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Abstract: Problem statement: In the present evolution of large scale internet communication, 
per flow control scheme faces scalability issue due to tremendous number of flows. The 
aggregation based approaches such as differentiated architecture relieve the storage of state of 
flows in core router. TCP is the dominating protocol that carries majority of the total internet 
traffic. Recent internet traffic measurement shows most of the TCP flows are short lived. The 
performance improvement in the internet traffic can be achieved by the advantages of scheduling 
algorithms to favor short TCP flows first However long TCP flows competing against short TCP 
flows starve at some point. Approach: In this study we propose aggregation based scheduling 
algorithm namely Guaranteed Dynamic Queue Scheduling (G-DQS) that estimates the available 
bandwidth of the network using the forager bee’s intelligence for providing guaranteed 
throughput. In addition, G-DQS algorithm is proposed to favor the short TCP flows without 
penalizing the performance of long flows using dynamic scheduling ratio. Results: Simulation of the 
proposed scheduling method show that mean transmission time of flows and packet loss significantly 
decrease in comparison with FIFO and RuN2C. Conclusion: Proposed forager bee’s intelligence 
inspired scheduling approach achieves the guaranteed throughput in the large scale network. 
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INTRODUCTION  
 
 An explosive growth in business applications 
using the Internet have resulted in a strong demand 
for some notion of reliability or quality of service. 
During periods of congestion or failure, the quality 
of service of all flows is degraded.  As a result, a 
strong need for service differentiation in the flows to 
provide guarantees and/or assuring minimum 
throughput guarantees.  
 To provide quality of service QoS, the Internet 
Engineering Task Force (IETF) has proposed the 
Integrated Services (Int-Serv) model (Braden et al., 
1994) and the Differentiated Services (Diff-Serv) 
model (Bernet et al., 1999). The Int-Serv model 
provides per-flow QOS guarantees, but does not 
scale well with the number of users. The Diff-Serv 
model on the other hand provides per hop behavior 
based on aggregates (or classes) at the core routers and 
hence scales well at the core routers. 
 The internet carries different types of traffic with 
the increased use of peer to peer, Web, Telnet, VoIP, 

FTP applications. These traffics are differentiated as 
short flows and long flows. Short flows are mainly 
generated by the delay sensitive applications such as 
Web, Telnet and VoIP. The long flows are generated 
in the internet originate from peer to peer 
applications (Rai et al., 2005).  
 A flow is defined as a group of packets with a 
common set of attributes such as source address, 
destination address, source port, destination port. The 
existing internet uses TCP as a Transport Control 
protocol and FIFO scheduling in routers. TCP is 
connection oriented transport layer protocol that 
provides end to end delivery across the internet (Floyd, 
2001). The studies (Guo and Matta, 2002) shows that 
TCP conveys about 80-90% of traffic over the internet. 
Internet traffic exhibits that most of the TCP flows are 
short, while more than 50% of the flows are carried by 
less than 5% of largest flows (Paxson and Floyd, 1995).
 Offering service guarantees to existing and 
emerging applications in the Internet has been a big 
challenge to Internet designers. One of the most 
important mechanisms to provide service guarantees 
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(Zhang, 1995) is scheduling. Scheduling determines 
the order in which the packets from different flows are 
served. Packet scheduling in routers has been an 
active area of research in the last two decades and 
most of the attention has focused on Processor Sharing 
(PS) type of scheduling algorithms.  
 From queuing theory point of you it has been 
shown that choosing an appropriate scheduling 
algorithm significantly improves the performance of the 
system. The studies (Chen and Heidemann, 2003) 
shows that short flows should be given highest priority 
over the long flows.  The issues in the design of a 
scheduling algorithm are (a) Classification of short 
flows and long flows (Avrachenkov et al., 2004) 
Favoring short flows without penalizing the 
performance of long flows (c) available bandwidth 
estimation for achieving the guaranteed throughput. 
 Aiming these issues we propose a Forager bee’s 
intelligence Guaranteed Dynamic Queue Scheduling 
algorithm (G-DQS) which classifies internet flows into 
a short flows and long flows. The G-DQS estimates the 
available end to end bandwidth across the link by 
adapting the forager bee’s intelligence into the monitor 
component of architecture and uses the Dynamic packet 
Scheduling ratio to schedule the short and long flows 
for achieving the guaranteed throughput. 
 

