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Abstract: Problem statement: Memetic Algorithm (MA) is a form of population-based hybrid 
Genetic Algorithm (GA) coupled with an individual learning procedure capable of performing local 
refinements. Here we used genetic algorithm to explore the search space and simulated annealing as a 
local search method to exploit the information in the search region for the optimization of VLSI netlist 
bi-Partitioning problem. However, they may execute for a long time, because several fitness 
evaluations must be performed. A promising approach to overcome this limitation is to parallelize this 
algorithms. General Purpose computing over Graphical Processing Units (GPGPUs) is a huge shift of 
paradigm in parallel computing that promises a dramatic increase in performance. Approach: In this 
study, we propose to implement a parallel MA using graphics cards. Graphics Processor Units (GPUs) 
have emerged as powerful parallel processors in recent years. Using of Graphics Processing Units 
(GPUs) equipped computers; it is possible to accelerate the evaluation of individuals in Genetic 
Programming. Program compilation, fitness case data and fitness execution are spread over the cores 
of GPU, allowing for the efficient processing of very large datasets. Results: We perform experiments 
to compare our parallel MA with a Sequential MA and demonstrate that the former is much more 
effective than the latter. Our results, implemented on a NVIDIA GeForce GTX 9400 GPU card. 
Conclusion: Its indicates that our approach is on average 5×faster when compared to a CPU based 
implementation. With the Tesla C1060 GPU server, our approach would be potentially 10×faster. The 
correctness of the GPU based MA has been verified by comparing its result with a CPU based MA. 
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INTRODUCTION 
 
 Physical design of VLSI circuits is the process of 
mapping structural representations of circuits into 
layout representation. Due to the complexity of the 
physical design phase it is usually broken down to sub 
problems like, partitioning, placement and routing 
which are then solved one after the other. This study is 
concerned with the circuit partitioning problem. Circuit 
net list partitioning is an important step in VLSI 
physical design. This involves the breakup of a circuit 
into smaller parts for ease of design, layout and 
testability. The main objective of circuit partitioning is 
minimization of number of interconnections between 
the partitions (Sait and Youssef, 1999; Sarabian and 

Lee, 2010; Go et al., 2010). Partitioning is a technique 
to divide a circuit or system into a collection of smaller 
parts (components). It is on the one hand a design task 
to break a large system into pieces to be implemented 
on separate interacting components and on the other 
hand it serves as an algorithmic method to solve 
difficult and complex combinatorial optimization 
problems as in logic or layout synthesis. Partitioning 
has been an active area of research for at least a quarter 
of a century. The main reason that partitioning has 
become a central and sometimes critical design task 
today is the enormous increase of system complexity in 
the past and the expected further advances of nano-
electronics system design and fabrication. Soaring 
system complexities result from a combination of 
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reasons: Widely accepted powerful high-level synthesis 
tools allow the designers to automatically generate huge 
systems. By just changing a few lines of code in a 
functional specification the size of the resulting 
structural description (netlist) of a system can increase 
dramatically. Synthesis and simulation tools often 
cannot cope with the complexity of the entire system 
under development and designers want to concentrate on 
critical parts of a system to speed-up the design cycle. 
Thus, the present state of design technology often 
requires a partitioning of the system with fast and 
effective optimization. Moreover, fabrication technology 
makes increasingly smaller feature sizes and augmented 
die dimensions possible, thus allowing, a circuit to 
accommodate several million transistors. However, 
circuits are restricted in size and in the number of 
external connections. Thus, fabrication technology 
requires the partitioning of a system into components. 
 

