
Journal of Computer Science 10 (8): 1508-1516, 2014
ISSN: 1549-3636
© 2014 Science Publications
doi:10.3844/jcssp.2014.1508.1516 Published Online 10 (8) 2014 (http://www.thescipub.com/jcs.toc)

Corresponding Author: Radhamani, A.S., Department of Computer Science and Engineering, Manonmanium Sundaranar University, Tirunelveli, India

1508 Science Publications

JCS

LOW COMPLEXITY CONSTRAINTS FOR ENERGY AND
PERFORMANCE MANAGEMENT OF HETEROGENEOUS

MULTICORE PROCESSORS USING DYNAMIC OPTIMIZATION

1Radhamani, A.S. and 1E. Baburaj

1Department of Computer Science and Engineering,
Manonmanium Sundaranar University, Tirunelveli, India

2Department of Computer Science and Engineering,
Sun College of Engineering and Technology, Nagercoil, India

Received 2014-01-23; Revised 2014-02-06; Accepted 2014-04-03

ABSTRACT

Optimization in multicore processor environment is significant in real world dynamic applications, as it is
crucial to find and track the change effectively over time, which requires an optimization algorithm. In
massively parallel processing multicore processor architectures, like other population based metaheuristics
Constraint based Bacterial Foraging Particle Swarm Optimization (CBFPSO) scheduling can be effectively
implemented. In this study we discuss possible approaches to parallelize CBFPSO in multicore system,
which uses different constraints; to exploit parallelism are explored and evaluated. Due to the ability of
keeping good balance between convergence and maintenance, for real world applications, among the
various algorithms for parallel architecture optimization CBFPSOs are attracting more and more attentions
in recent years. To tackle the challenges of parallel architecture optimization, several strategies have been
proposed, to enhance the performance of Particle Swarm Optimization (PSO) and have obtained success on
various multicore parallel architecture optimization problems. But there still exist some issues in multicore
architectures which require to be analyzed carefully. In this study, a new Constraint based Bacterial
Foraging Particle Swarm Optimization (CBFPSO) scheduling for multicore architecture is proposed, which
updates the velocity and position by two bacterial behaviours, i.e., reproduction and elimination dispersal.
The performance of CBFPSO is compared with the simulation results of GA and the result shows that the
proposed algorithm has pretty good performance on almost all types of cores compared to GA with respect
to completion time and energy consumption.

Keywords: Particle Swarm Optimization, Constraint Based Bacterial Foraging Particle Swarm Optimization,

Multicore Processor, Parallel Architecture Optimization

1. INTRODUCTION

Multicore processor task scheduling is a generalised
form of machine class scheduling, where a task is
processed by more than one core. In wide range of real
world problems which are dynamic, requiring an
optimization algorithm which is able to continuously track
a change, for an optimum performance over time. Global
optimization technique like Genetic Algorithm (GA)
(Abdel-Magid et al., 1999), Tabu Search (TS) (Abido and

Abdel-Magid, 2002) and Simulated Annealing (SA)
(Abido, 2000) are attracting the attention in the field of
parallel architecture parameters optimization in recent
times. But when the system has highly correlated
parameters to be optimized and the number of parameters
to be optimized is large, GA exhibits degraded efficiency
(Fogel, 1995). As a new evolutionary technique in
(Passino, 2002), bacterial Foraging PSO has been
proposed by considering certain constraints. To overcome
the drawbacks of conventional methods for multicore

Radhamani, A.S. and E. Baburaj / Journal of Computer Science 10 (8): 1508-1516, 2014

1509 Science Publications

JCS

processor scheduling, a new optimization scheme known
as Constraint based Bacterial Foraging Particle Swarm
Optimization (CBFPSO) is used for multicore processor
scheduling. CBFPSO appeared as a challenging algorithm
for handling the optimization problems. This algorithm
can converge to the optimal solution in real world
problems and also in dynamic environments, as it is a
computational intelligence based technique, which is not
largely affected by size and non-linearity of the problem.
Some new constraints are required to be included in the
optimization algorithm, as the environment assumed is
heterogeneous, to trigger various mechanisms and to track
the optimum change effectively and efficiently.

