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ABSTRACT 

Optimization in multicore processor environment is significant in real world dynamic applications, as it is 
crucial to find and track the change effectively over time, which requires an optimization algorithm. In 
massively parallel processing multicore processor architectures, like other population based metaheuristics 
Constraint based Bacterial Foraging Particle Swarm Optimization (CBFPSO) scheduling can be effectively 
implemented. In this study we discuss possible approaches to parallelize CBFPSO in multicore system, 
which uses different constraints; to exploit parallelism are explored and evaluated. Due to the ability of 
keeping good balance between convergence and maintenance, for real world applications, among the 
various algorithms for parallel architecture optimization CBFPSOs are attracting more and more attentions 
in recent years. To tackle the challenges of parallel architecture optimization, several strategies have been 
proposed, to enhance the performance of Particle Swarm Optimization (PSO) and have obtained success on 
various multicore parallel architecture optimization problems. But there still exist some issues in multicore 
architectures which require to be analyzed carefully. In this study, a new Constraint based Bacterial 
Foraging Particle Swarm Optimization (CBFPSO) scheduling for multicore architecture is proposed, which 
updates the velocity and position by two bacterial behaviours, i.e., reproduction and elimination dispersal. 
The performance of CBFPSO is compared with the simulation results of GA and the result shows that the 
proposed algorithm has pretty good performance on almost all types of cores compared to GA with respect 
to completion time and energy consumption. 
 
Keywords: Particle Swarm Optimization, Constraint Based Bacterial Foraging Particle Swarm Optimization, 

Multicore Processor, Parallel Architecture Optimization 

1. INTRODUCTION 

Multicore processor task scheduling is a generalised 
form of machine class scheduling, where a task is 
processed by more than one core. In wide range of real 
world problems which are dynamic, requiring an 
optimization algorithm which is able to continuously track 
a change, for an optimum performance over time. Global 
optimization technique like Genetic Algorithm (GA) 
(Abdel-Magid et al., 1999), Tabu Search (TS) (Abido and 

Abdel-Magid, 2002) and Simulated Annealing (SA) 
(Abido, 2000) are attracting the attention in the field of 
parallel architecture parameters optimization in recent 
times. But when the system has highly correlated 
parameters to be optimized and the number of parameters 
to be optimized is large, GA exhibits degraded efficiency 
(Fogel, 1995). As a new evolutionary technique in 
(Passino, 2002), bacterial Foraging PSO has been 
proposed by considering certain constraints. To overcome 
the drawbacks of conventional methods for multicore 



Radhamani, A.S. and E. Baburaj / Journal of Computer Science 10 (8): 1508-1516, 2014 

 
1509 Science Publications

 
JCS 

processor scheduling, a new optimization scheme known 
as Constraint based Bacterial Foraging Particle Swarm 
Optimization (CBFPSO) is used for multicore processor 
scheduling. CBFPSO appeared as a challenging algorithm 
for handling the optimization problems. This algorithm 
can converge to the optimal solution in real world 
problems and also in dynamic environments, as it is a 
computational intelligence based technique, which is not 
largely affected by size and non-linearity of the problem. 
Some new constraints are required to be included in the 
optimization algorithm, as the environment assumed is 
heterogeneous, to trigger various mechanisms and to track 
the optimum change effectively and efficiently. 

Bacterial Foraging algorithm was inspired by 
foraging behaviour of bacteria and was proposed in 
(Passino, 2002). Bacterial Foraging Optimization 
Algorithm (BFOA) has been widely accepted as a global 
optimization algorithm of current interest for distributed 
optimization and control. BFOA is inspired by the social 
foraging behaviour of Escherichia coli. BFOA has 
already drawn the attention of researchers because of its 
efficiency in solving real-world optimization problems 
arising in several application domains. The underlying 
biology behind the foraging strategy of E. coli is 
emulated in an extraordinary manner and used as a simple 
optimization algorithm. Also Bacterial Particle Swarm 
Optimization (BPSO) is presented in (Zhen et al., 2009), 
in which two strategies namely PSO and BFA combined. 
This study starts with a lucid outline of the basic PSO. 
Further it proceeds with Bacterial Foraging Particle 
Swarm Optimization (BFPSO). It then analyses the 
dynamics of the simulated chemotaxis step in BFPSO 
with the help of a simple mathematical model. Taking a 
cue from the analysis, it presents a new adaptive variant 
of BFPSO, where the chemotactic step size is adjusted 
on the run according to the current fitness of a virtual 
bacterium. Next, an analysis of the dynamics of 
reproduction operator in BFPSO is also discussed. 

