
Journal of Computer Science, 9 (1): 16-29, 2013

ISSN 1549-3636

© 2013 N.F.M. Sani et al., This open access article is distributed under a Creative Commons Attribution

(CC-BY) 3.0 license

doi:10.3844/jcssp.2013.16.29 Published Online 9 (1) 2013 (http://www.thescipub.com/jcs.toc)

Corresponding Author: Nor Fazlida Mohd Sani, Department of Computer Science, Faculty of Computer Science and Information Technology,
University Putra Malaysia, Selangor, Malaysia

16 Science Publications

JCS

Design of Object-Oriented Debugger Model by Using

Unified Modeling Language

Nor Fazlida Mohd Sani, Noor Afiza Mohd Ariffin and Rodziah Atan

Department of Computer Science, Faculty of Computer Science and Information Technology,

 University Putra Malaysia, Selangor, Malaysia

Received 2012-08-17, Revised 2012-08-28; Accepted 2013-01-22

ABSTRACT

Debugging on computer program is a complex cognitive activity. Although it is complex, it’s still one of the
popular issues in computer programming task. It is a difficult task, which is to understand what the error is
and how to solve such error? In computer programming the difficulty is to understand the Object-Oriented
programming concept together with the programming logic. If the programming logic is incorrect, the
program codes will have such error named as logic error and can caused highly maintenance cost. Logic
error is a bug in a program that causes it to operate incorrectly, without terminating or crashing the program.
It will produce unintended output or other behavior than what we are expecting. Method that use to develop
a propose model Object Oriented Debugger is Unified Modeling Language (UML). It is the best choice
model and suitable to design the Object Oriented Debugger which will be developed in an object oriented
programming environment. The model will provide an ability to capture the characteristics of a system by
using notations in the process of designing and implementing the system. The model of Object Oriented
Debugger has been successfully implemented. This model has been developed using Unified Approach
methodology, which consists of two methods such as Object-Oriented Analysis (OOA) and Object-Oriented
Design (OOD). The model developed is to capture the structure and behavior of the Object Oriented
Debugger by using the UML diagram. The model also can ease the readability of the documentation for the
maintenance purposes. The design of the Object Oriented Debugger Model has been developed using the
UML notation. It’s consisting of two parts that are object-oriented analysis and object-oriented design. All
the developing and designing are based on the model in UML.

Keywords: Object-Oriented Analysis and Design, Unified Modeling Language, Debugging Model, Logic Error

1. INTRODUCTION

 Debugger is a computer program that is used to

reduce the errors in programming code. In development

activity, the debugging process is very important. Its

offer more sophisticated function such as single stepping,

breakpoint and fix the errors depending on the

programmer understanding or expertise. For novice

programmers, it is a big challenge to understand the

meaning of each error in program code especially for

logic errors. The same problem also confront by the

experienced. The process of finding and fixing the logic

errors is more difficult rather than finding and fixing

syntax errors. To helps and solve the problem that occurs

among the novice programmers this research try to

making the debugger that can be more understandable to

the novice programmers. So, we present an automated

debugger named Object Oriented Debugger, a system for

analyzing code written in Java language which can

handle the problem of understanding on object oriented

programming and debugging program among the novice

programmers. It also to determine the difficulty of

finding logic error among the beginning programming

student by the analyze source code to localize, find logic

Nor Fazlida Mohd Sani et al. / Journal of Computer Science 9 (1): 16-29, 2013

17 Science Publications

JCS

error and provide more user-friendly error messages

when an uncaught exception occurs.

 The purpose of this research is to develop the Object

Oriented Debugger that has been designed to understand

a program written in a structured language, such as Java.

This research has been carried out from the

CONCEIVER++ (Sani et al., 2009) and Adil (Zin et al.,

2000) system as well as extending the plan formalism to

include the logical errors and designed as a new

automated debugger which can debug on different style

of written programming code. The objective of this study

is to capture the structure and behavior of an Object

Oriented Debugger based on the diagram UML, also to

make documentation more readable.

 In this study, we will describe and explain the

design of an Object Oriented Debugger Model by using

the Unified Modeling Language (UML). The UML has

become the standard notation for object-oriented

modeling system (Ali, 1999) The UML use the notations

to express the design of a software system. The UML

process model starts by seeking the requirement and

ideas of the system via Use Case diagram, the

identification the steps involve in each requirement in

Activity diagram and define the external interfaces that

need in the system.

1.1. Related Works

1.1.1. Debugging

 In computer area debugging is the process of

locating and fixing errors in computer program code.

When to debug a program, it is start with a problem,

isolate the source of the problem and then fix it.

Normally, the method that used in debugging process is

comparing the program behaviour with the correct

behaviour in details. Debugging process is a necessary

process in almost any software development process

such as commercial product or an enterprise or personal

application program. For some complex product, the

debugging is done as the result of the unit test for the

smallest unit of a system when the product will be out in

a real world situation. Debugging process is very

important to make sure the system that will be deliver is

well function without any errors. It is because most

computer programs contain thousands of line of code,

almost any new system is likely to contain a few errors.

1.2. Debugging in Programming Education

 In the past few years, the object-oriented

programming has becoming widely used in the

worldwide. This current trend influences the change in

programming education. A growing numbers of college

and universities have change to object-oriented

languages for teaching novice programmers. Impacts

from this, many novice programmers are learning an

object-oriented language as their first programming

language. According to the Wiedenbeck et al. (1999) all

of these changes make an understanding of novice

learning of object-oriented languages is very important.

However, in the teaching programming, the teacher

needs more emphasis on the comprehending the novice

programmers not only in writing programs because many

novices considered a programming as a difficult subject.

 It is not an easy ways especially to provide a good

teaching practice during teaching the programming

courses to make the novices to fully understand the

programming concepts. An introductory programming

course is a basic concept of programming in learning of

programming. Most computing students were

interested to participant in Computer Science

curriculum such as game programming and

multimedia application (Pears et al., 2007). It is

interesting to note that programming support tools

such as interactive incremental code execution,

visualization, editing and syntax support are some of

the solutions, which can use to help the novices to

improve skills in programming. Generally,

programming tools are developed to meet expert

programmer’s needs. The concepts and features that are

provided in programming tool has become problematic

for novices, also their error and warning message may

be hard for novices to understand.