Bacterial Foraging algorithm was inspired by
foraging behaviour of bacteria and was proposed in
(Passino, 2002). Bacterial Foraging Optimization
Algorithm (BFOA) has been widely accepted as a global
optimization algorithm of current interest for distributed
optimization and control. BFOA is inspired by the social
foraging behaviour of Escherichia coli. BFOA has
already drawn the attention of researchers because of its
efficiency in solving real-world optimization problems
arising in several application domains. The underlying
biology behind the foraging strategy of E. coli is
emulated in an extraordinary manner and used as a simple
optimization algorithm. Also Bacterial Particle Swarm
Optimization (BPSO) is presented in (Zhen et al., 2009),
in which two strategies namely PSO and BFA combined.
This study starts with a lucid outline of the basic PSO.
Further it proceeds with Bacterial Foraging Particle
Swarm Optimization (BFPSO). It then analyses the
dynamics of the simulated chemotaxis step in BFPSO
with the help of a simple mathematical model. Taking a
cue from the analysis, it presents a new adaptive variant
of BFPSO, where the chemotactic step size is adjusted
on the run according to the current fitness of a virtual
bacterium. Next, an analysis of the dynamics of
reproduction operator in BFPSO is also discussed.

In our work, along with PSO and bacterial behaviours,
certain constraints are formulated which provides an
account of most of the significant performance metric in
terms of completion time and energy consumption. The
CBFPSO performs velocity updating and position updating
in sequence according to PSO. The bacterial properties like
reproduction and elimination dispersal are applied to
CBFPSO for helping the particles to achieve faster
convergence rate and jump out from local minima.

1.1. Related Work

Several algorithms have been proposed for multicore
processor scheduling and optimization problems. Among

them, population based meta heuristic algorithms such as
GAs and PSOs exhibited promising solutions to handle
this kind of complex problems. To cope with multicore
processor environment, several techniques were
introduced in EAs; to maintain the diversity of
population throughout the run in multicore
environments, a mechanism named as Multi-nichie
crowding was used in (Cedeno and Vemuri, 1997). To
recall useful information from past generation, memory
based approaches were discussed in (Cedeno and
Vemuri, 1997; Blackwell and Branke, 2004), which
provide the knowledge attained in previous generations
was usually helpful to the search in the next generation.
Branke (1999), it has been argued that Evolutionary
Algorithms (EAs), may be a particularly suitable
candidate for static type of problems. Recently, many real
world problems are dynamic, i.e., they change over time,
has been explored in (Branke, 2001; Parsopoulus and
Vrathatis, 2002; Hu and Eberhart, 2002; Carliste and
Dozier, 2000). Blackwell (2003) multi-swarm
optimization in dynamic environments, with new
variants of PSO is designed. In this single population
PSO and charged PSO are extended by constructing
interacting multiswarms. Also a new algorithmic variant,
which broadens, the implicit atomic analogy of CPSO to
a quantum model is added. Du and Li (2008), a new
multi strategy PSO for dynamic optimization, in which
all particles are divided into two parts, denoted as part I
and part II respectively and two new strategies, Gaussian
local search and differential mutation are introduced in
those two parts respectively and this algorithms
outperforms other algorithms when the dynamic
environment is unimodal and changes severely.
Advanced computational intelligence based optimization
algorithms; PSO and BFO have been implemented in
(Patnaik and Panda, 2012), to tune the coefficients of PI
controller to improve the power performance. In a
heterogeneous data centers, to enable the power savings
of idle servers with instantaneous workload, an adaptive
power aware virtual machine provisioner which
considers the resources dynamically is described in
(Jeyarani et al., 2012). The scheduling of independent
tasks an advanced parallel cellular genetic algorithm
(Pinel et al., 2013) to minimize the make span on a
fixed number of machines is presented. Two different
ways of exploiting GPU parallelism are explored and
evaluated in (Mussi et al., 2011) also to determine the
execution speed of the two parallel algorithms is
compared. Yang (2003), authors introduced the
application of a new variation of GA called the
Primal-Dual Genetic Algorithm (PDGA) for problem