In our work, along with PSO and bacterial behaviours, 
certain constraints are formulated which provides an 
account of most of the significant performance metric in 
terms of completion time and energy consumption. The 
CBFPSO performs velocity updating and position updating 
in sequence according to PSO. The bacterial properties like 
reproduction and elimination dispersal are applied to 
CBFPSO for helping the particles to achieve faster 
convergence rate and jump out from local minima. 

1.1. Related Work 

Several algorithms have been proposed for multicore 
processor scheduling and optimization problems. Among 

them, population based meta heuristic algorithms such as 
GAs and PSOs exhibited promising solutions to handle 
this kind of complex problems. To cope with multicore 
processor environment, several techniques were 
introduced in EAs; to maintain the diversity of 
population throughout the run in multicore 
environments, a mechanism named as Multi-nichie 
crowding was used in (Cedeno and Vemuri, 1997). To 
recall useful information from past generation, memory 
based approaches were discussed in (Cedeno and 
Vemuri, 1997; Blackwell and Branke, 2004), which 
provide the knowledge attained in previous generations 
was usually helpful to the search in the next generation. 
Branke (1999), it has been argued that Evolutionary 
Algorithms (EAs), may be a particularly suitable 
candidate for static type of problems. Recently, many real 
world problems are dynamic, i.e., they change over time, 
has been explored in (Branke, 2001; Parsopoulus and 
Vrathatis, 2002; Hu and Eberhart, 2002; Carliste and 
Dozier, 2000). Blackwell (2003) multi-swarm 
optimization in dynamic environments, with new 
variants of PSO is designed. In this single population 
PSO and charged PSO are extended by constructing 
interacting multiswarms. Also a new algorithmic variant, 
which broadens, the implicit atomic analogy of CPSO to 
a quantum model is added. Du and Li (2008), a new 
multi strategy PSO for dynamic optimization, in which 
all particles are divided into two parts, denoted as part I 
and part II respectively and two new strategies, Gaussian 
local search and differential mutation are introduced in 
those two parts respectively and this algorithms 
outperforms other algorithms when the dynamic 
environment is unimodal and changes severely. 
Advanced computational intelligence based optimization 
algorithms; PSO and BFO have been implemented in 
(Patnaik and Panda, 2012), to tune the coefficients of PI 
controller to improve the power performance. In a 
heterogeneous data centers, to enable the power savings 
of idle servers with instantaneous workload, an adaptive 
power aware virtual machine provisioner which 
considers the resources dynamically is described in 
(Jeyarani et al., 2012). The scheduling of independent 
tasks an advanced parallel cellular genetic algorithm 
(Pinel et al., 2013) to minimize the make span on a 
fixed number of machines is presented. Two different 
ways of exploiting GPU parallelism are explored and 
evaluated in (Mussi et al., 2011) also to determine the 
execution speed of the two parallel algorithms is 
compared. Yang (2003), authors introduced the 
application of a new variation of GA called the 
Primal-Dual Genetic Algorithm (PDGA) for problem 



Radhamani, A.S. and E. Baburaj / Journal of Computer Science 10 (8): 1508-1516, 2014 

 
1510 Science Publications

 
JCS 

optimization in nonstationary environments. A hybrid 
learning algorithm to improve the stability performance 
of a power system with Distributed Generations (DGs) is 
studied (Latha and Kanakaraj, 2013). Here the 
distribution system stability is maintained with reduced 
power loss using an Adaptive Neuro-Fuzzy Inference 
Systems (ANFIS) and Particle Swarm Optimization 
(PSO) techniques. Sudarmani and Kumar (2013) 
proposed a method which combines load balanced 
clustering, transmission power control over normal 
nodes present in the cluster and mobile sink over HSN. 
They have used PSO to find the optimal path for mobile 
sink to collect data from cluster heads. 

The existing techniques on optimization based 
scheduling; they have not considered the performance 
such as completion time and energy consumption 
concurrently, which are instinctive in modern multicore 
processor scheduling. Therefore we have introduced a 
new approach in which the different constraints make 
evaluation regarding the task assignment on various 
cores based on their frequencies. 