 For this reason, there have been efforts to develop

programming tools that are especially designed for the

novices needs. Besides to help novices, it also can help

tutor to reduce or simplify tutoring workload such as

automatic assessments and course management.

According to Pears et al. (2007), research project can act

as tools to solve a local problem either in a specific

institution or a specific course. There are several

excellent examples of tools that have been widely effort

on teaching practices such as BlueJ programming

environment by Kolling et al. (2001) and Course Marker

automatic assessment tool and its predecessors by

Higgins et al. (2005).

 Despite the best effort of tutor teaching the

programming subject, many students are still challenged

by programming. Reports from teachers of programming

and results from some empirical studies now suggest that

Nor Fazlida Mohd Sani et al. / Journal of Computer Science 9 (1): 16-29, 2013

18 Science Publications

JCS

the teaching of programming has created significant

difficulties for high school and university students and

has failed to catalyze the development of higher order

thinking skills. According to the ITiCSE 2001 Working

Group had established that many students do not know to

program at the end of their introductory courses. The

explanation of this incapacity is that the students lack the

ability to problem solving skills. They lack the ability to

take a problem description, decompose it into sub-

problems, implement them and assemble the pieces into

a complete solution. An overall of the explanation shows

that many students have a fragile grasp of both the basic

programming principles and the ability to carry out

routine programming tasks such as tracing through the

code. So the ITiCSE 2004 Working Group produce a

report based on the explanation that given by the ITiCSE

2001. The ITiCSE 2004 tests the students from seven

countries in two ways. First, test the ability of the

students to predict the outcome of executing a short

piece of code. Second, the ability of students is tested

when given the desired function of short piece of near-

complete code to select the correct completion of the

code from a small set of possibilities. The ITiCSE 2001

explored the twelve Multiple Choice Questions (MCQs)

by asking students to demonstrate their comprehension

of existing code. If a student can consistently

demonstrate an understanding of existing code but

struggles to write similar programs that is reasonable to

conclude that the student lack the skills of problem

solving. If a student cannot consistently demonstrate

understanding of existing code that can be conclude as a

lack of knowledge and skills that are a pre-requisite for

non trivial and problem solving. Regarding on the pre-

requisite matter, many students are weak at this task. For

easy question, approximately 68% of students answer

correctly and 38% of students answer correctly for most

difficult questions. The conclusion from this, students

has a fragile grasp of skills that are a pre-requisite for

problem solving. So, to make the novices easy to debug

the error in their program code, there are many

debugging method that proposed in object-oriented

programming, which discuss next.

1.3. Debugging Method in Object-Oriented

Programming

 The debugging technique is needed in teaching

programming in order that novice programmers can

easily understand the flow of code execution. Much

research has been carried out the major issue in

Computer Science educational research in process by

which novices learn to program. It is difficult to find an

effective method of teaching that is suitable for all

novices. According to Ahmadzadeh et al. (2005), they

try to refine a teaching method by a careful examination

of novice’s mistake. This research investigates the

pattern of compiler error and pattern of logical errors

among the novices debugging activities. The research

also discovers that many novices with a good

understanding of programming do not acquire the skills

to debug program effectively. From this research, it

shows that the debugging process is very important and

the skill at debugging can increase a level of

programmers confident.

 In the development phases, debugging is an

important program that helps in locating and correcting

programming errors. There are many ways in the area of

making debugging that can be understandable to the

novice programmer, but we are not currently aware of

any ways in making logic error easier to interpret by

novice programmers. Algorithmic debugging from

Cheda and Silve (2009) is a semi automatic debugging

technique, which is based on the answers of an Oracle of

questions generated automatically by the algorithmic

debugger. The algorithmic debugger has a front-end

which produces a data structure representing a program

execution also called execution tree and a back-end

which uses the execution tree to ask the questions and

process the oracle answer to locate the bugs. This

debugger only captures the declarative aspects of the

execution and ignores the operational details.

 Debugging on multi agent tools, which are consist

of complex components and concurrent, are difficult.

Agent Oriented Programming and Design class

(Poutakidis et al., 2003) is developed to describe and

categorize a range of bugs found in multi agent tool

which is developed by students. It is a mechanism for

taking protocol diagrams developed in Agent UML

(AUML), converting them to Petri nets and then using

them to monitor execution and detect problem. Instead

of presenting messages to the programmer and relying

on programmers to detect problems, the debugging agent

proposed in monitor conversation and detect problem by

identifying messages that are not permissible in the

conversation defined by the protocols. This debugging

agent uses a Petri nets to monitor the interaction for

errors and to know how the error may have occurred.

Despite many novice programmers apply techniques as

ineffectively and inconsistently in detecting and fixing a

bug but they have some strategies use to found and

Nor Fazlida Mohd Sani et al. / Journal of Computer Science 9 (1): 16-29, 2013

19 Science Publications

JCS

fixing bugs such as tracing, commenting out code,

diagnostic print statements and methodical testing.

According to Katz and Anderson (1987), found that three

general bug location strategies were used by students

such as mapping program behavior to a bug, hand tracing

of the code and causal reasoning.

 Another debugger perform debugging process on

object-oriented programs with introduce a new kind of

abstraction such as the behavior views that can be used

to specify the expected actions occur for a program task

in various scenarios. It also can be used to monitor the

actions for the tasks have been performing correctly.

According to Liang and Xu (2005), bug detection and

localization activities should also be organized based on

scenarios. To facilitate debugging activities, it propose

scenario-driven debugging approach to allows the

software developers to effectively use their knowledge of

scenarios built during the requirements analysis and

design to detect and pinpoint problems in the

implementation and this approach can improve the

effectiveness of debugging. So, to improve the novice

programmers debugging skills, the novice programmers

need receive a formal debugging training at an early

stage to become better programmers in tool. During the

training, the novice programmers would gain debugging

experience and this experience could assist them. It

found some of debugging technique use a formal

debugging training to helps novice programmers develop

skills in debugging tasks with design multiple activities

which include debugging exercise, debugging logs,

development logs, reflective memos and collaborative

assignments (Chmiel and Loui, 2004).