MATERIALS AND METHODS 
 
 Two queue threshold based approaches has been 
proposed (Wierman and Harchol-Balter, 2003) that 
gives highest service priority to the short flow. TCP 
flows are differentiated as short and long flows using a 
threshold value and short flows are en queued in one 
queue and remaining long flows are  en queued in the 
second queue. Service priority is given to the first 
queue in First In First Out (FIFO) discipline and the 
second queue are only served if the first queue is 
empty. This approach reduces the mean transfer time 
however leads to starvation of long flows.   
 Bandwidth Adaptive Stratified Round Robin 
(BASRR) packet scheduling algorithm has been 
proposed in this study for enhancing quality of service 
of real-time multimedia applications. Embedded 
Network Processors (NP) has recently emerged with 
flexibility and speed to reduce the stress of the router by 
effectively processing the packets. The main objective 
of this study was to implement the proposed packet 
scheduling algorithm in a Network Processor (NP) 
based router for enhancing quality of service of real-
time multimedia applications 
 In RuN2C (Avrachenkov et al., 2004), using 
TCP sequence number the packets are put in first 

queue or second queue. Packets from the second 
queue were not served unless the first queue was 
empty. Limitation of this protocol is TCP sequence 
number should start from a set of possible initial 
numbers and would lead to security problems such as 
IP address spoofing and session hijacking. 
 In LAS (Rai et al., 2004), the next packet to be 
served is one belonging to the flow that has received the 
least amount of service. By this definition, LAS will 
serve packets from a newly arriving flow until that flow 
has received an amount of service equal to the amount 
of least service received by flow in the system before its 
arrival. The long lived TCP flows competing against 
short TCP flows shows starvation in LAS. LAS reduces 
the loss rate for the short flows and approximately 
doubles the loss rate of long flows as compared with the 
loss rate under FIFO. Similarly, a Dynamic Packet 
Scheduling algorithm (Suresh et al., 2011) was 
proposed to treat the short and long flows in fair 
manner during the scheduling and avoids the starvation 
of long flows.  
 Another protocol Context Aware 
Transport/Network Internet Protocol (CATNIP) 
(Williamson and Wu, 2002) requires application 
layer information, the web document size to provide 
explicit context information to the TCP and IP 
protocol. While this approach violates the traditional 
layered Internet protocol architecture, it enables 
informed decision-making; both at network endpoints 
and at network routers, regarding flow control, 
congestion control and packet discard decisions. 
 Cprobe (Carter and Crovel, 1996) estimated the 
available bandwidth based on the dispersion of long 
packet trains at the receiver. A similar approach was 
taken in pipechar (Jin et al., 2001). The underlying 
assumption in these works is that the dispersion of long 
packet trains is inversely proportional to the available 
bandwidth. The dispersion of long packet trains does 
not measure available bandwidth in a path; instead, it 
measures a different throughput metric that is referred 
to as Asymptotic Dispersion Rate (ADR).  
 Another technique, called TOPP, for measuring 
available bandwidth was proposed in (Melander et al., 
2000). TOPP uses sequences of packet pairs sent to the 
path at increasing rates. From the relation between the 
input and output rates of different packet pairs, one can 
estimate the available bandwidth and the capacity of the 
tight link in the path.  
 From the survey, it is revealed that accurately 
estimating the best profitable bandwidth value is very 
important for the scheduler to achieve the guaranteed 
throughput in the large scale network. The bandwidth 
estimation carried out by the scheduler is considered to 
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be a typical search optimization i.e., finding the most 
profitable bandwidth value among the available. 
 Evolutionary and Meta-heuristic algorithms 
(Afshar et al., 2007) have been extensively used as 
search and optimization tools in various problem 
domains. The broad applicability, ease of use and 
global perspective of meta-heuristic algorithms (Ghoul 
et al., 2007) may be considered as the primary reason 
for their extensive application and success as search and 
optimization tools in various problem domains. Among 
them, Genetic Algorithms (Jalilzadeh et al., 2009) have 
been extensively employed as search and optimization 
methods in various problem domains, including 
science, commerce and engineering (Ahrari et al., 
2009). Genetic Algorithms are search and optimization 
procedures that are motivated by the principle of 
natural genetics and natural selection. Fundamental 
ideas of genetics are borrowed and used artificially to 
construct search algorithms that are robust and require 
minimal problem information. Over the last decade, 
modeling the behavior of social insects, such as ants 
(Ismail and Loh, 2009) and bees, for the purpose of 
search and problem solving has been the context of 
the emerging area of swarm intelligence. 
 Honey-bee (Karaboga and Akay, 2009) is among 
the most closely studied social insects. The 
intelligent behaviors of bee swarm such as bees 
foraging, bees mating, have inspired the researchers 
to develop new algorithms. In a recent work, Blum 
and Merkle (2008) developed an optimization 
algorithm based on the honeybee marriage process. 
Honey-bee mating is considered as a typical swarm-
based approach to optimization, in which the search 
algorithm is inspired by the process of marriage in real 
honey-bee. 
  Another important behavior in Bees colony is 
Foraging concept. Foraging behaviour of Artificial Bee 
System (Bonabeau et al., 1999) is relatively new 
member of swarm intelligence. It tries to model natural 
behavior of real honey bee in food foraging. Honey bee 
uses several dancing methods to exchange information 
about location and profitability of food source. This 
food searching bee’s behavior is a good candidate for 
developing new intelligent search algorithms. In the 
bee’s foraging behavior, the best profitable food source 
can be found using the collective intelligence of forager 
bees. In similar way, the best profitable bandwidth 
value can be found from large solution space by 
mimicking the foraging behavior of honey bees. 
 In proposed G-DQS architecture, bee’s foraging 
intelligence is adapted into the monitor component to 
find the best profitable bandwidth value for calculating 
the admissible flow to ensure the guaranteed 

