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ABSTRACT 

We present an information-theoretic approach for structural similarity for assessing gray scale image 
quality. The structural similarity measure SSIM, proposed in 2004, has been successflly used and verfied. 
SSIM is based on statistical similarity between the two images. However, SSIM can produce confusing 
results in some cases where it may give a non-trivial amount of similarity for two different images. Also, 
SSIM cannot perform well (in detecting similarity or dissimilarity) at low peak signal to noise ratio (PSNR). 
In this study, we present a novel image similarity measure, HSSIM, by using information - theoretic 
technique based on joint histogram. The proposed method has been tested under Gaussian noise. Simulation 
results show that the proposed measure HSSIM outperforms statistical similarity SSIM by ability to detect 
similarity under very low PSNR. The average difference is about 20dB. 
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1. INTRODUCTION 

Image similarity measurement is a fundamental issue 
in real-world applications. Image quality metrics play a 
significant role in image processing. It can be used to 
adjust image quality and optimize parameters in many 
image processing applications such as enhancement, 
compression, restoration, etc. The image quality 
assessment aims to design methods for objective 
assessment of quality versus subjective human image 
quality evaluation (Wang et al., 2002). 

A simple way to measure the similarity between two 
images is to calculate the Mean-Squared Error (MSE) 

between the reference image and the distorted version. MSE 
is easy to compute, however, it performs poorly in pattern 
recognition (Wang et al., 2004; Simard et al., 2002). 

An important objective measure was proposed in 
2004 by (Wang and Bovik, 2004), where image 
distortion was considerd as a combination of three kinds 
of distortion: Correlation, luminance and contrast. 

In general, image similarity measures can be 
classsifed into two main directions: Statistical-based and 
information-theoretic based quality measures. 

1.1. Statistical Measures 

The above measure proposed by Wang et al. 
(2004) which was called SSIM, used distance 
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covariance to measure the structural similarity based 
on statistical measurements such as mean and standard 
deviation as follows Equation 1: 
 

( ) ( )( )
( )( )

1 2

2 2 2 2
1 2

2 2x y+ xy

x y x y

µ µ C σ +C
ρ x,y =

µ + µ + C σ +σ + C
 (1) 

 
where, ( )ρ x,y is the structural SSIM measure between 

the image x (original or reference image) and the image 
y (corrupted image), 2 2

x y x y, , anµ dµ σ σ  are the statistical 

means and variances of pixel values in images x and y, 
σxy is the statistical covariance between images x and y, 
while the constants C1 and C2 are given by C1 = (K1L)2 

and C2 = (K2L)2, with K1 and K2 are small constants and 
L = 255 (the maximum pixel value). 

Sheikh et al. (2006), proposed further study on 
quality assessment. In Sampat et al. (2009) an 
improvement of SSIM was presented based on 
wavelet coefficients which are extracted at the same 
locations in the same wavelet sub bands of the two 
images; and the new measure proved to be insensitive 
to small geometric variations. 

Some limitations of Image Quality Measurement are 
presented in (Zhang et al., 2009).  

SSIM gives high level of similarity for noise free 
condition while it fails when noise increases. In addition, 
if the two images are dissimilar, SSIM may give an 
amount of similarity (Hashim and Hussain, 2014). This 
is so because SSIM can’t reveal all image structural 
properties, so we need to more specific measurements 
that are image-dependent. Hashim and Hussain (2014) 
proposed methods to determine a reliable similarity 
between any two images, similar or dissimilar. The 
methods are based on image-dependent properties, 
specifically the results of edge detection and 
segmentation methods, in addition to the image statistical 
properties; and tested under effects of Gaussian noise, 
impulse noise, as well as blur. 

The above-mentioned similarity measures are all 
analysed based on statistical moments, which we will 
study in this study versus information-theoretic approach 
in order to test similarity. 

1.2. Information-Theoretic Measures 

The use of information-theoretic analysis in image 
processing is possible if we assume that images are 2D 
random variables. 

