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Abstract: Problem statement: With increasing bandwidth, digital medical image storage and 
transmission is a boon to patients and health professionals alike. Medical images are available instantly 
and avoid the need to carry the data physically. Popular imaging techniques extensively used in 
medicine include X-Ray, Magnetic Resonance Imaging (MRI), Ultrasound and Computed 
Tomography (CT). The images produced from the above techniques can be segregated into spatial 
regions with some regions more important for diagnosis compared to other regions. The region of 
interest for diagnosis is usually a small area compared to the whole image captured. Compression 
techniques play a very important role for fast and efficient transfer of medical images. Lossless compression 
techniques ensure no data loss but have the limitations of low compression rate. Lossy compression 
techniques on the other hand provide better compression ratios but the cost of wrong diagnosis is very high. 
In this study it is proposed to explore multiple compression techniques based on Region OF Interest (ROI). 
Approach: In this study a novel active contour method is proposed which is adaptive and marks the outer 
region of interest without edges. Based on the ROI, the active area of interest is compressed using lossless 
compression and the other areas compressed with lossy wavelet compression techniques. Results and 
Conclusion: Our proposed procedure was applied to different MRI images obtaining overall compression 
ratios of 70-80% without losing the originality in the ROI. 
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INTRODUCTION 

 
 Image compression is a necessity for most 
telematic applications and plays a crucial role to ensure 
good quality of service (Assche et al., 1999). It is 
necessary that medical images be transmitted fast with 
high reliability so that medical diagnosis at remote 
locations with poor network connectivity can be easily 
facilitated. To this end, image compression plays an 
important role to reduce the bandwidth required during 
the connection. The challenge however is that while 
high compression rates are desired, the usability of the 
reconstructed images depends on certain significant 
characteristics of the original images which need to be 
preserved after the compression process has been 
finished (Bullmore et al., 2004). 
 Image compression reduces the amount of data 
required to represent an image with close resemblance 

to the original image by removing redundant 
information. Three types of redundancies for digital 
images are generally exploited by compression 
algorithms. These are, coding redundancy that arises 
from the representation of the image gray levels, inter 
pixel redundancy as there is a high similarity between 
neighboring pixels in a major percentage of the image 
and visual redundancy that is based on Human 
perception of the image information (Fowler and 
Pesuet-Popescu, 2007). An image compression system 
consists of an encoder that exploits the redundancies to 
represent the image data in a compressed manner. 
Whereas the decoder is used to reconstruct the original 
image from the compressed data (Ghrare et al., 2009). 
 Compression algorithms for image compression 
can either be lossless or lossy. Images compressed in a 
lossless manner can be reconstructed without any 
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change in the pixel intensity which limits the amount of 
compression. However, many applications such as 
satellite image processing and certain medical an 
document imaging, cannot afford any losses in their 
data and are normally compressed using lossless 
compression methods (Al-Azawi et al., 2012). Lossy 
encoding methods are based on trading off achieved in 
either compression or bit rate with the distortion of the 
reconstructed image. Lossy encoding for images is 
usually obtained using transforms which can be 
converting data from spatial domain to frequency 
domain. Transform domain removes the redundancies 
by mapping the pixels into the transform domain before 
encoding. This results only in a few transform 
coefficients. For compression, only the few significant 
coefficients need be encoded, while a majority of the 
insignificant coefficients can be removed without 
significantly affecting the quality of the reconstructed 
image. An ideal transform mapping should be 
reversible and able to completely decor relate the 
transform coefficients. 
 Compressing an image is significantly different 
than compressing raw binary data (Goldberg et al., 
1994). General purpose compression programs can also 
be used to compress images, but the result obtained are 
typically less than optimal as images have certain 
statistical properties which can be exploited by 
encoders specifically designed for them. Two of the 
error metrics used to compare the various image 
compression techniques are the Mean Square Error 
(MSE) and the Peak Signal to Noise Ratio (PSNR) 
(Muthaiah et al., 2008). The MSE is the cumulative 
squared error between the compressed and the original 
image, whereas PSNR is a measure of the peak error. 
The mathematical formulae for the two are: 
 

M N
2

y 1 x 1

1
MSE [1(x, y) 1'(x, y)]

MN = =

= −∑∑  

 
And: 
 

PSNR 20* log10(255 / sqrt(MSE))=  

 
where, I(x,y) is the original image, I'(x,y) is the 
roximated version (which is actually the decompressed 
image) and M,N are the dimensions of the images. A 
lower value for MSE means lower error and as seen from 
the inverse relation between the MSE and PSNR, which 
translates to a high value of PSNR. Logically, a higher 
value of PSNR is good because it means that the ratio of 
Signal to Noise is higher. Here, the 'signal' is the original 
image and the 'noise' is the error in reconstruction.  