MATERIALS AND METHODS 
 
 This study addresses the problem of VLSI netlist 
partitioning with the objective of optimizing cutset 
while considering the balance constraint (same as 
area constraint as unit area is assumed for every 
gate). Formally, the problem can be stated as 
follows: Given a set of modules V = {v1, v2… vn}, 
the purpose of partitioning is to assign the modules 
to a specified number of clusters k (two in our case) 
satisfying prescribed properties. In general, a circuit 
can have multi-pin connections (nets) apart from 
two-pin and therefore it is better to represent it by a 
hypergraph. A hypergraph H (V, E) is defined where, 
V is a set of nodes and E is a set of hyper edges. 
Node vi Є V corresponds to an element (e.g., a gate) 
in the circuit and hyper edge ei Є E corresponds to a 
net in the circuit. Given a hypergraph H (V, E) with 
E = {e1, e2... em} being the set of signal nets, each net 
is a subset of V containing the modules connecting 
the net. It is assumed that for each hyperedge e Є E, 
|e|≥ 2 (it connects at least two nodes). Our task is to 
divide V into 2 subsets (clusters) V0 and V1 in such 
a way that the objectives are optimized, subject to 
some constraints. 
 
Cutsize: The set of hyper edges cut by a cluster C is 
given by E(C) = {e Є E: 0 < |e ∩ C| < |e|} i.e., e Є E(C) 
if at least one, but not all, of the pins of e are in C. The 
set of nets cut by a partitioning solution pK can be 
expressed as E(pk)= k

i 1 ( )= iU E c  or equivalently E(pk) = {e 
Є E|Ξ u, v Є e; h ≠ l with u Є Ch and v Є Cl }. We say 
that |E(pk)| is the cutsize of pk. The cost function f can 
be written as follows Eq. 1: 
 

e

f w(e)
∈ψ

=∑  (1) 

where, ψ Є E denotes the set of off-chip edges, i.e., nets 
cut. The weight w(e) on the edge e represents the cost 
of wiring the corresponding connection as an external 
wire. If all weights equal one, the cost function 
becomes simpler Eq. 2: 
 
f = |ψ| (2) 
 
where, |ψ| denotes the cardinality of the set ψ. 
 
Area or balance constraint: If we assume that the area 
of all cells is identical, then the problem reduces to 
balancing the two partitions in terms of the number of 
cells. The balance constraint is given below Eq. 3: 
 

1 2| |β − β ≤ α
φ

 (3) 

 
where, βi is the number of cells in partition i , φ is the 
total number of cells in the circuit, α is the tolerance 
which is equal zero in case of a perfect balance. When 
balance is used as cost, it will be |β1 - β2|. 
 Numerous partitioning algorithms have been 
developed by researchers over the years. Bui and Moon 
(1998) and Alpert et al. (1996) suggested a hybrid 
genetic approach for circuit partitioning. Yodtean and 
Chantngarm (2004) suggested a hybrid algorithm which 
combines Genetic and Simulated Annealing techniques, 
to improve the performance in circuit partitioning while 
using less resources. Coe et al. (2004) investigated the 
feasibility of using Reconfigurable Computing 
platforms to improve the performance of VLSI circuit 
partitioning problem.  
 Due to the fact that Memetic Algorithms (MA) 
aimed at drawing the attention from two communities 
of researchers with different agendas, aiming at 
hybridizations of their methods, this met heuristic had 
to suffer tough initial times. Today they are becoming 
increasingly popular due to their impressive success 
record and the high sophistication of the hybridizations 
proposed. Although Memetic Algorithms (MA) are 
effective in solving many practical problems in science, 
engineering and business domains, they may execute 
for a long time to find solutions for some huge 
problems, because several fitness evaluations must be 
performed.  
 A promising approach to overcome this limitation is 
to parallelize these algorithms using parallel, distributed 
and networked computers (Yussof et al., 2011). 
However, these computers are relatively more difficult to 
use, manage and maintain. Moreover, some people may 
not have access to this kind of computers. Consequently, 



J. Computer Sci., 8 (5): 705-710, 2012 
 

707 

we propose to implement a parallel MA using graphics 
cards which are available in all-pervading personal 
computers. Harding and Banzhaf (2007) demonstrates 
the benefit of using the graphics processor to parallelise 
the genetic evaluations. Robilliard et al. (2008) 
suggested about parallelizing both Genetic programs 
and training data, on GPU. 
 