throughput. Further, the proposed architecture uses the 
G-DQS algorithm to de queue the packets from the 
SFQ and LFQ based on the novel dynamic queue 
scheduling ratio. The proposed G-DQS is based on 
periodic rate-controlled streams, rather than window-
controlled transmissions, allowing us to compare a 
certain rate with the available bandwidth more reliably 
and schedules the packets in two queues. 
 
Proposed G-DQS architecture:  Proposed 
scheduling algorithm G-DQS is suitable across 
varying traffic flows. The algorithm uses Dynamic 
Scheduling Ratio Q(r) for the efficient scheduling. 
Here our classification of short and long flow is as 
follows: Short flows are those with the flow size less 
than the threshold th and otherwise long flows. Flow 
size is the total number of packets or bytes of the flow 
i. We divide queue into two groups: SFQ and LFQ. If 
a flow i and its packets to be scheduled are less than 
the threshold th then the flow i is inserted in SFQ and 
if a flow i and its packets to be scheduled is not less than 
the threshold th then the flow i is inserted in LFQ. On the 
arrival of a packet if the buffer if full, a selected packet 
will be dropped using buffer stealin g (Zhang, 1995). 
Unlike Short Flow Highest Priority Scheduling 
algorithms, we use Dynamic Scheduling Ratio Q(r) to 
schedule the packets in the two queues. Q(r) decides the 
number of packets to be scheduled in each queue. 
 The Architecture components are explained as 
follows.  
 
Classifier: On arrival of a packet p from flow i the 
classifier uses the threshold value th to each packet and 
dispatches it to the proper queue. 
 
Monitor:  The Monitor collect statistics about number 
of packets of all the flows in each queue and estimate 
the available bandwidth by adapting the forager bee’s 
intelligence and report it to the Controller periodically.  
 
Controller:  Controller is the soul of G-DQS. It 
calculates dynamic scheduling ratio Q(r) for the each 
round based on the packets (packets) in two queue and 
commands scheduler to schedule the number of packets 
in each queue. It consists of a State Variable Counter 
DCI. The counter is initialized with the total number of 
flows in SFQ. Whenever the scheduler schedules 
packets from SFQ, the Q(r) value is decremented from 
DCi.  The controller makes decision according to the 
information that other components report. 
 
Scheduler: The scheduler decides the service order of 
packets in two queues according to the Controller’s 
command.  
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Adapting forager bee’s intelligence for finding the 
profitable bandwidth measure: 
 Input:  All the flows in the SFQ and LFQ and it is 
denoted by Flow List (FL) = {FL1, FL2,.., FLn }. 
 
Output: Profitable Bandwidth measure that provides 
the best throughput. 
 