 Some of the researcher tries to apply the idea of

declarative debugging to the object-oriented language as

an alternative to traditional trace debuggers. The

declarative debugger introduced by Caballero et al.

(2007) is used when a wrong computation occur with

build a suitable computation tree containing information

about method invocations. The tree is then navigated

with ask the user questions in order to compare the

intended semantic of each method with its actual

behavior until a wrong method is found out. This

declarative debugger is used for debugging on object-

oriented language, Java. Hybrid Debugging Technology,

HDT (Kouh and Yoo, 2003) is a debugging technique to

debug a Java program with combines an algorithmic

debugging method with a traditional stepwise debugging

method. This technique can improve the drawback of

two methods and also tries to do towards an automated

debugging that users can conveniently to debug a Java

program. In traditional debugging, there are two ways for

debugging logical errors in a Java programs. First, the

novice programmer directly analyzes the source code or

directly inserts the screen output instruction in the

suspected location. This ways is a simple and effective in

most language but these ways not easy to locate the

logical errors because it is difficult for them to correctly

anticipate the error location. Second, the novice

programmers also can debug a Java program using the

instruction such as step-over, step-into, go and break-

point. As a step-over and step-into instruction can

execute a statement per one instruction. The instructions

go execute a statement with break-point. But this

technique is needed much time from novice

programmers because the novice programmers should

execute all statements in the worst case.
 Convergence debugging (Nikolik, 2005) is a new
automatic debugging method. It isolates a set of text
cases that converge on the internal root cause of a
failure. This method use a new measure of code level
distance to evaluate the debugging effectiveness of a set
of test cases between a set of debug test cases and the
test cases that caused the failure. From the previous work
that the researchers introduce the HDT for debugging
logical errors in Java program has some disadvantages. It
can reduce the number of programmers debugging in
Java program but it cannot reduce the number of
debugging because the size of the recent programs still
increase than the past programs and the number of
methods also is increasing. So the researchers from Kouh
and Yoo (2003) propose the HDTS using a Program
Slicing Technique (PST) at the HDT. It is combining of
Hybrid Debugging Technique (HDT) and Program
Slicing Technique (PST) where the PST can reduce the
number of programmer debugging. The PST function
can remove the correct nodes at an execution tree and the
correct statements in the erroneous method when a
programmer debugs programs using HDTS.
 Much effort is spent on the development of tools to

help programmers in constructing, debugging and

verifying programs such as PHENARETE tool that

introduce by Wertz (1982), which understands and

improves incompletely defined LISP programs those

written by students beginning to program in LISP. As an

input in this tool, it takes a program without any

additional information. To understand the program, the

tool Meta-evaluates it using a library of pragmatic rules,

describing the construction and correction of general

program constructs and a set of specialists, describing

the syntax and semantics of the standard LISP functions.

The tool can detect errors, eliminate them and justify its

proposed modifications by analyzing the text of a

program and detects informalities or inconsistencies and

Nor Fazlida Mohd Sani et al. / Journal of Computer Science 9 (1): 16-29, 2013

20 Science Publications

JCS

proposed possible corrections or improvements. There

are some researches that implement by Lee and Wu

(1999), reported about improving the programming skills

of novice programmers that focus on the program

debugging practices. This research working on

expanding the scope of DebugIt to cover other

programming constructs introduced in the CS1 and CS2

courses. This research presents a model of debugging

practices called DebugIt to uncover and to correct any

misconceptions of the programmers and to improve the

debugging abilities of the programmers. DebugIt was

developed specifically for debugging on program with

loop related errors in introductory Pascal courses. This

proposed model called for supervised debugging

practices on short programs involving frequently

committed programming errors.

1.4. Debugging Tool for Programming Code

 There are several available debugger tools exist.

The capabilities of some of the available debuggers will

be explained and discussed. There are such as jBixbe,

DBG | PHP, Jswat, Backstop tool, WPOL, CMeRun,

CnC and OOCD.

 Bixbe (2006) apply debugging in Java applications

on the conceptual level of the Unified Modeling

Language (UML) at which they are designed and makes

it possible to find not only simple bugs but also

weaknesses and insufficiencies in application design. It

can show the details of application so that can realize

classes, objects, their relationships and interaction.

jBixbe provides a new quality of debugging complex

Java applications by showing their structure and

functioning on the conceptual level of the UML. The

advantages of jBixbe debugger are perfect debugging of

multi-threaded applications, user-friendly GUI and good

representation of data structures. This debugger also

teaches object-oriented concepts (training, teaching) and

provides source code debugging and breakpoints. But

there are some disadvantages of these debuggers. Some

researches felt that it is very complicated when debug a

large application because jBixbe is created for high level

object-oriented Java debugger. So, it is very difficult for

novices’ learner to study and understand the error

because the jBixbe do not locate the error. This debugger

also do not have pop-up window to tell a user what

should do if errors occurs.

 The second example is a DBG | PHP–Debugger

DBG (NuSphere, 2009) it is an open source debugger

and profiler for PHP programming language. PHP

Debugger is the best tool for helping the bugs fast and

eliminates them from the PHP programs. It supports a

GUI interface as well as a command-line interface. DBG

is a full-featured PHP debugger, an interactive tool that

helps debugging PHP scripts. It works on a production or

development web server and allows debug your scripts

locally or remotely, from an IDE or console. PHP

Debugger provides a powerful and easy way to simplify

PHP debugging because it gives complete visibility and

control over the execution of PHP scripts. It also doesn’t

require that you make any changes to your PHP code.

PHP Debugger can be debugging PHP applications on

eighteen different platforms either locally or remotely.