Radhamani, A.S. and E. Baburaj / Journal of Computer Science 10 (8): 1508-1516, 2014

1510 Science Publications

JCS

optimization in nonstationary environments. A hybrid
learning algorithm to improve the stability performance
of a power system with Distributed Generations (DGs) is
studied (Latha and Kanakaraj, 2013). Here the
distribution system stability is maintained with reduced
power loss using an Adaptive Neuro-Fuzzy Inference
Systems (ANFIS) and Particle Swarm Optimization
(PSO) techniques. Sudarmani and Kumar (2013)
proposed a method which combines load balanced
clustering, transmission power control over normal
nodes present in the cluster and mobile sink over HSN.
They have used PSO to find the optimal path for mobile
sink to collect data from cluster heads.

The existing techniques on optimization based
scheduling; they have not considered the performance
such as completion time and energy consumption
concurrently, which are instinctive in modern multicore
processor scheduling. Therefore we have introduced a
new approach in which the different constraints make
evaluation regarding the task assignment on various
cores based on their frequencies.

The rest of the paper is structured as follows, section
3 explains the problem formulation, section 4 discusses
the swarm algorithms and section 5 provides the
experimental analysis and results followed by conclusion
and future work in section 6.

1.2. Problem Formulation

The task scheduling problem of multicore processor
architecture is scheduling problem to partition the tasks
between different cases by accomplishing minimum
completion time and energy consumptive simultaneously.
If M different core M = {ci, u = 1,2,…n) and T different
tasks T = {tj, j = 1,2,….n) are considered in a
heterogeneous environment, where every core works in
different speed (frequencies) and processing capabilities.

As it is one of the important performance metric in
heterogeneous multicore processor, the completion time
of a specific task is important, because of its ability to
describe the performance of the system. As a result
minimizing the completion time of a particular task can
be considered as a goal of the proposed scheduling
algorithm, due to its significant role. As the
environment considered is heterogeneous, it is also
necessary, to consider the energy consumption of the
core. Since both completion time and energy
consumption are highly dependent on each after and
should not be optimized independently. If the
processing speed is V(i,j), the execution time has been
calculated on the basis of size of the task by proceeding
speed on different cores Equation 1:

()
n

max
i=1 j=1

TaskSize
Completion Time or Processing Time

Speed

Max completion time C max T(i, j) / V(i, j)

=

=

∑

 (1)

The objective function is minimizing the completion

Time, which is given by the Equation 2:

()
n

i=1
j=1

Min max max T(i, j) / V(i, j)

=

∑ (2)

Let E be the Energy consumed while running a task

with an average power P at the processor speed (or)
frequency (f) for T time units, the relationship can be
represented by the following:

• E=P (f)xT
• Objective function = αe-βz1+ αe-βz2
• z1 = completion Time
• z2 = energy consumption
• α,β-constants

1.3. Swarm Algorithms

1.3.1. The Basic PSO Algorithm

Particle Swarm optimization is a heuristic, powerful
optimization algorithm introduced by (Kennedy and
Eberhart, 1995; Pinel et al., 2013). PSO is a kind of
search mechanism to find the best solution by
simulating the motion of a flock of birds or insects.
The birds or insects are called as “particles’, which
can be generally expressed by a group of vectors as
(1 1 1x ,v ,p

�� �) where i i1 i2 iDx = (x ,x ,.....x)
� and

i i1 i2 iDv = (v ,v ,.....v)
� (i = 1, 2,…m) represents the position

and velocity of ith particle respectively. The particles fly
through the problem space by following the comment
optimum particles.

PSO is finalized with a group of random particles
(solutions) and then searches for optima by updates
generations. During every interaction, each particle is
updated by following two best values. The first best solution
(fitness) of with respect to position is called ‘pbest’.
Another best position is called ‘gbest’ which is tracked by
the particle swarm optimizer is the best position optimized
so far, by any particle in the population.