Graphics processing unit: Three major factors make the 
development of graphics hardware based on commodity 
PCs truly outstanding in recent years. First, the 
computational power of Graphics Processing Units 
(GPUs) for commodity PC hardware has grown much 
faster than for CPUs. Second, the high performance is 
available at a very good cost/performance ratio. Finally, 
within the last 4-5 years, GPUs have become 
programmable by high level languages. From an abstract 
point of view, the GPU is a parallel streaming processor, 
particularly suitable for the fast processing of large 
arrays. Thus, many researchers have started utilizing 
graphics processors to enhance the performance of their 
specific, in many cases, non-graphics applications and 
simulations. The special field of “General-Purpose 
computation on GPU (GPGPU)” has evolved offers a 
survey of this emerging research area. Although 
performance gains depend strongly on the application, 
one can say that speedup factors around 5 against 
algorithms on the CPU are commonly reported. 
 Graphics Processing Units (GPUs) are fast, highly 
parallel processor units. In addition to processing 3D 
graphics, modern GPUs can be programmed for more 
general purpose computation. The GPU consists of a 
large number of ‘shader processors’ and conceptually 
operates as a Single Instruction Multiple Data (SIMD) 
or Multiple Instruction Multiple Data (MIMD) stream 
processor. A modern GPU can have several hundred of 
these stream processors, which combined with their 
relatively low cost, makes them an attractive platform 
for scientific computing. 
 Graphics processors are specialized stream 
processors used to render graphics. Typically, the GPU 
is able to perform graphics manipulations much faster 
than a general purpose CPU, as the processor is 
specifically designed to handle certain primitive 
operations. Internally, the GPU contains a number of 
small processors that are used to perform calculations 
on 3D vertex information and on textures. These 
processors operate in parallel with each other and study 
on different parts of the problem. First the vertex 
processors calculate the 3D view and then the shader 
processors paint this model before it is displayed. 

Programming the GPU is typically done through a 
virtual machine interface such as OpenGL or DirectX 
which provide a common interface to the diverse GPUs 
available thus making development easy. However, 
DirectX and OpenGL are optimized for graphics 
processing, hence other APIs are required to use the 
GPU as a general purpose device. Depending on the 
GPU, the number of instructions may be limited. In 
order to use more than this number of operations, a 
program needs to be broken down into suitably sized 
units, which may impact performance. Newer GPUs 
support unlimited instructions, but some older cards 
support as few as 64 instructions. GPUs typically use 
floating point arithmetic, the precision of which is often 
controllable as less precise representations are faster to 
compute with. Again, the maximum precision is 
manufacturer specific, but recent cards provide up to 
128-bit precision.  
 The rapid increase in the number and diversity of 
scientific communities exploring the computational 
power of GPUs for their data intensive algorithms has 
had a key contribution in encouraging GPU 
manufacturers to design more powerful, easily 
programmable and flexible GPUs. In addition, the 
development of open-source programming tools and 
languages for interfacing with the GPU platforms has 
further fueled the growth of general purpose GPU 
(GPGPU) applications. Further, GPU architectures have 
been continuously evolving towards higher 
performance, larger memory sizes, larger memory 
bandwidths and relatively lower costs. This high 
computing power mainly arises from a fully pipelined 
and highly parallel architecture, with extremely high 
memory bandwidths.  
 The NVIDIA® Tesla™ C1060 computing 
processor enables the transition to energy efficient 
parallel computing power by bringing the performance 
of a small cluster to a study station. With 240 processor 
cores and a standard C compiler that simplifies 
application development, Tesla scales to solve the 
world’s most important computing challenges more 
quickly and accurately. 
 The GeForce 9400 GTX architecture has 16 stream 
processors and access to 512Mb of RAM. The 
theoretical performance of this card is 44 Gflops. 
Although currently the GPUs in this setup are low end, 
we are confident that the approach detailed here will 
also be applicable to high-end and future devices. 
  