Support for the debugging of nested calls (PHP Scripts

calling PHP Script), multiple parallel debug sessions and

debugging of PHP CLI scripts set PhpED apart from

other PHP IDE’s. The advantages of DBG|PHP-

Debugger are lets user step by step through the execution

of a PHP scripts, line-by-line and user friendly GUI. This

debugger also has good representation of data

structures, have the call stack window displays the

function call that brought user to the current script

location and allows multiple debugger processes

running simultaneously. Even though with advantage

that DBG | PHP-Debugger can give, but there are some

researches implement need Object-oriented Java

Debugger which cannot support by this debugger.

Another problem is PHP is an old script and many of

organization have change to JSP in web development.

 The third example is a Jswat debugger (Swat, 2009).

It is a standalone and a graphical Java debugger, written

to use the Java Platform Debugger Architecture. The

Jswat have several features such as breakpoints with

conditionals and monitors, colorized source code display,

graphical display panels showing threads, stack frames,

visible variables and loaded classes, command interface

for more advanced features and Java-like expression

evaluation including method invocation. The

advantages of Jswat debugger are simple and user

friendly GUI. This debugger is suitable for analyzing

applications (maintenance) and display object

relationships (structure diagrams). Even with advantage

that Jswat debugger can give, it also have some

disadvantages such as do not have pop-up window to

tell a user what should do in step by step through the

execution of a PHP scripts and do not show as a line-

by-line but it just only pin-pointed on the specific error.

 Backstop tool (Murphy et al., 2004), identify the

common runtime error in Java applications and do not

identify the logic error. This tool designed for

programmers studying Java at the entry level and it

Nor Fazlida Mohd Sani et al. / Journal of Computer Science 9 (1): 16-29, 2013

21 Science Publications

JCS

provides more user-friendly error messages when an

uncaught runtime error (exception) occurs. It also

provides the debugging support by allowing users to

watch the execution of the program and the changes to

the values of variables. Similarly with the educational

tool Expresso proposed by Hristova et al. (2003)

identify the common error in Java programming and

generate error messages that provide suggestions on

how to fix the code. Some existing tools have been

designed to identify logic errors quickly but not give

any suggestions to solve them.

 The propose Static Object-Oriented Debugging

Model (SOODM) is most similar with the CMeRun

(Etheredge, 2004). It is a tool in UNIX environment to

debug a logic error and allows the programmers to see

what is happening inside a program while it is executing.

Many novices apply the debugging techniques

ineffectively or inconsistently. There also has been

investigation of debugging techniques among the novice

programmers. Although, the tool that presented in this

research can be used to make debugging techniques

among novice stable and not fragile.

 CAP (Schorsch, 1995), developed to aid novice

programmers in a user-friendly fashion by reporting

common syntax, logic and style errors that they make in

Pascal program. It also give feedback information to the

novices about the error, the reason error has been occur

and give the solution to fix the problem.

 According to Ebrahimi and Schweikert (2006),

novices may not detect negative interactions between

section or block of code that are locally correct but

globally incorrect. For example, the code to perform the

output may be correct but in the wrong place in the

program. So WPOL (Ebrahimi and Schweikert, 2006), is

designed to facing the problem. WPOL is being designed

to incorporate the Plan-Object-Paradigm, Web and

assessment with focus on plan integration. WPOL is plan

object-oriented and teaches novices programming by

plan management as to how they are integrated and

bridges the gap between object and functions. A plan that

used in WPOL is an abstraction of a concept,

requirement, object and programming code. The plan is

used for structured knowledge representation in natural

language processing.

 Another available debugger is Check ‘n’ Crash

(CnC) introduced by Csallner and Smaragdakis (2005) is

an automatic error detection approach which combines

the static checking and automatic test generation to get

the best of both function in order to detecting errors. The

CnC tool combines the advantages of ESC/Java static

checker and JCrasher tool automating testing tool. On

this tool, it consist of taking the abstract error conditions

using theorem proving techniques by a ESC/Java static

checker and deriving the specific error conditions using a

constraint solver then produce concrete test cases that are

executed to determine whether an error truly exists by

JCrasher tool. Visual tool is an alternative ways, which

can help the novices more understandable when learning

the programming language. It can show for novices what

happens when the code is executed. Visual Debugger for

Java programs (JVD) introduced by Rafieymehr and

McKeever (2007) is developed using the graphical

animation and runtime state retention to display program

state during execution. These functions to detect runtime

errors by determine which classes have main methods

and ask user to choose one and display the code with

highlight showing current line. The code also displayed

in balloon boxes. Interpreting compiler error messages is

challenging for novice programmers (Hartmam et al.,

2010). HelpMeOut by Hartmam et al. (2010) is a social

recommender tool that aids novices with the debugging

of compiler error messages by suggesting successful

solution to the errors that other programmers have found.

Its comprises IDE instrumentation to collect example of

code changes that fix by compiler errors then store the

fix reports from many users to the central database and

queries the database and present the suggestion solution

on relevant fixes to the novices. Many technique have

been designed in debugging area to find bugs in software

but some of available technique are difficult to use and

not effective in finding real bugs. In order to study in

deep of programming processes there have two kind of

important thing. Firstly, the researchers must control the

knowledge structures that programmers possess if they

wish to measure the effects of factors that influence

programmer performance. Secondly, the researchers

should understand the knowledge structures that novice

programmers possess (Vessey, 1985).
 This research has focused the problems that occur in

debugging process to object-oriented programming

among the novice programmers. Next will discuss the

ways that can be used to improve the learning of object-

oriented programming.

1.5. Learning of Object-Oriented Programming

 Among proposed solutions tools visualization is

discussed about the visualization should be a means to

make the abstract concepts illustrative and concrete.

However, quite often the empirical evidence for the

effectiveness is missing as well as didactic knowledge

Nor Fazlida Mohd Sani et al. / Journal of Computer Science 9 (1): 16-29, 2013

22 Science Publications

JCS

about why and how tools visualization enables teach

(Valentine, 2004). One experiment has been done in

order to evaluate the effect of a program visualization

tool for helping students to better understand the

dynamic of object-oriented programs. The experiment

evaluate the effect of a visual debugger to help novices

learning the object interaction by using BlueJ’s debugger

and object inspector as a control group experiment in an

introductory programming course. This experiment is

focus especially on the object-oriented paradigm. The

result of the experiment show that the novices who used

BlueJ’s debugger and object inspector statistically

performed significantly better than novices manually

tracing the program execution on the same exercise

given in the experiment.