After finding the two best values the particle
updates its velocity and position according 4 steps (1)
and (2) respectively:

Radhamani, A.S. and E. Baburaj / Journal of Computer Science 10 (8): 1508-1516, 2014

1511 Science Publications

JCS

i i i i i
k +1 k 1 1 k 2 2 k k

i i i
k+1 k k+1

V = wV + c r (pbest - X) + c r (gbest - X)

X = X + V

Where:

i
kV = Velocity of the ith particle at the kth iteration
i
kX = Current solution of the ith particle at the kth

iteration
r1, r2 = Random members generated between 0 to 1
c1, c2 = Positive constants
w = is a positive inertia parameter

PSO is a simple concept and can be implemented easily
with few parameters and this method provides desirable
solution of PSO in optimization to some extents.

1.4. Proposed Algorithm (CBFPSO)

BF is a new bio-inspired algorithm-Bacteria have
the tendency to gather around nutrient- rich areas by
the activity called chemotaxis. The bacteria which fail
to reach nutrient-rich areas may die due to lacking of
nutrient while the others survive and reproduce the
heat generation in nutrient rich areas. In the bacterial
environment, some bacteria will be dispersed to
random regions once their current living environment
is no longer to live in.

The BEPSO combines both BF and PSO algorithms.
This combination aims to make use of PSO ability to
exchange social information and BF ability in finding a
new solution by elimination and dispersal.

For initialization, select S, Ns, Nc, Nre, Ned, Ped,
C1, C2, R1, R2 and (Ci), i = 1,2,…S. Also initialize the
position i

nP ,i = 1,2,....Sand velocity randomly initialized.

The BF-PSO made Bacterial population, Chemo-taxis,
swarming, reproduction, elimination and dispersal
articled by PSO is given below.

The (BF-PSO) combines both algorithms BF and
PSO. This combination aims to make use of PSO
ability to ex-change social information and BF ability
in finding a new solution by elimination and dispersal.
For initialization, the user selects S, Ns, Nc, Nre, Ned,
Ped, C1, C2, R1, R2 and c(i), i = 1,2. . . S. Also initialize
the Position Pin,1,1,1, i = 1,2. . . S and Velocity
randomly initialized. The (BF-PSO) models bacterial
Population Chemo-taxis, swarming, reproduction,
elimination and dispersal oriented by PSO is given
below (Initially, j = k = ell = 0). Implicit subscribes
will be dropped for simplicity. The following Table 1
describes the algorithm.

Table 1: Algorithm BFPSO

1. Initialize parameters n, S, Nc, Ns, Nre, Ned, Ped, c (i)(i=
1,2. . . S), Delta, C1, C2, R1, R2. where,
• n: Dimension of the search space,
• S: The number of bacteria in the population,
• Sr: Half the total number of bacteria,
• Ns: Maximum number of swim length,
• Nc : Chemo tactic steps,
• Nre: The number of reproduction steps,
• Ned: Elimination and dispersal events,
• Ped: Elimination and dispersal with probability,
• c (i) : The step size taken in the random direction,
• C1, C2: PSO random parameter,
• R1, R2: PSO random parameter.
2. Generate a random direction Delta (n,i) and position
For (ell = 1 to Ned)
For (k = 1 to Nre)
For (j = 1 to Ne)
For (i = 1 to S)
Evaluate the cost function
J(i,j) = Func (P(i,j))
Store the best cost function in J last
Jlast = J(i,j)
The best cost for each bacteria will be selected to be the
local best J local
Jlocal(i,j) = Jlast (i,j)
Update position and cost function
P(i,j+1) = P(i,j) + c(i) * Delta (n,i)
J(i,j+1) = Func (P(i,j+1))
While (m<Ns)
If J(i,j+1)<j last
Then
Jlast = J(i,j+1)
Update position and cost function
P(i,j+1) = P(i,j+1) + c(i) * Delta (n,i)
J(i,j+1) = Func (P(i,j+1))
Evaluate the current position and local cost for each
bacteria
Pcurrent (i,j+1) = P((i,j+1)
Jlocal (i,j+1) = Jlast (i,j+1)
else
Pcurrent (i,j+1) = P((i,j+1)
Jlocal (i,j+1) = Jlast (i,j+1)
end if
m = m+1
end while
next i (next bacteria)
Evaluate the local best position (Pl best) for each
bacteria and global best position (Pgbest)
Evaluate the new direction for each bacteria.
V= ω *V+Cl*Rl (Plbest-Pcurrent) + C2 * R2 (Pgbest-
Pcurrent)