Algorithm: 
 
• Initialize the flow list by choosing the random 

policy on the current flows in the SFQ and LFQ. 
• Onlooker Agent (OA) in the Monitor initiates the 

Forager Agents (FAn) corresponding to the number 
of flows in the FL. 

• Each Forager Agent on its assigned flow does the 
following 

• Each FAi receives the flow data size (dk) as  
reinforcement from the OA 

• Each FAi applies the following fitness function to find 
profitable bandwidth measure on its assigned flow 

 
 FAi sends its dk to destination host and receives the 
acknowledgement at time point tk. The initial 
bandwidth measure can be computed using the 
following Eq. 1: 
 

IBWFAi(dk) =  ( )
kd

k k 1t t −−
   (1) 

 
 FAi applies the smoothing filter called 
Exponential Weighting Moving Average (EWMA) 
on the initial bandwidth measure (IBWFAi(dk)) to find 
the final bandwidth measure (FBMFAi(dk)) using the 
following Eq. 2: 
  

( ) ( )
( ) ( )

FAi k FAi k 1

FAi k

FBM d   IBW d

*   IBW d  *  1 –  

−=

β + β
 (2) 

  
where, β value is chosen based on the current status in 
the network. It is computed as shown in the Eq. 3 and 4: 
  If IBWFAi(dk) ≥  FBMFAi(dk-1) then: 
 

i

i

FA k 1

FA k

FBM (d )
  

IBM (d )
−β =      (3) 

 
 Else if IBWFAi(dk)   ≤ FBMFAi(dk-1) then: 
 

i

i

FA k

FA k 1

IBM (d )
   

FBM (d )−

β =      (4) 

 After each Forager Agent (FAi) executed the step 
(3), it sends the computed FBMFai (dk) to the Onlooker 
Agent (OA). After receiving the profitable bandwidth 
measure from each agent (FAi), it selects the best 
profitable final bandwidth measure. 
 According to the above algorithm, selected profitable 
bandwidth measure of OA is used by the Monitor 
component to find the admissible flow Fmax as follows. 
 
Calculation of Fmax: Conceptually, G-DQS 
attempts to bound the instantaneous throughput of 
flows on an edge-to-edge basis to less than BWg. 
Fmax represents the maximum number of active 
flows which is to be scheduled on the edge-to-edge 
path without sacrificing the QOS. 
 To derive Fmax, an edge router first computes 
the predicted Flow Completion Time (FCT) and the 
throughput for a flow with no packet loss. Thus, the 
FCT of a short flow with size Sf can be computed 
using the Eq. 5: 
 

2

FCT C DTx

sf
FCT 1.5 RTT log RTT

MSS

= +

 = × + × 
 

 (5) 

 
where, C is the time for connection establishment with 
the three-way handshake, DTx represents the data 
transmission time, MSS is the maximum segment size 
and RTT is the estimated end-to-end round trip time. 
Besides the computation of Eq. 1, the FCT for short-
lived flows can also be gathered at the edge router 
through passive monitoring. 
 With Sf and FCT, the throughput Tf can be 
computed using the Eq. 6: 
 

f
f

s (MSS H)
T

FCT MSS

× +=
×

 (6) 

 
where, H is the estimated header size. Thus, the maximum 
number of active fast admitted flows on an edge to-edge 
path, Fmax, can be computed using the Eq. 7: 
 

   g g
max

f f

BW BW FCTXMSS
F

T s (MSS H)

×
= =

× +
 (7) 

 
G-DQS algorithm: This algorithm is implemented by 
the scheduler 
 
Begin: Differentiate TCP flows as short flows and long 
flows using threshold th and insert in two queues SFQ 
and LFQ respectively. 



J. Computer Sci., 8 (5): 665-672, 2012 
 

669 

S: 
• Calculate number of flows in SFQ = 

n

SFQi 1
B ( )

=
τ∑  and number of flows in  

• LFQ = 
n

LFQi 1
B ( )

=
τ∑  

• Initialize a State Variable Counter DCi (r) = 

SFQ = 
n

SFQi 1
B ( )

=
τ∑  

• Calculate Dynamic Packet Scheduling Ratio Q 

(r) 
n n

SFQ LFQi 1 i 1
n

LFQi 1

B ( ) B ( )
Q(R)