 There are some researches that presents case studies

which is illustrates a Problem-Based Learning (PBL)

environment with appropriate use of resources for a first

year course in Java. In PBL environment, students work

in group in real life problems and have the opportunity to

determine for themselves the requirement that needed to

learn in the relevant subject area. The features of

problem-based learning are to provide students with a

range of resources that assist them to solve the problems.

 Learning to program is a time-consuming and

frustrating process for most novice programmers.

According to Johnson (1990), one reason for this is that

they have to expend so much effort in debugging their

programs. The process of analyzing programs for

syntactic errors is well understood for the techniques

exist which do a fairly good job of identifying syntactic

errors and of correcting it.

 Research on the difficulties novice programmers

meet when they attempt to program a computer has been

quite active in Computer Science Education area. Web

Integrated Programming Environment (WIPE) is

designed specifically to teach novices the fundamentals

of programming. The environment is designed for use as

a first programming course in order to help students

become familiar with the main programming concepts.

WIPE is educational software developed to introduce

novices to programming. It teaches programming based

on the accumulated experience and practice gained from

numerous related research efforts in the broader area of

the teaching of programming. WIPE designed based

upon and was influenced by some fundamental didactic

principles and the experience obtained by former

research regarding the teaching in introductory concepts

on programming in order to make its more effective.

WIPE is software that targeting the teacher rather than

the student that can assist teachers with pinpoints the

specific area where the students have difficulties.

 Many researchers can create more effective learning

environment if they understand the process of learning a

first programming language (Garner et al., 2005). They

found some research to analysis the programming

student’s problem in an Introductory Java programming

class at the University of Otago. These researches

discuss the tool and methods that use to present the list

of problem definitions, which is used to classify

student’s problems during the laboratory work for

Introductory Java programming class. The discussion in

the context of the novice programming literature is

involving a data collected during 2003. The result from

this discussion is consistent with trends noted in the

literature and highlights the significance of both

fundamental design issues and the procedural aspects of

programming. One of the purposes of the research is to

get any comments and suggestions for improvements of

novice programming.

1.6. Logic Error

 Debugger has very close related with the term called
‘logic errors’. There are several kinds of errors, such as
syntax error, runtime error and logic error. Each of these
errors can be detected in different ways. The logic error
has occurred when the program run and gets stuck and
crashes or the code compiles and runs without stuck and
crashing. At the same time, the codes not produce the
intended result. Syntax error has occurred when the code
typed is not correctly or not formatted. For the runtime
error has occurred during the time being executed. The
runtime error maycausebythe computer viruses, bugs in
the program or an incompatibility between different
computer programs. The most difficult errors to detect
are logic error. Logic errors are difficult in terms of
finding the location of the logic error occur and do not
have error messages which is more understandable way
which do not provided by the existing debugger. Many
novices unaware the existing of logic error when they
compile their code. Thus, this research try to propose a
Static Object-Oriented Debugging Model which can help
novices or even experiences to find logic error and provide
more user-friendly error messages with provide location
that logic error occurs and suggestions to solve the errors.
 In computer programming, logic error is a bug in a
program that occur when the code compiles and runs
without crashing but does not do what intended to.
Typically, it will be discovered from the incorrect output.
These kinds of errors are harder to fix, because we don’t
necessarily know what causes the error. There are two
kinds of logic errors. The first one is when the program
is run and the program gets stuck and crashes. The

Nor Fazlida Mohd Sani et al. / Journal of Computer Science 9 (1): 16-29, 2013

23 Science Publications

JCS

second is where the program doesn’t crash, but gives the
wrong results. There are some example of logic error that
we collected from Hristova et al. (2003) and Liang
(2011) such as below.

1.7. Improper Casting

 This problem occurs when a variable is declared
rather than cast (i.e., the casting parentheses are missing).
One possible result may involve truncation of important
data. An error of this type can also occur as a result of
integer division. Introductory novices tend to believe that
numbers are just numbers and fail to comprehend the
differences and data type necessities between int and float.

1.8. Invoking a Non-Void Method in a Statement

that Requires a Return Value

 A method that is supposed to return a variable of
some type (i.e., it must be made equal to a variable of the
return type) is instead called as a void method or as a
statement. If this mistake is made, the value returned by
the method is lost since it is not stored anywhere.

1.9. Flow Reaches End of Non-Void Method

 A non-void method is supposed to return a value of
some type, but the return statement is missing due to
misunderstanding about the role or type of the method or
just forgetfulness.

1.10. Methods with Parameters

1.10.1. Confusion between Declaring Parameters of a

Method and Passing Parameters in a Method

Invocation

 When a method is defined, the parameter types need

to be declared. However, in a method invocation the

types of the variables passed are not given, only the

variable names. There exists confusion between passing

parameters, declaring them and identifying them in the

method’s definition.

1.11. Incompatibility between the Declared Return

Type of a Method and in its Invocation

 A non-void method that is supposed to return a
value of a particular data type but the variable that will
receive the return value is of an incompatible type.

1.12. Class Declared Abstract Because of

Missing Function

 A class that implements some interfaces but is

missing one of the major methods that the interface must

define and support.

1.13. Invalid Additional Assignment Operator

 This type of errors occurs when to assign a value to

the variable with using wrong additional assignment

operator. The example of errors as:

public class ShowLogicError {

 public static void main (String[]args) {

 int number1 = 3;

 int number2 = 3;

number2+= number1 + number2;

Tool.out.println(“number2 is “ + number2);

}

}

1.14. Forgetting Necessary Braces

 This error is common among novice programmers.

They are forgetting the braces when they are needed for

grouping multiple statements. The code below is

wrong, it should be written with braces to group

multiple statements.

if (radius >= 0)

 area = radius * radius * PI;

 Tool.out.println(“The area” + “is” + area);

1.15. Wrong Semicolon at the if line

 Adding a semicolon at the if line is a common

mistake that have done by novices. This error often

occurs when the novices use the next-line block style.