The rest of the paper is structured as follows, section 
3 explains the problem formulation, section 4 discusses 
the swarm algorithms and section 5 provides the 
experimental analysis and results followed by conclusion 
and future work in section 6. 

1.2. Problem Formulation 

The task scheduling problem of multicore processor 
architecture is scheduling problem to partition the tasks 
between different cases by accomplishing minimum 
completion time and energy consumptive simultaneously. 
If M different core M = {ci, u = 1,2,…n) and T different 
tasks T = {tj, j = 1,2,….n) are considered in a 
heterogeneous environment, where every core works in 
different speed (frequencies) and processing capabilities. 

As it is one of the important performance metric in 
heterogeneous multicore processor, the completion time 
of a specific task is important, because of its ability to 
describe the performance of the system. As a result 
minimizing the completion time of a particular task can 
be considered as a goal of the proposed scheduling 
algorithm, due to its significant role. As the 
environment considered is heterogeneous, it is also 
necessary, to consider the energy consumption of the 
core. Since both completion time and energy 
consumption are highly dependent on each after and 
should not be optimized independently. If the 
processing speed is V(i,j), the execution time has been 
calculated on the basis of size of the task by proceeding 
speed on different cores Equation 1: 

( )
n

max
i=1 j=1

TaskSize
Completion Time or  Processing Time 

Speed

Max completion time C max T(i, j) / V(i, j)

=

 
=  

 
∑

 (1) 

 
The objective function is minimizing the completion 

Time, which is given by the Equation 2: 
  

( )
n

i=1
j=1

Min max max T(i, j) / V(i, j)
 

=  
 
∑  (2) 

 
Let E be the Energy consumed while running a task 

with an average power P at the processor speed (or) 
frequency (f) for T time units, the relationship can be 
represented by the following: 

• E=P (f)xT 
• Objective function = αe-βz1+ αe-βz2 
• z1 = completion Time 
• z2 = energy consumption 
• α,β-constants 

1.3. Swarm Algorithms 

1.3.1. The Basic PSO Algorithm 

Particle Swarm optimization is a heuristic, powerful 
optimization algorithm introduced by (Kennedy and 
Eberhart, 1995; Pinel et al., 2013). PSO is a kind of 
search mechanism to find the best solution by 
simulating the motion of a flock of birds or insects. 
The birds or insects are called as “particles’, which 
can be generally expressed by a group of vectors as 
( 1 1 1x ,v ,p

�� � ) where i i1 i2 iDx = (x ,x ,.....x )
�  and 

i i1 i2 iDv = (v ,v ,.....v )
�  (i = 1, 2,…m) represents the position 

and velocity of ith particle respectively. The particles fly 
through the problem space by following the comment 
optimum particles. 

PSO is finalized with a group of random particles 
(solutions) and then searches for optima by updates 
generations. During every interaction, each particle is 
updated by following two best values. The first best solution 
(fitness) of with respect to position is called ‘pbest’. 
Another best position is called ‘gbest’ which is tracked by 
the particle swarm optimizer is the best position optimized 
so far, by any particle in the population. 

After finding the two best values the particle 
updates its velocity and position according 4 steps (1) 
and (2) respectively: 
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i i i i i
k +1 k 1 1 k 2 2 k k

i i i
k+1 k k+1

V = wV + c r (pbest - X ) + c r (gbest - X )

X = X + V
 

 
Where: 

i
kV  = Velocity of the ith particle at the kth iteration 
i
kX  = Current solution of the ith particle at the kth 

iteration 
r1, r2 = Random members generated between 0 to 1 
c1, c2 = Positive constants  
w = is a positive inertia parameter 

PSO is a simple concept and can be implemented easily 
with few parameters and this method provides desirable 
solution of PSO in optimization to some extents. 

1.4. Proposed Algorithm (CBFPSO) 

BF is a new bio-inspired algorithm-Bacteria have 
the tendency to gather around nutrient- rich areas by 
the activity called chemotaxis. The bacteria which fail 
to reach nutrient-rich areas may die due to lacking of 
nutrient while the others survive and reproduce the 
heat generation in nutrient rich areas. In the bacterial 
environment, some bacteria will be dispersed to 
random regions once their current living environment 
is no longer to live in. 

The BEPSO combines both BF and PSO algorithms. 
This combination aims to make use of PSO ability to 
exchange social information and BF ability in finding a 
new solution by elimination and dispersal. 