Radhamani, A.S. and E. Baburaj / Journal of Computer Science 10 (8): 1508-1516, 2014

1512 Science Publications

JCS

Delta = V
next j (nest chemotactic)
for (i=1 to S)

eN +1
Jhealth = (i, j,k,ell)

j = 1

end
The Sr bacteria with the highest J health remove and the
other Sr bacteria with the best values copied.
next k (next reproduction)
With probability Ped, eliminates and disperse each
bacterium
next all (next elimination)

As stated earlier to accomplish the real world
dynamic applications, some constraints are appended
into BFPSO. Among them constraints which can
enhance the performance in terms of completion time
and energy of CBFPSO is projected as the most interest.

1.5. Experimental Analysis

Experimental analysis in this section is designed to
investigate the performance of the formulated constraints
in terms of completion time and energy consumption. To
investigate and test the performance characteristics of
CBFPSO, we formulated four constraints. The
constraints are based on the varying parameters such as
frequency and task size. The first one is with medium
tasks and uniform frequencies, second is with small tasks
and varying frequencies, third is with medium tasks and
varying frequencies and the fourth is large tasks with
varying frequencies. It is also assumed in all the
formulated constraints that when the core is not allotted
to any task it enters into sleep mode. The CBFPSO
algorithm is written in the MATLAB program
environment. The input to the program is a design that
consists of the number of cores. Each core is associated
with the varying parameters such as frequency and task.
For experimental purpose, these parameters are
randomly assigned. The following Table 1 and 2
describes the parameters chosen for GA and PSO.

1.6. Experiment: 1. Comparison of GA and
CBFPSO in Detecting and Tracking Optimal
Performance for Different Constraints.

This experiment is performed to find the
effectiveness if the CBFPSO algorithm in detecting and
tracking the changing optima for the different
constraints, with varying number of cores. In this
scenario, the completion time, is optimized such a way
that, by assigning each constraint, by varying the number
of cores. The changes of optimum value under different

workload and different frequencies (constraints) were
compared and plotted in Fig. 1 and 2 resulting in the
reduction of completion time with the proposed
CBFPSO, where as the GA fails to do so. Also among all
constraints out performs than others as its keep good
balance convergence and diversity maintenance.

1.7. Experiment 2: Energy Performance Trade Off

The aim of the experiment is to find the optimum
energy consumption for varying the number of cores
with different constraints, which fulfils the performance
such as completion time and energy consumption. As the
different constraints are assumed with varying workload
and frequencies the multicore has to meet different
optima points. The performance curve is shown in Fig. 3
and 4. The curves show that the second, third and fourth
constraint curves significantly outperform the first in
terms of energy consumption, particularly when the busy
cores are heavily loaded and are depicted in Fig. 4. This
is due to the fact that assigning large tasks onto the
heavily loaded core always search for high frequency
core to handle the load which is not possible by the first
constraint as the cores are with uniform frequencies,
whereas in second, third and fourth constraints tasks are
assigned such that the low frequency cores are loaded
first and all the high frequency cores are fed into sleep
mode results in significant energy consumption. Thus
optimal CBFPSO results well than GA due to their
global best and local best values.