The most common measure of information is the 
Shannon-Wiener entropy measure. The entropy H of a 

discrete random variable X with the values in the set {x1, 
x2, …., xn}   is defined as (Shannon and Weaver, 1967): 
 

( )
1

n

i i
i=

H X = - p logp∑  

 
Where: 
 

[ ]i r ip p X = x=  

 
The definition of entropy for a single random variable 

can be extended to a pair of random variables.  
The joint entropy H(X,Y) of a pair of discrete 2D 

random variables, which are images in our case, with a 
joint distribution pij is given by (Viola and Wells, 1995): 
 

( )
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The mutual information between two discrete random 

variables X and Y is defined as (Viola and Wells, 1995): 
 

( )
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ij
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p p= =
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The mutual information between two random 

variables can be defined as the amount of information 
that one random variable can give about the other one. 
Hence, mutual information as defined above is a 
measure of the decrease in the entropy of one of these 
variables if we are given the other one. As such, it is 
possible to use mutual information as well as other 
information-theoretic measures (like the histogram) to 
define similarity measures. 

The joint intensity histogram for two images would 
be spread (hence, giving high joint entropy) when the 
two images are not aligned, while it is compact 
(hence, giving low joint entropy) when the two images 
are aligned. The Mutual Information (MI) is proposed 
by various authors as per (Wells et al., 1996; Maes et al., 
1997; Pluim et al., 2003). The overlap invariant 
Normalized MI (NMI) have been proposed in 
(Studholme et al., 1999). 

Regional MI (RMI) has been proposed in 
(Studholme et al., 2006), while Conditional MI (CMI) 
has been proposed in (Loeckx et al., 2010). These 
methods depend on summing local MI for regions of the 
images, rather than finding the global MI. Klein et al. 
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(2007; 2009) proposed Localized MI (LMI); where 
random samples are taken from regions in very iteration. 

Zhuang et al. (2011) proposed spatially-encoded MI, 
where pixels are assigned weights based on their spatial 
location instead of having equal weights.  

Darkner and Sporring (2013) has proposed a unified 
approach for NMI. 

In this study, we present an information-theoretic image 
similarity measure and show its superior performance 
versus the classical similarity measure SSIM under additive 
Gaussian noise with several ratios of signal to noise. 

2. JOINT HISTOGRAM 

The concept of multidimensional histogram has been 
investigated by several researchers in different application 
domains (Hill et al., 1993; Pass and Zabih, 1999). 

The joint-histogram represents the joint-probability 
of two or more random variables, images in our case. For 
the two-dimensional joint-histogram, the pixel values of 
two images are used as the coordinate axis. Given two 
images A and B and pixel intensity values i and j, Hij (A, 
B) represents the probability of a pixel to have the value 
i on the image A and j on the image B. Hence, each entry 
is the number of times an intensity i in one image 
corresponds to an intensity j in the other. 

If the joint histogram is normalized, it becomes an 
estimate of the joint Probability Distribution Function 
(PDF) of intensities in the images (Kuczynski and 
Miko£Ajczak, 2003). 

We can notice that under noise-free conditions, the 
joint histogram of two identical images will give a 
straight-line peak at i = j, while under noisy conditions 
this criterion is perturbed. Based on this approach, we 
designed a novel similarity measure as follows. 

3. RATIONALE 

We noticed that SSIM measure introduced in 
(Wang et al., 2004) gives good measure of similarity 
between two similar images; however, it fails when noise 
is significant (i.e., at low PSNR). We need an enhanced 
measure that can perform well under low PSNR. We 
have utilized joint histogram and combined it with the 
original histogram to get the enhanced measure HSSIM; 
also we tested SSIM and HSSIM under disruptive 
conditions like additive Gaussian noise. 