Memetic algorithm for circuit partitioning: The 
Genetic Algorithm starts with a set of initial solutions 
called population that is generated randomly. When 
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generating the random initial solution it is preferred that 
it is within the bounds of the balance constraint. PMX 
Crossover is used as a genetic operator. It offers better 
performance than most other crossover techniques. 
Basically, parent 1 donates a swath genetic material and 
the corresponding swath from the other parent is 
sprinkled about in the child. Once that is done, the 
remaining alleles are copied direct from parent 2. 
Depending on the mutation rate, a few nodes are 
selected randomly from the chromosome and replaced 
in the other possible nodes in the chromosome. This 
mutation process would permit population diversity to 
be maintained in later stages of the GA. Mutation also 
helps the GA to surmount any local optimum. 
Individuals for the next population are selected based 
on the elitist-random selection (ernd). Np/2 (Np is the 
population size) best chromosomes are selected and the 
remaining Np/2 are selected randomly. 
 Initially, the Memetic Algorithm (MA) randomly 
generates a population of individuals using the 
technique described above. Then, the MA starts 
evolving the population generation by generation. In 
each generation, the MA uses the genetic operators 
probabilistically on the individuals in the population 
to create new promising search points (admissible 
partitioning) and uses the Simulated Annealing (SA) 
as a local search method to optimize them if the 
fitness of the admissible partitioning is greater than 
or equal to existing solution provided as input to the 
local search. 
 Simulated Annealing (SA) is a general iterative 
improvement algorithm that can be used for many 
different purposes. In partitioning, SA starts with a 
random partition from the GA. A new state is 
computed by selecting a gate at random from each of 
the two subsets and swapping them. As before, the 
swap remains tentative, until the quality of the new 
partitioning is computed. The number of nets cut is 
the measure of goodness. If the new state is better 
than the old state, it is accepted and the swap is made 
permanent. If the new state is worse than the old 
state, it might be accepted and it might not. In most 
cases the acceptance function is computed using the 

following function, 
s

e
T

−δ
, where δs is the change in 

the quality and T is the current temperature. For bad 
moves this function will produce a value between 0 
and 1. A random number between 0 and 1 is 
generated and if the quality measure is larger than 
the generated random number, the bad move is 
accepted. Recall that in partitioning, negative values 
of δs are good and positive values are bad.  

 
Memetic algorithm on GPU: We have implemented 
our Memetic algorithm in MATLAB® program. The 
GPU is especially well-suited to address problems 
that can be expressed as data-parallel computations; 
one of the most important things we can do to 
prepare for GPU computing with MATLAB is to 
understand those segments of our target application 
where data parallel computations take place. This is 
our first indication of place in our code that is 
prospects for GPU computing. 
 Next, profiling our application to identify the 
segments of our code that represent the most time 
consuming regions will provide further indication of 
those segments of our code that could benefit from 
GPU computing. The MATLAB Profiler tool helps 
tremendously in determining where best to focus 
your energy when moving code to the GPU. Looking 
at the results of the profiler, a user can determine 
where the program is spending most of its time and 
focus transformation time to the area of code to get 
the biggest return. 
 GPUmat, developed by the GP-You Group, 
allows Mat lab code to benefit from the compute 
power of modern GPUs. It is built on top of NVIDIA 
CUDA. The acceleration is transparent to the user, 
only the declaration of variables needs to be changed 
using new GPU-specific keywords. Algorithms need 
not be changed. A wide range of standard Mat lab 
functions have been implemented. GPUmat is 
available as freeware for Windows and Linux from 
the GP-You download page. 
 GPUmat uses a technology developed by 
NVIDIA called CUDA SDK which allows 
programming the GPU for general purpose 
applications. The GPUmat core is based on CUDA 
libraries, such as CUFFT and CUBLAS and many 
other functions developed and optimized by the GP-
you Group for the GPU architecture. 
 

RESULTS AND DISCUSSION 
 
 We experimentally evaluated the quality of the 
bisections produced by our GPU based parallel 
Memetic algorithm on a large number of hyper graphs 
that are part of the widely used ISCAS circuit 
partitioning benchmarks suite. All experiments were 
carried out on Pentium Quad core 2 processor 2.6 
GHz withNVIDIA Tesla C1060 computing processor 
and GeForce GTX 9400 GPU display card, with 8GB 
main memory and 512MB GPU memory. 
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Table 1: Performance of MA for VLSI Circuit Partitioning problem 

     MA on GTX  MA on Tesla  

   MA on CPU  9400GPU card  C1060GPU processor Speed up 

Benchmark Number Number ------------------------ -------------------------- ------------------------------- -------------------------------- 
circuit of cells of nets Cut T(S) Cut T(S) Cut T(S) GTX 9400  Tesla C1060 