For initialization, select S, Ns, Nc, Nre, Ned, Ped, 
C1, C2, R1, R2 and (Ci), i = 1,2,…S. Also initialize the 
position i

nP ,i = 1,2,....Sand velocity randomly initialized. 

The BF-PSO made Bacterial population, Chemo-taxis, 
swarming, reproduction, elimination and dispersal 
articled by PSO is given below. 

The (BF-PSO) combines both algorithms BF and 
PSO. This combination aims to make use of PSO 
ability to ex-change social information and BF ability 
in finding a new solution by elimination and dispersal. 
For initialization, the user selects S, Ns, Nc, Nre, Ned, 
Ped, C1, C2, R1, R2 and c(i), i = 1,2. . . S. Also initialize 
the Position Pin,1,1,1, i = 1,2. . . S and Velocity 
randomly initialized. The (BF-PSO) models bacterial 
Population Chemo-taxis, swarming, reproduction, 
elimination and dispersal oriented by PSO is given 
below (Initially, j = k = ell = 0). Implicit subscribes 
will be dropped for simplicity. The following Table 1 
describes the algorithm. 

Table 1: Algorithm BFPSO 

1. Initialize parameters n, S, Nc, Ns, Nre, Ned, Ped, c (i)(i= 
1,2. . . S), Delta, C1, C2, R1, R2. where, 
• n: Dimension of the search space, 
• S: The number of bacteria in the population, 
• Sr: Half the total number of bacteria, 
• Ns: Maximum number of swim length, 
• Nc : Chemo tactic steps, 
• Nre: The number of reproduction steps, 
• Ned: Elimination and dispersal events, 
• Ped: Elimination and dispersal with probability, 
• c (i) : The step size taken in the random direction, 
• C1, C2: PSO random parameter, 
• R1, R2: PSO random parameter. 
2. Generate a random direction Delta (n,i) and position 
For (ell = 1 to Ned) 
For (k = 1 to Nre) 
For (j = 1 to Ne) 
For (i = 1 to S) 
Evaluate the cost function 
J(i,j) = Func (P(i,j)) 
Store the best cost function in J last 
Jlast = J(i,j) 
The best cost for each bacteria will be selected to be the 
local best J local 
Jlocal(i,j) = Jlast (i,j) 
Update position and cost function 
P(i,j+1) = P(i,j) + c(i) * Delta (n,i) 
J(i,j+1) = Func (P(i,j+1)) 
While (m<Ns) 
If J(i,j+1)<j last 
Then 
Jlast = J(i,j+1) 
Update position and cost function 
P(i,j+1) = P(i,j+1) + c(i) * Delta (n,i) 
J(i,j+1) = Func (P(i,j+1)) 
Evaluate the current position and local cost for each 
bacteria 
Pcurrent (i,j+1) = P((i,j+1) 
Jlocal (i,j+1) = Jlast (i,j+1) 
else 
Pcurrent (i,j+1) = P((i,j+1) 
Jlocal (i,j+1) = Jlast (i,j+1) 
end if 
m = m+1 
end while 
next i (next bacteria) 
Evaluate the local best position (Pl best) for each 
bacteria and global best position (Pgbest) 
Evaluate the new direction for each bacteria. 
V= ω *V+Cl*Rl (Plbest-Pcurrent) + C2 * R2 (Pgbest-
Pcurrent) 
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Delta = V 
next j (nest chemotactic) 
for (i=1 to S) 

eN +1
Jhealth = (i, j,k,ell)

j = 1
 

end 
The Sr bacteria with the highest J health remove and the 
other Sr bacteria with the best values copied. 
next k (next reproduction) 
With probability Ped, eliminates and disperse each 
bacterium 
next all (next elimination) 

As stated earlier to accomplish the real world 
dynamic applications, some constraints are appended 
into BFPSO. Among them constraints which can 
enhance the performance in terms of completion time 
and energy of CBFPSO is projected as the most interest. 

1.5. Experimental Analysis 

Experimental analysis in this section is designed to 
investigate the performance of the formulated constraints 
in terms of completion time and energy consumption. To 
investigate and test the performance characteristics of 
CBFPSO, we formulated four constraints. The 
constraints are based on the varying parameters such as 
frequency and task size. The first one is with medium 
tasks and uniform frequencies, second is with small tasks 
and varying frequencies, third is with medium tasks and 
varying frequencies and the fourth is large tasks with 
varying frequencies. It is also assumed in all the 
formulated constraints that when the core is not allotted 
to any task it enters into sleep mode. The CBFPSO 
algorithm is written in the MATLAB program 
environment. The input to the program is a design that 
consists of the number of cores. Each core is associated 
with the varying parameters such as frequency and task. 
For experimental purpose, these parameters are 
randomly assigned. The following Table 1 and 2 
describes the parameters chosen for GA and PSO. 