4. THE PROPOSED IT MEASURE 

The original design of structural similarity measure 
SSIM was based on image statistical properties as in 

(Wang et al., 2004). In this paper we focus on image 
information-theoretic properties, specifically the joint 
histogram and propose the following image-dependent 
measure. First, we propose an error estimate between an 
original (reference) image x and a noisy version y of it. 
The estimate is based on the diagonal symmetry of self-
joint histogram H, which is just a 2D extension of the 
reference image histogram: 
 

( ) ( ) ( ){ , 1,2, , },ih x h x i N= ∈ L  

 
about i = j axis as follows: 
 

( ) ( ), ,ij jiH x x H x x=  

 
The Information-Theoretic (IT) error estimate of joint 

histograms (relative to the original histogram) can be 
designed as follows Equation 2: 
 

( )

2
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where, c is a very small positive constant, inserted 
mainly to avoid division by zero. Note that: 
 

( , ) 0E x y ≥  
 

A maximal error estimate E∞(x,y) can be considered 
when noise power is very high (very low PSNR). Then 
the above estimate can be normalized with respect to the 
maximal relative error estimate as follows Equation 3: 
 

( , ) ( , ) / ( , )e x y E x y E x y∞=  (3) 

 
The normalization process will ensure that: 

 
( )0 , 1e x y≤ ≤  (4) 

 
Based on the above error estimate an information-

theoretic similarity measure (which we name as HSSIM) 
can be proposed as follows Equation 5 and 6: 
 

( , ) 1 ( , )x y e x yλ = −  (5) 
 
where: 
 

( )0 , 1x yλ≤ ≤  (6) 
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As in the case of SSIM, HSSIM ranges between 0 
(for dissimilar images) and 1 (for identical images). If we 
denote SSIM by ρ(x,y) then we have the i equality: 
 

( )0 , 1x yλ≤ ≤  
 
where, ρ(x,y) = 1  for identical images, while ρ(x,y) = 0 
for totally different images. 

5. THE TEST ENVIRONMENT 

 The proposed HSSIM measure have been tested 
under Gaussian noise, which is the main source of noise 
in many image processing systems.  

Different kinds of images has been used: A human 
face, a landscape and a geometric shape. 

6.  RESULTS AND DISCUSSION 

   The above algorithms have been simulated using 
MATLAB. Figure 1 to 3 show performance of SSIM 
and HSSIM using similar images under Gaussian 
noise. Note that: 
 

( )0 , , ( , ) 1x y x yλ ρ≤ ≤  
 

For completely similar images we have: 
 

( ) ( ), , 1x y x yλ ρ= =  
 
while for totally different images we have: 
 

( ) ( ), , 0x y x yλ ρ= =  

To calculate similarity measure SSIM, an M × M 
window (M = 11) is used with a standard deviation of 
1.5 (Wang et al., 2004). The constants C1 = (K1L)2 
and C1 = (K2L)2 (K1 and K2 being small constants, L = 
255) where chosen as in (Wang et al., 2004) as K1 = 
0.01 and K2 = 0.03. Note that the performance of 
SSIM is insensitive to these constants (Wang et al., 
2004; Wang and Bovik, 2004). The constant in 
Equation 1 is taken as c = 1×10−15. 

We also implemented the joint Histogram-based 
measure (HSSIM) as per Equation 4. E∞(x,y) is 
calculated at PSNR = -100 dB (total noise). 

6.1. Performance under Gaussian Noise 

After we implemented the joint histogram-based 
measure (HSSIM) as per Equation 4 and SSIM as per 
Equation 1, we tested their performance of detecting 
similarity under noisy conditions, specifically when 
the other image is corrupted with Gaussian noise. 
Peak signal to noise ratio (PSNR) was used in this test 
as follows: 
 

2

n

L
PSNR

p
=  

 
where, pn is the Gaussian noise variance (power). 

A maximal error estimate can be considered when 
noise power is very high with PSNR = 100 dB. 

The result of using two similar images (a reference 
image and a noisy version of it) is shown in Fig. 1 to 
3 for various kinds of images: Landscape, human face 
and geometric shape. 