B ( )
= =

=

τ + τ
=

τ
∑ ∑

∑
 

• Estimate the available bandwidth BWg on the 
edge to edge path using Eq. 2 

• Using BWg calculate maximum number of 
flows to be on the path Fmax using Eq. 5 

If Fmax >Q(r) and  

• If  
n

LFQi 1
B ( )

=
τ∑  =0 then flows scheduled in the 

queue LFQ = Q(r) else flows scheduled in the 
queue SFQ = Q(r) and flows scheduled in the 
queue LFQ =1 

• Perform DCi (r) = DCi (r) − Q(r)  
• The main observation is: DCi (r−1) −Q(r) = 

DCi (r) 
• If DCi (r)> Q(r) then return to D: else return to 

S: for the calculation of Q(r) and BWg for the 
next round 

If  Fmax<Q(r) and: 

• If  n

LFQi 1
B ( )

=
τ∑ = 0 then flows scheduled in the 

queue LFQ = Q(r) else flows scheduled in the 
queue SFQ = Fmax 

• Perform DCi (r) = DCi (r) -Fmax  
• The main observation is DCi (r-1)-fmax 
• If DCi (r)> Q(r) then return to D: else return to 

S: for the calculation of Q(r) and BWg for the 
next round 

End 
 
 A state variable counter DCi (r) is initialized with a 
value of total number of flows (packets) in the short 
flow queue SFQ. The dynamic scheduling ratio Q(r) is 
calculated from the number of flows in SFQ and LFQ. 
Maximum flows to be available on edge to edge path 
are calculated using BWg (k) and Fmax. If Q(r)<Fmax 
then the flows in the SFQ are scheduled using the 
calculated value of Q(r)  The Q(r)  value of flows are 
scheduled in SFQ and one flow is scheduled in LFQ. 
This approach is continued until total number of flows 
in the queue SFQ becomes zero and then LFQ is 
completely scheduled. The condition DCi (r) <Q(r) is 
checked during whenever the flows are scheduled in 

SFQ. If the condition is not satisfied then the new value 
of Q(r) and Fmax will be calculated for the next round. 
 If Q(r)>Fmax then the flows in the SFQ are 

scheduled using the calculated value of FmaxThe 
condition Q(r)>Fmax indicates that the number of flows 
is to be scheduled is more than the number of flows to 
be available on the edge to edge path. This is needed to 
provide a guaranteed throughput because when more 
flows are scheduled than Fmax the packet loss occurs 
and requires the retransmission of flows. This reduces 
the mean transmission time and throughput .Hence 
number of flows are scheduled in SFQ is Fmax. During 
this period flows are scheduled only from SFQ and not 
in LFQ. The G-DQS gives priority to short flows when 
the available bandwidth is minimum compared to the 
flows to be scheduled. The condition DCi (r) <Fmax is 
checked whenever the packets are scheduled in SFQ. If 
the condition is not satisfied then the new value of Q(r) 
Fmax will be calculated for the next round. 
 This dynamic changing behavior of Q(r) is the 
main difference between our approach and other 
threshold approach. The Q(r) always changes according 
to the total number of flows in the two queues. This 
adaptive ratio Q(r) significantly improves the 
performance than the constant packet scheduling ratio 
used in QSPS (Paxson and Floyd, 1995) algorithm. The 
results shows that short TCP flows are treated without 
penalizing the performance of long TCP flows.  
 

RESULTS 
 
 The practical networks normally will have many 
bottleneck links interconnecting the router. Hence, the 
proposed G-DQS is tested for their performance in the 
network topology with multiple bottleneck links. This 
model is shown in Fig. 1. In this configuration TCP 
sources traversing three bottleneck links and 
terminating at R3. The routers also shares the cross 
traffic. The bottleneck link capacities are 50Mbps, 
30ms and other sources are connected with 10Mbps, 
10ms.  Here we refer to the packets that belonging to 
one TCP connection as a flow. 
 For studying the performance of Guaranteed- 
Dynamic Queue Scheduling   (G-DQS), we test the 
following relations with the other protocols like First in 
First out (FIFO) and RuN2C. 
 Figure 2 Depicts that G-DQS reduces the mean 
transmission time of flows by treating long flows 
fairly. The transmission time of a flow is time interval 
starting when a first packet leaves a server and ending 
when a last packet of flow is reduced by the 
corresponding client. 
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Fig. 1: G-DQS Architecture 
 