The example of this type of error is shown above.

if (radius >= 0) ;

 {

area = radius * radius * PI;

Tool.out.println(“The area” + “is” + area);

 }

1.16. The Problem is that the Variable y is only

Declared Within the Init Method, not Within

the Class Itself

 That means it cannot be accessed outside the Init

method. This type of error can commonly arise if do not

careful because the programmers will often wish to

assign the initial value to a variable in the Init method.

 Class test {

 staticint x = 30;

 staticint y;

 /*method*/ ststic void Init() {

 y = 20;

 int x = 10;

 }/*endInit*/

Nor Fazlida Mohd Sani et al. / Journal of Computer Science 9 (1): 16-29, 2013

24 Science Publications

JCS

 public static void main(String[]args) {

 Init();

 for(inti=1; i<=10; i++)

 Tool.out.println(I + “ “ + x + “ “ + y);

 }/*end for loop*/

 }/*end main*/

 }/*end test*/

1.17. A Common Error in Writing Mutator Methods

is using the Instance Variable name for the

Parameter name

 When a method parameter has the same name as an

instance variable, the parameter “hides” the instance

variable. In other words, the parameter has name

precedence, so any reference to that name refers to the

parameter not to the instance variable:

public void setmodel (String model){

model = model;

}

 Because the parameter (model) has the same

identifier as the instance variable (model), the result of

this method is to assign the value to the parameter. This

is called No-Op (“NO operation”) because the

statement has no effect.

 Some of the research has propose the ways to

detect defect at an early stage to reduce their impact,

but Chang et al. (2008) has proposed a new approach to

prevent defects from occurring and has been applied to

improve software quality and productivity in many

organizations. To prevent defects from occurring in

advance, it uses a causal analysis approach to discover the

cause of defects and take corrective actions on it. Defect

Prediction approach is based on Association Rules, which

applies association mining technique. To analyze among

large amounts of reported defects is time consuming and

requires significant effort. So this approach can solve this

problem where the reported defects and performed actions

are utilized to discover the patterns of actions, which are

likely to cause high defects.
 Rather than detecting the errors, the novices also
inable to interpret and resolve the compiler messages.
Coull (2003), tries to help novices to interpret compiler
error messages by develop an application that attempts to
provide novices with solutions to compiler error
message. The application utilizes a program that parses
compiler error messages from a Java Integrated
Development Environment to a text file and a database
that contains common compiler error message and their
solutions. Most of researcher tries to investigate errors

made by novices. There are many ways to investigate the
errors made by novices on the first time their study a
programming language. When studying a programming
language for the first time, the majority of student’s
errors fall into broad (and well-documented) categories
(Barr et al., 1999). In this research, they aims to
investigate errors made by novices in Blue which is a
new object-oriented language that are specifically
designed at the University of Sydney in purpose of
teaching novices. The investigation is done by a survey
that is delivering over the World Wide Web. The survey
consists of multiple choice and free-form short answer
questions. Blue is a programming language and
environment developed specifically for teaching object-
oriented programming to first year Computer Science
students. It has been designed to make teaching
programming concepts to become easy by removing
complexity from the language at the expense of
performance. As a result from this survey, it shown that
a student who learns with Blue is no more likely to
make errors that is commonly made by novices. The
Blue is not necessary better equipped to design and
write code in an object-oriented paradigm. It is need
further research to be identified in this area. This
problem leads to our research in order to suggest a new
model of tool, such like the object-oriented debugger
model. The importance to come out with a good design
of this tool will aid and help novices to pinpoint
selected logic error, which at the same improve their
programming skill. The identified logic error will be as
the input data of the model that will be design.

2. MATERIALS AND MEHTODS

2.1. Methods

 The UML is a modeling language for designing the
software system. All the requirement of the system will
be describe and model in UML structure. The UML
notation is very important in modeling. Use the
appropriate notations to make the model more
understandable. The standard UML notation that used to
describe the Object Oriented Debugger is Class notation,
Collaboration notation, Use Case notation and
Interaction notation. Object oriented programming is a
new approach to programming which address these
systems issues, moving the focus from programs to
software (Anderson, 1988). With using the object
oriented, it easier to build and understand the systems.
So, in this research we present an automated debugger
for object-oriented programming.
 Steps involve for this research work on come out the

model are as follows (a) creating use case; (b) capturing

Nor Fazlida Mohd Sani et al. / Journal of Computer Science 9 (1): 16-29, 2013

25 Science Publications

JCS

process flow and (c) finding object interaction. The

details output will be explained next.

3. RESULTS AND DISCUSSION

3.1. Creating Use Case

 Use case is a type of behavioral of the tool that
illustrates using the use case diagram. Use case is useful
for analysts to more understand the flow of the tool and
it does also can help the analysts to partitioning the
functionality of a tool. It’s present a functionality of a tool
that shows each function that will be performed by an
actor. In this diagram, it is shows the relationship between
the use case and actors in the tool. There is one actor as a
user that involve in the Static Object-Oriented Debugging
Model. In this use case diagram, it is identified one use
case, which can access by user that is static debugger. This
use case begins when user enter to the tool and select the
program. The tool will parse each of line codes in the cod
program. The codes that already parse will be stored into
database. After that, the tool will check the code refer to
the plan base in database. Finally, the tool produce the
output that is description about the error appears in the
program code. Figure 1 shows the use case diagram for

Static Object-Oriented Debugging Model.

3.2. Capturing Process Flow

 Activity diagram can be used to describe the

stepwise activities of each component in the tool. There

are seven components that involve in the Static Object-

Oriented Debugging Model, it’s begin with the user enter

to the tool and select the program. The tool will parse

each of line codes in the program code. The codes that

already parse will be stored into database. After that, the

tool will check the code refer to the plan base in

database. Finally, the tool produce the output that is

description about the error occurs in the program code.

The Activity Diagram for Static Object-Oriented

Debugging Model is shows Fig. 2.