S298 136 130 19 123 11 30 10 20 4.100 6.150 

S386 172 165 36 163 28 50 26 40 3.260 4.075 

S641 433 410 45 1868 15 300 13 200 6.227 9.340 

S832 310 291 55 1055 39 500 37 400 2.110 2.638 

S953 440 417 96 618 45 200 43 150 3.090 4.120 

S1196 561 547 123 375 75 250 74 200 1.500 1.875 

S1238 540 526 127 397 79 150 77 104 2.647 3.817 

S1488 667 648 104 1238 80 454 78 406 2.727 3.049 

S1494 661 642 120 1345 75 500 74 410 2.690 3.280 

S2081 122 121 50 354 13 150 12 104 2.360 3.404 

S3330 1962 1888 55 756 46 350 44 307 2.160 2.463 

S5378 2994 2944 171 5201 151 854 140 590 6.090 8.815 

S9234 5845 5822 231 9654 191 1723 180 1500 5.603 6.436 

S13207 8652 8530 340 9789 311 1874 300 1604 5.224 6.103 

S15850 10384 10296 421 8534 411 985 390 685 8.664 12.460 

Avg.         3.897 5.202 

 

 
 
Fig. 1: Execution time of the GPU and CPU approaches 
 
 The GPUstart command is used to start GPUmat. 
The system might have more than one GPU installed. 
By default GPUstart selects the first available GPU 
device. The command GPUinfo prints information 
about installed GPUs. GPU-based implementation 
was compared with software implementation running 
on single CPU. 
 The following parameters were used in the 
experiments: For the Memetic Algorithm, the population 
size was set to 10, the probability for crossover is 0.95 
and the probability for mutation is 0.05 for all test 
problems as it was the best configuration found 
empirically for the Genetic Algorithm. Table1 shows the 
statistics for the experiment.  
 The Figure 1 shows the comparison of time 
required to execute the modules on CPU platform and 
GPU platforms. The speedup obtained is on average of 
3.89 on GTX 9400 GPU card. By using the NVIDIA 

Tesla C1060, the available global memory increases by 
8GB. The speedup obtained in this case is on average of 
5.202. Note that the commercial tool can be run on 
several CPUs using a distributed option. If each of these 
CPUs had a 9400 GTX GPU on board, then the GPU 
approach could also exploit a distributed option and the 
above speedup numbers would be increased. 

 
CONCLUSION 

 
 In this research, we have implemented a parallel 
MA on consumer-level graphics cards and proposed 
indirect indexing and many optimization skills to 
achieve maximal efficiency. The parallel MA is a 
hybrid of master-slave and fine-grained models. 
Competition and selection are performed by CPU (i.e., 
the master) while fitness evaluation, mutation and 
reproduction are performed by GPU which is 
essentially a massively parallel machine with shared 
memory. Unlike other fine-grained parallel computers 
such as Maspar, GPU allows processors to 
communicate with any other processors directly, thus 
more flexible fine-grained EAs can be implemented on 
GPU. We have done experiments to compare our 
parallel MP on GPU and a Sequential MA on CPU. It is 
found that the speed-up factor of our parallel MA 
ranges from 1.5-8.6 while using GTX 9400 GPU card 
and 1.875-12.46 while using Tesla C1060 GPU 
processor. A couple of other important factors can help 
to get the best performance out of our transformation to 
GPUs such as avoiding of excessive memory transfer , 
inherent parallelism and computation dependency 
between CPU and GPU. The first time GPUs see a new 
piece of code from us, it spends some time analyzing it 
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and compiling various instruction sequences for faster 
lookup on subsequent runs. That first run will be a little 
slower, but for long-running computations (several 
minutes) there won’t be any noticeable lag. This is 
often referred to as “warm up”. 
 There are still several constrains while using 
GPUmat. The performance of our method will be 
seriously limited because of the bottleneck GPUmat 
functions. For future study, we plan to implement the 
same study using either openGL or CUDA language. It 
will give better performance while compare with 
GPUmat functions.  
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