1.6. Experiment: 1. Comparison of GA and 
CBFPSO in Detecting and Tracking Optimal 
Performance for Different Constraints. 

This experiment is performed to find the 
effectiveness if the CBFPSO algorithm in detecting and 
tracking the changing optima for the different 
constraints, with varying number of cores. In this 
scenario, the completion time, is optimized such a way 
that, by assigning each constraint, by varying the number 
of cores. The changes of optimum value under different 

workload and different frequencies (constraints) were 
compared and plotted in Fig. 1 and 2 resulting in the 
reduction of completion time with the proposed 
CBFPSO, where as the GA fails to do so. Also among all 
constraints out performs than others as its keep good 
balance convergence and diversity maintenance. 

1.7. Experiment 2: Energy Performance Trade Off 

The aim of the experiment is to find the optimum 
energy consumption for varying the number of cores 
with different constraints, which fulfils the performance 
such as completion time and energy consumption. As the 
different constraints are assumed with varying workload 
and frequencies the multicore has to meet different 
optima points. The performance curve is shown in Fig. 3 
and 4. The curves show that the second, third and fourth 
constraint curves significantly outperform the first in 
terms of energy consumption, particularly when the busy 
cores are heavily loaded and are depicted in Fig. 4. This 
is due to the fact that assigning large tasks onto the 
heavily loaded core always search for high frequency 
core to handle the load which is not possible by the first 
constraint as the cores are with uniform frequencies, 
whereas in second, third and fourth constraints tasks are 
assigned such that the low frequency cores are loaded 
first and all the high frequency cores are fed into sleep 
mode results in significant energy consumption. Thus 
optimal CBFPSO results well than GA due to their 
global best and local best values. 

 
Table 1. Parameters chosen for GA and PSO 
GA Parameters 
Population size 100 
Generation 50 
Population type Double vector 
Crossover type Arithmetic crossover 
Crossover fraction 0.6 
Mutation type Uniform mutation 
Mutation fraction 0.3 

 

Table 2. Parameters chosen for BFPSO 
BFPSO Parameter 
Population size 100 
Dimension of search space Number of cores 
Number of bacteria Number of cores 
Number of reproduction step 20 
Probability of each bacteria eliminated 0.25 
PSO parameter C1 0.12 
PSO parameter C2 1.2 
PSO momentum or inertia w = 0.9 
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Fig. 1. Completion time with GA 

 

 
 

Fig. 2. Completion time with CBFPSO 
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Fig. 3. Energy consumption with GA 

 

 

 

Fig. 4. Energy consumption with CBFPSO 
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In GA as the number of core increases the power 
consumption decreases exponentially because GA 
configuration parameter doesn’t include number of core 
and task directly. In CBFPSO as the number of core 
increases the energy consumption decreases linearly and 
it is too small due to the PSO configuration parameter 
directly related with number of cores. 

2. CONCLUSION 

In this study, we presented the CBFPSO 
scheduling for the multi core processor and GA an 
extension of the preliminary work with different 
constraints which handles the tasks and frequencies 
under different conditions. The overall CBFPSO is 
described as an optimization problem with dual 
objective functions. The CBFPSO algorithm is better 
compared to GA as the former is self adaptive and 
preserves the fitness value corresponding to the 
optimal solution until it becomes superseded. The GA 
takes more time to find optimal solution as the re-
randomization causes the particle to forget the 
memory and re-computation of fitness value brings 
computational overhead. The system is able to find 
new optimum solutions with the formulated 
constraints and the performance of the CBFPSO 
algorithm is well improved. As general reflection; the 
proposed system is a powerful mechanism and an 
important tool to enhance the searching capability of 
both genetic algorithms and CBFPSO in the 
optimization search. The key concern in designing the 
successful in CBFPSO algorithm is the solution 
representation as it describes a direct relationship 
between the problem domain and the bacterial 
particles. As a future work we focus on designing and 
implementing energy aware framework including 
more parameters in the constraints so that multicore 
processor can be used in modern datacenters. 
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