Fig. 1. Use Case Diagram for Static Object-Oriented

Debugging Model

Fig. 2. Activity diagram for static object-oriented debugging model

Nor Fazlida Mohd Sani et al. / Journal of Computer Science 9 (1): 16-29, 2013

26 Science Publications

JCS

Fig. 3. Sequence diagram for static object-oriented debugging model

Fig. 4. Collaboration diagram for static object-oriented debugging mode

Nor Fazlida Mohd Sani et al. / Journal of Computer Science 9 (1): 16-29, 2013

27 Science Publications

JCS

Fig. 5. Class diagram for static object-oriented debugging model

3.3. Finding Object Interaction

 There are two types of object interaction diagram

that are sequence diagram and collaboration diagram.

We use the sequence diagram to represent the flow of

messages, events and actions between the objects of a

tool in a time sequence. It’s also used to describe the

sequence of actions that need to complete a scenario of

the tool. The collaboration or interaction diagram shows

the relationship and interactions among the objects in the

tool. Class diagram is one type of diagram or model in

the Unified Modeling Language. It’s used to describe the

structure of a tool by showing the tool classes, attributes

and relationship between the classes. In Static Object-

Oriented Debugging Model, it’s classified seven classes

that are User Interface, Select Program, View Program,

Run Program, Code Parser, Database and Plan Base. The

object in this tool consists of End-User. This tool begins

with User Interface class which user can enters to the

tool and the Select Program class allowed the user to

select the program. The View Program class allow user

to view the program that selected by the user. When Run

Program is function, the program will be processed, the

tool will parse each of line codes in the program code is

done by Recognition Engine class. The codes that

already parse will be stored into Database. After that, the

tool will check the code refer to the Plan Base in

database. Finally, the tool produce the output that is

description about the error occurs in the program code.

The several main classes in Static Object-Oriented

Debugging Model are shown in Fig. 3 below. The

sequence diagram and collaboration diagram are shown

in Fig. 4 and 5.

4. CONCLUSION

 The design of the Object Oriented Debugger by

using the Unified Modeling Language Model has been

discussed detail in this study. It’s consisting of two parts

that are object-oriented analysis and object oriented

design. All the developing and designing are based on

the model in UML. This study has explained on the

concepts of Object Oriented Debugger and has divided

into three sections, which include creating use case,

capturing process flow and finding objects interactions.

Appropriate UML diagrams for Object Oriented

Debugger system also has presented.

5. ACKNOWLEDGEMENT

 Special thanks from author to financial support

(Fundamental Research Grant Scheme, FRGS) received

from the Ministry of Higher Education (MoHE), Malaysia

via Universiti Putra Malaysia. The principle investigator

of the research project is Dr. Nor Fazlida MohdSani.

6. REFERENCES

Ahmadzadeh, M., D. Elliman and C. Higgins, 2005. An

analysis of patterns of debugging among novice

computer science students. Proceedings of the 10th

Annual SIGCSE Conference on INNOVATION and

Technology in Computer Science Education,

(ITiCSE’ 05), ACM Press, New York, pp: 84-88.

DOI: 10.1145/1151954.1067472

Nor Fazlida Mohd Sani et al. / Journal of Computer Science 9 (1): 16-29, 2013

28 Science Publications

JCS

Ali, B., 1999. Object Oriented Systems Development:

Using the Unified Modeling Language. 1st Edn.,
McGraw-Hill, Boston, ISBN-10: 0072349662.

Anderson, J.D., 1988. Education of Blacks in the

South, 1860-1935. 1st Edn., University of

North Carolina Press, Chapel Hill, ISBN-10:

0807842214, pp: 366.
Barr, M., S. Holden, D. Phillips and T. Greening, 1999.

An Exploration of novice programming errors in an

object-oriented environment. Proceedings of the

Working Group Reports from ITiCSE on Innovation

and Technology in Computer Science Education,

Jun. 27-30, ACM Press, USA., pp: 42-46. DOI:

10.1145/349316.349392

Bixbe, J., 2006. Another way to debug.

Caballero, R., C. Hermans and H. Kuchen, 2007.

Algorithmic debugging of java programs. Elect.

Notes Theoretical Comput. Sci., 177: 75-89. DOI:

10.1016/j.entcs.2007.01.005

Chang, C.P., C.P. Chu and Y.F. Yeh, 2008. Integrating

in-process software defect prediction with

association mining to discover defect pattern.

Inform. Software Technol., 51: 375-384. DOI:

10.1016/j.infsof.2008.04.008

Cheda, D. and J. Silva, 2009. State of the practice in

algorithmic debugging. J. Elect. Notes Theoretical

Comput. Sci., 246: 55-70. DOI:

10.1016/j.entcs.2009.07.015

Chmiel, R., M.C. Loui, 2004. Debugging: From novice

to expert. Proceedings of the 35th SIGCSE

Technical Symposium on Computer Science

Education, Mar. 03-07, ACM Press, USA., pp: 17-

21. DOI: 10.1145/971300.971310

Coull, N., 2003. Helping novice programmers interpret

compiler error messages. Proceedings of the 4th
Annual LTSN-ICS Conference, (ALIC’ 03), pp: 26-28.

Csallner, C. and Y. Smaragdakis, 2005. Check ‘n’ crash:

Combining static checking and testing. Proceedings

of the 27th International Conference on Software

Engineering, May 15-21, ACM Press, St. Louis,

MO, USA., pp: 422-431. DOI:

10.1145/1062455.1062533
Ebrahimi, A. and C. Schweikert, 2006. Empirical study

of novice programming with plans and objects.
SIGCSE Bull., 38: 52-54. DOI:
10.1145/1189215.1189169

Etheredge, J., 2004. CMeRun: Program logic debugging
courseware for CS1/CS2 students. Proceedings of
the 35th SIGCSE Technical Symposium on
Computer Science Education, Mar. 03-07, Norfolk,
USA., pp: 22-25. DOI: 10.1145/1028174.971311

Garner, S., P. Haden and A. Robins, 2005. My program

is correct but it doesn’t run: A preliminary

investigation of novice programmers’ problems.