  An image can be represented as a two-dimensional 
array of coefficients, each coefficient representing the 
brightness level of the pixel. Looking from a general 
perspective, we can't differentiate between coefficients 
which are important and which are not. Most natural 
images have smooth colour variations, with the fine 
details being represented as sharp edges in between the 
smooth variations. The smooth variations in colour can 
be termed as low frequency variations and the sharp 
variations as high frequency variations which can be a 
prime source for encoding algorithms.  
 The low frequency components constitute the base 
of an image and the high frequency components add 
upon them to refine the image, thereby giving a detailed 
image. Separating the smooth variations and details of 
the image can be achieved using a Discrete Wavelet 
Transform (DWT). In DWT a low pass filter and a high 
pass filter are chosen, such that they exactly halve the 
frequency range between themselves. This filter pair is 
called the Analysis Filter pair. The process starts by 
applying the low pass filter for each row of data, there 
by getting the low frequency components of the row 
(Gonzalez and Richard, 2002). But since the low pass 
filter is a half band filter, the output data contains 
frequencies only in the firsthalf of the original 
frequency range, thus by Shannon's Sampling Theorem, 
they can be subsampled by two, so that the output data 
now contains only half the original number of samples. 
Next, the high pass filter is applied for the same row of 
data and similarly the high pass components are 
separated and placed by the side of the low pass 
components. This procedure is done for all rows. The 
reverse is applied to reconstruct the image. For 
reconstruction the filter pair is called the Synthesis 
Filter pair. The filtering procedure is exactly the 
opposite of the decomposition method. 
 Wavelets are created by dilating and translating a 
single prototype function or wavelet ψ (t): 
 

1/2 t b
a,b(t) a ( )

a
− −ψ = ψ  

 
 The mother or basic wavelet [10] ψ (t) must satisfy 
 

(x)dx 0ψ =∫ . 

The continuous wavelet transform of f(t) with 
respect to the wavelet ψ (t) can be given by: 
 

f a,b a,bW (a,b) f (t), f (t) (t)dt
∞

−∞

=< ψ >= ψ∫  

 
 The inverse of the continuous wavelet transform is 
given by: 
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 Another type of wavelet is based on the binary 
scaling and dyadic translations to form the basis 
functions. For a signal f(t) the output becomes: 
 

j,k j,k
k j

f (t) a (t)= ψ∑∑  

 
 ψj,k(t)formed from the mother wavelet ψ(t) produce 
the wavelet expansion functions that can form an 
orthogonal basis defined by: 
 

j/2 j
j,k (t) 2 (2 t k)ψ = ψ −  

 
where, j determines the dilation and the translation is 
specified by k. The two dimensional value is also 
known as discrete wavelet transform.  
 The biorthogonal wavelets introduced by Cohen, 
Daubechies and Feauveau contain in particular 
compactly supported biorthogonal spline wavelets 
compactly supported duals. In biorthogonal wavelets, 
separate decomposition and reconstruction filters are 
defined and hence the responsibilities of analysis and 
synthesis are assigned to two different functions (in the 
biorthogonal case) as opposed to a single function in 
the orthonormal case (Grgic et al., 2001; Ho et al., 
1993; Shapiro, 1993). 
 The biorthogonal scaling function is given by: 
 

ɶ ɶ ɶ

ɶ ɶ

n n

k k k
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where, h(n) and ɶh(n)  serve as impulse response of FIR 

filters and two sets of scaling functions ψ(t) andɶ(n)φ  

generate subspaces Vk and � kV respectively. Unlike the 
orthogonal case, it is possible to synthesize 
biorthogonal wavelets and scaling functions which are 
symmetric or antisymmetric and compactly supported.  
 Though various compression ratios with maximum 
energy retained have been proposed in literature, 
improving the compression ratio while retaining the 
maximum energy hits the road block as medical images 
are highly sensitive to noise. To overcome the 
limitations of lossy compression different compression 
techniques on the same image based on the area of 
interest has been proposed. 