 

 
 (a) 
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 (f) 
 

 
 (g) 
 
Fig. 1. Performance of HSSIM and SSIM using an image of landscape under Gaussian noise, (a) The test images (MATLAB 

Cameraman), (b) Histograms of original and noisy images, (c) Joint histogram of identical images (noise-free), (d) Contour 
plots for joint histogram of identical images (noise-free): Almost a straight line around i = j, (e, f) Joint histogram and its 
contour of original and noisy images. Symmetry can be detected around i = j, (g) Similarity vs. PSNR (dB): It is clear that 
HSSIM outperforms the conventional SSIM in its capability to detect similarity at low PSNR (almost 20 dB difference). 
Note that increasing the processing window length M up to half image width can improve SSIM performance a bit (dotted 
curve); however, further increase of M could give messy results 
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 (f) 
 

 
 (g) 
 
Fig. 2. Performance of HSSIM and SSIM (M = 11) for geometric images (taken from MATLAB). Note that HSSIM still 

outperforms the conventional SSIM in its capability to detect similarity at low PSNR (almost 20 dB difference). Compare 
with Figure 1, (a) Original Image, Noisy Image, PSNR (dB) = 28, (b) Histograms: Original solid; noisy dotted, PSNR (dB) = 
28, (c) Joint Histogram: Identical images, PSNR (dB) = infinity, (d) Jt. Hist. (Contour): Identical images, PSNR (dB) = 
infinity, (e) Joint Histogram: Original image and noisy version, PSNR (dB) = 28, (f) Jt. Hist. (Contour): Original and noisy 
image, PSNR (dB) = 28, (g) Similarity vs. PSNR(dB) 
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 (f) 
 

 
 (g) 
 
Fig. 3. Performance of HSSIM and SSIM (M=11) for a human face (taken from AT and T Database).  Note that HSSIM still 

outperforms the conventional SSIM in its capability to detect similarity at low PSNR (almost 20 dB difference; comparable 
with Figures 1 and 2), (a) Original Image, Noisy Image, PSNR (dB) = 28, (b) Histograms: Original solid; noisy dotted, 
PSNR (dB) = 28, (c) Joint Histogram: Identical images, PSNR (dB) = infinity, (d) Jt. Hist. (Contour): Identical images, 
PSNR (dB) = infinity, (e) Joint Histogram: Original image and noisy version, PSNR (dB) = 28, (f) Jt. Hist. (Contour): 
Original and noisy image, PSNR (dB) = 28, (g) Similarity Vs. PSNR(dB) 
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We used the images “cameraman” and “coins” from 
MATLAB and a human face from AT and T face 
database (DOF, 1992). 

The performance of HSSIM as compared to SSIM 
(represented by Equation 1) is shown in Fig. 1 to 3, 
which include a test under Gaussian noise. These results 
show about 20 dB difference of capability for HSSIM 
over SSIM to detect similarity at low PSNR. 

6.2. Effects of Analysis Parameters 

We noticed that the parameter c in the proposed 
error estimate (as per Equation 1) has no significant 
effect as long as it is kept small. Also, the choice of 
the window length M has no significant effect as long 
as it is kept at reasonable values for local treatment as 
per (Wang and Bovik, 2004). Choosing a larger 
window length can improve to some extent the SSIM 
performance as shown in Fig. 1, where M is varied up 
to half the image width. This is due to the fact that 
increasing the analysis window length may add more 
correlative information. However, increasing M 
beyond that value may result in degrading SSIM 
performance, where it gives messy result for M = 
image width. 

7. CONCLUSION 

A novel information-theoretic, image-dependent 
quality assessment measure has been proposed and tested 
versus structural similarity measure (SSIM) under 
Gaussian noise. The measure is based on joint histogram. 
Note that no interpolation has been used in this paper. 
Using interpolation can further improve performance, 
however, it would be the focus of a future work. It is 
shown that the proposed measure HSSIM out performs 
the conventional SSIM by almost 20 dB difference of 
PSNR in noisy environments for various kinds of 
images: Landscape, human face and geometric images. 
Increasing the window length of SSIM can improve its 
performance a bit; however, a significant increase may 
degrade its performance. 
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