Proceedings of the 7th Australasian Conference on

Computing Education, (ACE’ 05), Australian

Computer Society, Inc. Darlinghurst, Australia,

Australia, pp: 173-180.

Hartmam, B., D. MacDougall, J. Brandt and S.R.

Klemmer, 2010. What would other programmers do:

Suggesting solutions to error messages. Proceedings

of the SIGCHI Conference on Human Factors in

Computing Systems, (CHI’ 10), ACM Press, New

York, USA., pp: 1019-1028. DOI:

10.1145/1753326.1753478

Higgins, C.A., G. Gray, P. Symeonidis and A. Tsintsifas,

2005. Automated assessment and experiences of

teaching programming. J. Educ. Resources Comput.

DOI: 10.1145/1163405.1163410

Hristova, M., A. Misra, M. Rutter and R. Mercuri, 2003.

Identifying and correcting java programming errors

for introductory computer science students.

Proceedings of the 34th SIGCSE Technical

Symposium on Computer Science Education, (CSE’

03), ACM Press, New York, USA., pp: 153-156.

DOI: 10.1145/611892.611956

Johnson, W.L., 1990. Understanding and debugging

novice programs. Artif. Intell., 42: 51-97. DOI:

10.1016/0004-3702(90)90094-G

Katz, I.R. and J.R. Anderson, 1987. Debugging: An

analysis of bug-location strategies. Hum. Comput.

Interact., 3: 351-399.

Kolling, M., B. Quig, A. Patterson and J. Rosenberg,

2001. The BlueJ system and its pedagogy.

Pennsylvania State University.

Kouh, H.J. and W.H. Yoo, 2003. The efficient

debugging system for locating logical errors in java

programs. Proceedings of the International

Conference on Computational Science and its

Applications, May 18-21, Springer Berlin

Heidelberg, Canada, pp: 684-693. DOI: 10.1007/3-

540-44839-X_72

Lee, G.C. and J.C. Wu, 1999. Debug it: A debugging

practicing system. Comput. Educ., 32 165-179. DOI:

10.1016/S0360-1315(98)00063-3

Liang, D. and K. Xu, 2005. Debugging object-oriented

programs with behavior views. Proceedings of the

6th International Symposium on Automated

Analysis-Driven Debugging, (ADD’ 05), ACM

Press, New York, USA., pp: 133-142. DOI:

10.1145/1085130.1085148

Nor Fazlida Mohd Sani et al. / Journal of Computer Science 9 (1): 16-29, 2013

29 Science Publications

JCS

Liang, Y.D., 2011. Introduction to Java Programming:
Comprehensive Version. 8th Edn., Prentice Hall,
Boston, ISBN-10: 0132130807, pp: 1342.

Murphy, C., E. Kim, G. Kaiser and A. Cannon, 2004.
Backstop: A tool for debugging runtime errors.
Proceedings of the 39th SIGCSE Technical
Symposium on Computer Science Education, (CSE’
04), ACM Press, New York, USA., pp: 173-177.
DOI: 10.1145/1352135.1352193

Nikolik, B., 2005. Convergence debugging. Proceedings
of the 6th International Symposium on Automated
Analysis-Driven Debugging, (ADD’ 05), ACM
Press, New York, USA., pp: 89-98. DOI:
10.1145/1085130.1085142

NuSphere, 2009. Php Debugger in NuSphere PhpED.
Sphere Corp.

Pears, A., S. Seidman, L. Malmi, L. Mannila and E.
Adams et al., 2007. A survey of literature on the
teaching of introductory programming. Proceedings
of the Working Group Reports on ITiCSE on
Innovation and Technology in Computer Science
Education, (CSE’ 10), ACM Press, New York,
USA., pp: 204-223. DOI: 10.1145/1345443.1345441

Poutakidis, D., L. Padgham and M. Winikoff, 2003. An
exploration of bugs and debugging in multi-agent
systems. Proceedings of the 2nd International Joint
Conference on Autonomous Agents and Multiagent
Systems, (AMS’ 03), ACM Press, New York, USA.,
pp: 1100-1101. DOI: 10.1145/860575.860815

Rafieymehr, A. and R. McKeever, 2007. Java Visual
Debugger. SIGCSE Bull. DOI:
10.1145/1272848.1272889

Sani, N.F.M., A.M. Zin and S. Idris, 2009.
Implementation of conceiver++: An object-oriented
program understanding system. J. Comput. Sci., 5:
1009-1019. DOI: 10.3844/jcssp.2009.1009.1019

Schorsch, T., 1995. Cap: An automated self-assessment
tool to check pascal programs for syntax, logic and
style errors. Proceedings of the 26th SIGCSE
Technical Symposium On Computer Science
Education, Mar. 2-4, Nashville, Tennessee, USA.,
pp: 168-172. DOI: 10.1145/199688.199769

Swat, J., 2009. JSwat java debugger.

Valentine, D.W., 2004. CS educational research: A meta-

analysis of SIGCSE technical symposium

proceedings. Proceedings of the 35th SIGCSE

Technical Symposium on Computer Science

Education, (CSE’ 04), ACM Press, New York,

USA., pp: 255-259. DOI: 10.1145/971300.971391

Vessey, I., 1985. Expertise in debugging computer

programs: A process analysis. Int. J. Man-Mach.

Stud., 23: 459-494. DOI: 10.1016/S0020-

7373(85)80054-7

Wertz, H., 1982. Stereotyped program debugging: An

aid for novice programmers. Int. J. Man-Mach.

Stud., l: 379-392. DOI: 10.1016/S0020-

7373(82)80047-3

Wiedenbeck, S., V. Ramalingam, S. Sarasamma and C.

Corritore, 1999. A comparison of the

comprehension of object-oriented and procedural

programs by novice programmers. Int. Comput., 11:

255-282. DOI: 10.1016/S0953-5438(98)00029-0

Zin, A.M., S.A. Aljunid, Z. Shukur and M.J. Nordin,

2000. A Knowledge-based automated debugger in

learning system. Proceedings of the 4th International

Workshop on Automated Debugging, (WAD’ 00),

ACM Press, Munich.