MATERIALS AND METHODS 
 
 Initial approach to segment an image were based 
on edge detection. Canny edge detection and Sobel 
edge detection has been popular and extensively used in 
literature. For medical images in Fig. 1 the edge 
detection by Sobel and Canny is shown in Fig. 2 and 3. 
For ROI based compression it is important to 
distinguish the ROI and the non ROI regions. From the 
figures it is observed that edge detection methods try to 
show the edges inside the ROI. 
 CHAN-VESE active contour algorithm comes 
from segmentation problem formulated by Mumford 
and Shah Active contour model, also called snakes, is a 
framework for delineating an object outline from a 
possibly noisy 2D image. This framework attempts to 
minimize an energy associated to the current contour as 
a sum of an internal and external energy: 
 

 
 
Fig. 1: Original Image 
 

 
 
Fig. 2: Sobel edge detection 
 

 
 
Fig. 3: Canny edge detector 
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• The external energy is supposed to be minimal 
when the snake is at the object boundary position. 
The most straightforward approach consists in 
giving low values when the regularized gradient 
around the contour position reaches its peak value 

• The internal energy is supposed to be minimal 
when the snake has a shape which is supposed to 
be relevant considering the shape of the sought 
object. The most straightforward approach grants 
high energy to elongated contours (elastic force) 
and to bended/high curvature contours (rigid 
force), considering the shape should be as regular 
and smooth as possible 

 
 The basic Active model is given by: 
 

2

nside(C)

2

outside(C)

F(c c ,C) . Length(C) 0(x, y) c d dy

0(x, y) c d dy

+ − +

−

= µ + λ + µ − ×

+λ − µ − ×

∫

∫
 

 
where, c+ and c- are constant unknowns representing 
the average value of u0 inside and outside the curve, 
respectively.  
 The parameters µ>0 and λ+, λ- >0 are weights for 
the regularizing term and the fitting term, respectively.  
 The above model can be rewritten as: 
 

2

0

2

0
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0(x, y) c dxdy

+ − +

φ≥
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∫
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 For the level set formation where  
 
 Chen Vese Active contour uses the Heaviside 
function and the dirac delta function. To avoid the 
hard and: 
 

C {(x, y) : (x, y) 0}= ∈ Ω φ =  

 
 Sensitive boundary, we introduce the fuzzy 
Heaviside model. In the level set we introduce a fuzzy 
function with membership values given by: 
 
H(z) = 1 when z between 0.9-1.1 
H(z) = 0 when z between 0.1 and negative 
 
 Number and the Dirac delta function: 
 

d
(Z) H(z)

dz
δ =  

 
 We can rewrite the energy function a follows: 
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Fig. 4: The edges detected using proposed method 
 

 
 
Fig. 5: Extracted image 
 

 
 
Fig. 6: Highly compressed non region of interest 
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Table 1: Compression ratios for various images 
Name of   Compression Compression 
image   technique  ratio (%) 
Original Image  Bior 2.6 Lossless 31.37 
ROI of original image  Bior 2.6 Lossless 59.90 
Non ROI part of original image Bior 2.6 Lossy 93.32 

  
 The proposed model was implemented in Matlab. 
Figure 4 shows the input and output for different medical 
images. The outer edge becomes the mask to compute 
the ROI between the important space and the non 
important space. Figure 5 shows the extracted ROI and 
Non ROI part of the image. 
 Lossy compression using Bi orthorgornal spline 
wavelet with Nr = -2 and Nd

 = 6 was performed on the 
Non ROI part and lossless compression using the same 
technique for original and ROI part of the image. Figure 
6 shows the Non ROI image after lossy compression.  
 

RESULTS AND DISCUSSION 
 
 Using the proposed method for segregating ROI 
and non ROI, it is seen that the overall compression 
ration improves to a large extent as shown in Table 1. 
 Assuming that the Non ROI covers 60% of the 
medical image then the total compression that could be 
achieved could be in the region of 70-80%. This is 
compared to lossless compression technique on the whole 
image which produces compression ratios in the range of 
30-40%. The originality of the image is not lost and the 
health professional does not lose the originality of the 
captured image. 
 

CONCLUSION 
 
 In this study it was proposed to describe an image 
segmentation process based on Region Of Interest 
(ROI) for lossless compression on the ROI and lossy 
compression for the non ROI. This method of 
compression finds extensive application in medical 
images where the originality of the image should be 
retained. An improved active contour technique to find 
the region of interest based on fuzzy logic was 
proposed. The proposed method provided better 
compression method compared to lossless compression 
on the whole image 
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