth estimation using forager bee’s
intelligence. This approach decreases the mean
transmission time and packet loss of flows compared
with the other protocols like FIFO and RuN2C
scheduling. This algorithm can be deployed in edge
router without complexity.

REFERENCES

Afshar, A., O.B. Haddad, M.A. Mariño and B.J.

Adams, 2007. Honey-Bee Mating Optimization
(HBMO) algorithm for optimal reservoir operation.
J. Franklin Inst., 344: 452-462. DOI:
10.1016/j.jfranklin.2006.06.001

Ahrari, A., M. Shariat-Panahi and A.A. Atai, 2009.
GEM: A novel evolutionary optimization method
with improved neighborhood search. Applied
Math. Comput., 210: 376-386. DOI:
10.1016/j.amc.2009.01.009

J. Computer Sci., 8 (5): 665-672, 2012

672

Avrachenkov, K., U. Ayesta, P. Brown and E. Nyberg,
2004. Differentiation between short and long TCP
flows: Predictability of the response time.
Proceedings of the 23rd Annual Joint Conference
of the IEEE Computer and Communications
Societies, Mar. 7-11, IEEE Xplore Press, pp: 762-
773. DOI: 10.1109/INFCOM.2004.1356965

Bernet, C.Y., J. Binder, S. Blake, M. Carlson and B.
Carpenter et al., 1999. A Framework for
Differentiated Services. Cornell University,
Internet Draft.

Blum, C. and D. Merkle, 2008. Swarm Intelligence:
Introduction and Applications. 1st Edn., Springer,
Berlin, ISBN-10: 3540740880, pp: 281.

Bonabeau, E., M. Dorigo and G. Theraulaz, 1999.
Swarm Intelligence: From Natural to Artificial
Systems. 1st Edn., Oxford University Press, New
York, ISBN-10: 0195131584, pp: 307.

Braden, B., D. Clark and S. Shenker, 1994. Integrated
service in the internet architecture: An overview.
Center for Technology, Policy and Industrial
Development, MIT Libraries.

Carter, R.L. and M.E. Crovell, 1996. Measuring
bottleneck link speed in packet-switched networks.
Perfor. Evaluat., 27-28: 297-318. DOI:
10.1016/S0166-5316(96)90032-2

Chen, X. and J. Heidemann, 2003. Preferential
treatment for short flows to reduce web latency.
Comput. Netw., 41: 779-794. DOI:
10.1016/S1389-1286(02)00439-5

Floyd, S., 2001. A report on recent developments in TCP
congestion control. IEEE Commun. Mag., 39: 84-
90. DOI: 10.1109/35.917508

Ghoul, R.H., A. Benjelloul, S. Kechida and H. Tebbikh,
2007. A scheduling algorithm based on petri nets
and simulated annealing. Am. J. Applied Sci., 4:
269-273. DOI: 10.3844/ajassp.2007.269.273

Guo, L. and I. Matta, 2002. Differentiated control of
web traffic: A numerical analysis. SPIE Int. Soc.
Optical Eng., 184-194.

Ismail, Z. and S.L. Loh, 2009. Ant colony optimization
for solving solid waste collection scheduling
problems. J. Math. Stat., 5: 199-205. DOI:
10.3844/jmssp.2009.199.205

Jalilzadeh, S., H. Shayeghi, M. Mahdavi and H. Hadadian,
2009. A GA based transmission network expansion
planning considering voltage level, network losses
and number of bundle lines. Am. J. Applied Sci., 6:
987-994. DOI: 10.3844/ajassp.2009.987.994

Jin, G., G. Yang, B.R. Crowley and D.A. Agarwal,
2001. Network Characterization Service (NCS).
Proceedings of the 10th IEEE Symposium on High
Performance Distributed Computing, Aug. 07-09,
IEEE Xplore Press, San Francisco, CA, USA., pp:
289-299. DOI: 10.1109/HPDC.2001.945197

Karaboga, D. and B. Akay, 2009. A survey: Algorithms
simulating bee swarm intelligence. Artif. Intell.
Rev., 31: 61-85. DOI: 10.1007/s10462-009-9127-4

Melander, B., M. Bjorkman and P. Gunningberg, 2000.
A new end-to-end probing and analysis method for
estimating bandwidth bottlenecks. Proceedings of
the IEEE Global Telecommunications Conference,
Nov. 27-Dec. 01, IEEE Xplore Press, San
Francisco, CA, USA., pp: 415-420. DOI:
10.1109/GLOCOM.2000.892039

Paxson, V. and S. Floyd, 1995. Wide area traffic: The
failure of Poisson modeling. IEEE/ACM Trans.
Netw., 3: 226-244. DOI: 10.1109/90.392383

Rai, I.A., E.W. Biersack and G. Urvoy-Keller, 2005.
Size-based scheduling to improve the performance
of short TCP flows. IEEE Netw., 19: 12-17. DOI:
10.1109/MNET.2005.1383435

Rai, I.A., G. Urvoy-Keller, M. Vernon and E.W.
Biersack, 2004. Performance models for LAS-
based disciplines in a packet switched network.
Proceedings of the SIGMETRICS/Performance,
Jun. 12-16, ACM, New York, USA., pp: 1-12.

Suresh, Y., S. Arumugam and M.A. Bhagyaveni, 2011.
An Efficient Dynamic Queue Scheduling (DQS) on
classified TCP flows for the internet traffic. Eur. J.
Sci. Res., 55: 481-486.

Wierman, A. and M. Harchol-Balter, 2003. Classifying
Scheduling policies with respect to unfairness in an
M/GI/1. Proceedings of the 2003 ACM
SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems,
Jun. 10-14, ACM, San Diego, CA, USA., pp: 238-
249. DOI: 10.1145/781027.781057

Williamson, C. and Q. Wu, 2002. A case for context-
aware TCP/IP. ACM Performance Evaluat. Rev.,
29: 11-23. DOI: 10.1145/512840.512843

Zhang, H., 1995. Service disciplines for guaranteed
performance service in packet-switching networks.
Proc. IEEE, 83: 1374-1396. DOI: 10.1109/5.469298