Table 1. Parameters chosen for GA and PSO
GA Parameters
Population size 100
Generation 50
Population type Double vector
Crossover type Arithmetic crossover
Crossover fraction 0.6
Mutation type Uniform mutation
Mutation fraction 0.3

Table 2. Parameters chosen for BFPSO
BFPSO Parameter
Population size 100
Dimension of search space Number of cores
Number of bacteria Number of cores
Number of reproduction step 20
Probability of each bacteria eliminated 0.25
PSO parameter C1 0.12
PSO parameter C2 1.2
PSO momentum or inertia w = 0.9

Radhamani, A.S. and E. Baburaj / Journal of Computer Science 10 (8): 1508-1516, 2014

1513 Science Publications

JCS

Fig. 1. Completion time with GA

Fig. 2. Completion time with CBFPSO

Radhamani, A.S. and E. Baburaj / Journal of Computer Science 10 (8): 1508-1516, 2014

1514 Science Publications

JCS

Fig. 3. Energy consumption with GA

Fig. 4. Energy consumption with CBFPSO

Radhamani, A.S. and E. Baburaj / Journal of Computer Science 10 (8): 1508-1516, 2014

1515 Science Publications

JCS

In GA as the number of core increases the power
consumption decreases exponentially because GA
configuration parameter doesn’t include number of core
and task directly. In CBFPSO as the number of core
increases the energy consumption decreases linearly and
it is too small due to the PSO configuration parameter
directly related with number of cores.

2. CONCLUSION

In this study, we presented the CBFPSO
scheduling for the multi core processor and GA an
extension of the preliminary work with different
constraints which handles the tasks and frequencies
under different conditions. The overall CBFPSO is
described as an optimization problem with dual
objective functions. The CBFPSO algorithm is better
compared to GA as the former is self adaptive and
preserves the fitness value corresponding to the
optimal solution until it becomes superseded. The GA
takes more time to find optimal solution as the re-
randomization causes the particle to forget the
memory and re-computation of fitness value brings
computational overhead. The system is able to find
new optimum solutions with the formulated
constraints and the performance of the CBFPSO
algorithm is well improved. As general reflection; the
proposed system is a powerful mechanism and an
important tool to enhance the searching capability of
both genetic algorithms and CBFPSO in the
optimization search. The key concern in designing the
successful in CBFPSO algorithm is the solution
representation as it describes a direct relationship
between the problem domain and the bacterial
particles. As a future work we focus on designing and
implementing energy aware framework including
more parameters in the constraints so that multicore
processor can be used in modern datacenters.

3. REFERENCES

Abdel-Magid, Y.L., M.A. Abido, S. AI-Baiyat and A.H.
Mantawy, 1999. Simultaneous stabilization of
multimachine power system via genetic algorithms.
IEEE Trans. Power Syst., 14: 1428-1439. DOI:

10.1109/59.801907
Abido, M.A. and Y.L. Abdel-Magid, 2002. Eigenvalue

assignments in multi-machine power system using
Tabu search algorithm. Comput. Elec. Eng., 28:
527-545. DOI: 10.1016/S0045-7906(01)00005-2

Abido, M.A., 2000. Robust design of multi-machine
power system stabilizers using simulated
anneleaing. IEEE Trans. Energy Conversion, 15:
297-304. DOI: 10.1109/60.875496

Blackwell, T. and J. Branke, 2004. Multi-swarm
optimization in dynamic environments. Proceedings
of the Environments EVO Workshops on
Applications of Evolutionary Computing, April 5-
7, Springer, Coimbra, Portugal, pp: 489-500.
DOI: 10.1007/978-3-540-24653-4_50

Blackwell, T.M., 2003. Swarms in dynamic
environments. Proceedings of the Genetic and
Evolutionary Computer Conference, Jul. 12-16,
Springer, USA, pp: 1-12. DOI: 10.1007/3-540-
45105-6_1

Branke, J., 1999. Memory enhanced evolutionary
algorithms for changing optimization problems.
Proceedings of the Congress on Evolutonary
Computation, Jul. 6-9, IEEE Xplore Press,
Washington, DC., pp: 1875-1882. DOI:
10.1109/CEC.1999.785502

Branke, J., 2001. Evolutionary Optimization in Dynamic
Environments. 1st Edn., Springer, ISBN-10:
0792376315, pp: 208.