 It is evident from the figure that G-DQS approach 
reduces the mean transmission time compared to the 
simple FIFO and short flow highest priority scheduling. 
The transmission time of RuN2C almost same up to the 
threshold and G-DQS approach improves the 
performance for long flows. Figure 3 shows the mean 
transmission time of short flows. It indicates that the 
mean transmission time of flows with flow size less 
than the threshold under G-DQS is almost the same as 
that under RuN2C. But G-DQS shows better 
performance for short flows larger than the threshold. 
From Fig 4 we observe both G-DQS and RuN2C 
significantly reduce the mean transmission time of short 
flows compared with FIFO. As RuN2C follows strict 
short flow priority scheduling, the mean transmission 
time of short flows is minimum under G-DQS. Figure 5 
Depicts comparison of Constant Q and Dynamic Q(r) in 
terms of the mean transmission time of number of flows 
using various constant Packet Scheduling Ratio values. 
When Q =1 increases the mean transmission time of 
large flows because the packets in two queues are 
served with the equal priority. 
 When Q value is increased to 5 the mean transmission 
time reduces up to the threshold value th and it is increases 
during large TCP flows. But the Dynamic Q(r) decreases 
the mean transmission time during large TCP flows. The 
mean transmission time is almost same up to the threshold 
when Q = 5 and in G-DQS. This shows G-DQS algorithm 
treats short flows fairly without penalizing the 
performance of long TCP flows.  
 Figure 6 shows the number of packets dropped 
for the various flow sizes. It is evident from the 
figure  that short flows of size less than 40 packets 
not experiences packet loss in G-DQS, whereas for 
the similar size of  flows FIFO experience packet 
loss. The packet loss is less in G-DQS compared to 
RuN2C for the large flows because of adaptive 
nature of the scheduling ratio used in G-DQS.  

 
 
Fig. 2: Network topology with multiple bottleneck links 
 

 
 
Fig. 3: Number of flow Vs mean transmission time 
 

 
 

Fig. 4: Number of flow Vs mean transmission time 
 
Figure 7 shows throughput of flows by the number of 
received packets per seconds (counting every 10 sec). 
We can see that the throughput of FIFO decreases 
suddenly during simulation period between 100 and 
150 sec. This is because The FIFO and Ru2Nc 
approach schedules the packets not considering the 
large flows but in G-DQS packets are scheduled from 
two queues. Hence large flows are also getting service 
in addition to the short flows. This reduces the packet 
loss in large flows. 
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Fig. 5: Comparison of constant Q and dynamic Q(r) 
 

 
 
Fig. 6: Number of flows Vs packets dropped 
 

 
 
Fig. 7: Throughput Vs simulation time 
 
 The long flows are penalized and starved. It also 
indicates the throughput of FIFO and RuN2C is not 
constant during the complete simulation period. The 

throughput of proposed G-DQS is almost constant and 
it provides the guaranteed throughput. 
 

DISCUSSION 
 
 The G-DQS avoids the starvation problem as 
shown in  RuN2C because G-DQS schedules the packet 
both in  short flows as well as long flows based on the 
bandwidth measure. This measure is estimated using 
swarm intelligence inspired honeybee’s foraging 
behavior which provides the optimum profitable 
bandwidth compared to the other existing techniques. 
The proposed method reduces the mean transmission 
time and also packet loss compared with the other 
techniques as it uses the forager intelligence. It also  
shows that throughput  does not change rapidly 
throughout the simulation time and it is almost 
constant. The proposed scheme is an aggregated flow 
scheduling and hence it can be adopted for large scale 
network. 
 

CONCLUSION 
 
 Scheduling has been known for several years and 
attention has been given to use scheduling for the 
packet switched networks. In this study we presented a 
Forager bee’s intelligence inspired Guaranteed- 
Dynamic Queue Scheduling approach namely G-DQS 
to improve performance of short flows without 
penalizing long flows much. Unlike other scheduling 
approaches, the TCP flows are scheduled with a 
Dynamic Packet Scheduling Ratio Q (r) and with 
accurate bandwidth estimation using forager bee’s 
intelligence. This approach decreases the mean 
transmission time and packet loss of flows compared 
with the other protocols like FIFO and RuN2C 
scheduling. This algorithm can be deployed in edge 
router without complexity. 
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