Carliste, A. and G. Dozier, 2000. Adapting PSO to dynamic
environments. Proceedingso of the International
Conferecne on Artificial Intelligence, (CAI’ 00).

Cedeno, W. and V.R. Vemuri, 1997. On the use of
niching for dynamic landscapes. Proceedings of
International Conference on Evolutionary
Computation, Apr. 13-16, IEEE Xplore Press,
Indianapolis, IN., pp: 361-366. DOI:
10.1109/ICEC.1997.592336

Du, W. and B. Li, 2008. Multi-strategy ensemble particle
swarm optimization for dynamic optimization.
Inform. Sci., 178: 3096-3109. DOI:
10.1016/j.ins.2008.01.020

Fogel, D.B., 1995. Evolutionary Computation: Toward a
new Philosophy of Machine Intelligence. 1st Edn.,
IEEE Press, New York, ISBN-10: 0780310381, pp:
272.

Hu, X. and R.C. Eberhart, 2002. Adaptive PSO:
Detective response to dynamic systems. Proceedings
of the Cengness on Evluationary Computation, (EC’
02), pp: 1666-1670.

Jeyarani, R., N. Nagaveni and R.V. Ram, 2012. Design
and implementation of Adaptive Power-Aware
Virtual Machine Provisioner (APA-VMP) using
swarm intelligence. Future Generat. Comput. Syst.,
28: 811-821. DOI: 10.1016/j.future.2011.06.002

Radhamani, A.S. and E. Baburaj / Journal of Computer Science 10 (8): 1508-1516, 2014

1516 Science Publications

JCS

Kennedy, J. and R. Eberhart, 1995. Particle swarm
optimization. Proceedings of IEEE International
Conference on Neural Networks, Nov. 27-Dec. 01,
IEEE Xplore Press, Perth, WA., pp: 1942-1948.
DOI: 10.1109/ICNN.1995.488968

Latha, R. and J. Kanakaraj, 2013. Adaptive neuro-fuzzy
inference system-particle swarm optimization based
stability maintenance of power system networks.
Am. J. Applied Sci., 10: 779-786.
DOI: 10.3844/ajassp.2013.779.786

Mussi, L., F. Daolio and S. Gagnoni, 2011. Evaluation
of parallel particle swarm optimization algorithms
within the CUDA architecture. J. Inf. Sci., 181:
4642-4657. DOI: 10.1016/j.ins.2010.08.045

Parsopoulus, K.E. and M.N. Vrathatis, 2002. Recent
appreciates to global optimization problems through
particle. Swarm Opitme Natural Comput., 1: 235-
306. DOI: 10.1023/A:1016568309421

Passino, K.M., 2002. Biomimicry of bacterial foraging
for distributed optimization and control. IEEE
Control Syst. Mag., 22: 52-67. DOI:
10.1109/MCS.2002.1004010

Patnaik, S.S. and A.K. Panda, 2012. Particle swarm
optimization and bacterial foraging optimization
techniques for optimal current harmonic mitigation
by employing active power filter. Applied
Computational Intell. Soft Comput. DOI:
10.1155/2012/897127

Pinel, F., B. Dorronsoro and P. Bouvry, 2013. Solving very
larger instances of the scheduling of independent tasks
problem on the GPU. J. Parallel Distributed Coput., 73:
101-110. DOI: 10.1016/j.jpdc.2012.02.018

Sudarmani, R. and K.R.S. Kumar, 2013. Particle swarm
optimization-based routing protocol for clustered
heterogeneous sensor networks with mobile sink.
Am. J. Applied Sci., 10: 259-269. DOI:

10.3844/ajassp.2013.259.269
Yang, S., 2003. Non-stationary problems optimization

using the primal-dual genetic algorithm.
Proceedings of the IEEE Congress on Evolutionary
Computation, Dec. 12-18, IEEE Xplore Press, pp:
2246-2253. DOI: 10.1109/CEC.2003.1299951

Zhen, J., W. Yiwei, C. Ying and W. Qinghua, 2009.
Bacterial particle swarm optimization. Chinese J.
Elec.

