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ABSTRACT 

An optimization model for Timber Harvest Planning (THP) is used to form harvest areas with the objective 
of maximizing the tree harvest volume subject to harvest regulations. Most optimization models for THP 
currently in use are based on clear cutting and restricted to adjacency constraints to prevent the creation 
of large clear-cut openings in the forest. However, an optimization model based on selective cutting-
the cutting technique utilized in tropical countries-has rarely been described in the literature. The aim 
of this study was to propose an optimization model for THP based on selective cutting and subject to a 
maximum number of trees to be harvested and a minimum number of trees to be damaged during each 
planning period. The model was solved using three optimization techniques to identify the most 
suitable technique for use in the process of harvest area formation: Monte Carlo Programming (MCP), 
Simulated Annealing (SA) and Threshold Acceptance (TA). The obtained results indicate that the SA 
method provides better solutions than the MCP and TA methods, regardless of problem size. As a 
conclusion, the proposed model provides a tool to generate timber harvest plans with the improved 
monitoring and control techniques used in harvesting operations in tropical countries. 
 
Keywords: Optimization Model, Selective Cutting, Timber Harvest Planning, Optimization Technique 

1. INTRODUCTION 

One crucial problem of timber harvest planning 
involves selecting and grouping a number of harvest 
blocks to form harvest areas. This problem requires 
managing a large number of harvest blocks and addressing 
conflicts in management objectives while simultaneously 
addressing several inherent constraints (Walters, 1997). 
Optimization models have been used to determine the 
optimum combination of blocks to form the harvest areas 
to be cut in different time periods. The objective of the 
model is to maximize the harvest volume subject to spatial 
constraints that protect the non-timber value of a forest, 
such as biodiversity conservation and wildlife habitat 

protection. These spatial constraints include the following: 
Patch shape and size, old forest issues, site sensitivity and 
adjacency constraints (Walters, 1997; Vielma et al., 2007). 

1.1. Optimization Models for THP 

 Optimization models for THP formulate harvest 
areas with the objective of maximizing harvest volume 
subject to spatial constraints that value the non-timber 
interests of a forest. Most of the previous models are 
based on a clear-cutting technique, restricted to 
adjacency constraints and solved using optimization 
techniques. However, the development of an 
optimization model for THP based on the selective 
cutting technique utilized in tropical countries has rarely 
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been reported in the literature. Thus, the aims of this 
study were to propose an optimization model based on 
selective cutting that reflects the cutting technique 
utilized in tropical countries and to test three 
optimization techniques and identify the technique most 
suitable for solving this problem. 

1.2. Challenges  

As reported in the literature, earlier THP models that 
were developed based on a LP approach, such as 
SPECTRUM by Grear and Meneghin (1997), focused on 
maximizing timber production without spatial constraints. 
However, because maintaining other forest values has 
become increasingly important, various IP- and MIP-
based models incorporating spatial constraints have been 
reported in the literature (Goycoolea and Murray, 2005; 
Vielma et al., 2007; Constantino et al., 2008; Ohman and 
Wikstrom, 2008). Nevertheless, the performance of these 
solution techniques is restricted by the complexity of the 
problem. The complexity of the THP problem depends on 
the size of the problem and the number of constraints 
imposed in the model (Lockwood and Moore, 1993). 
Thus, many researchers have proposed the used of meta-
heuristic techniques to solve large-sized problems 
incorporating several spatial constraints. 

Meta-heuristic optimization techniques are used to 
provide feasible solutions in large-size and multi-objective 
THP problems. However, the limitation of these solution 
techniques is that they do not guarantee optimal solutions 
(Baskent and Jordan, 2002). For example, MCP 
implements a basic random search known as a “blind 
search”. SA is based on the heating process of crystalline 
materials at extreme temperatures and the process of 
slowly cooling the materials to minimise damage 
(Kirkpatrick et al., 1983). Lockwood and Moore (1993) 
first proposed the use of SA to solve the THP problem. 
TA, on the other hand, seeks to improve the SA technique 
by utilising an acceptance condition of poor solutions 
based on a pre-defined threshold value (Dueck and 
Scheuer, 1990), rather than calculating the probability 
based on the current temperature, as is the case with SA. 

TS uses memory structures called tabu lists to store 
potential solutions to avoid repeating the same processes, 
distinguishing TS from other meta-heuristic techniques. 
TS is essentially deterministic because in tabu lists, 
previous search information is used to control the 
process of improving the current solution to avoid 
becoming trapped in local optimization problems 
(Glover and Laguna, 1997). GA, which was introduced 
by Holland (1975), is based on an analogy to the process 
of biological reproduction. The GA approach can be 
succinctly described as an initial population generated at 
random and used as the basis of the formation of the next 

population, which is created by changing the 
combination of information in the base population. 

1.3. Related Work 

Various optimization models of THP have been 
reported in the literature. Most of the models are based 
on clear cutting and impose adjacency constraints, such 
as maximum opening size and green-up delay. The 
maximum opening size constraint is used to avoid 
creating large open areas in a forest with the clear-
cutting approach. Thus, adjacent harvest areas are 
protected from being selected for harvesting during the 
planning period. The green-up delay constraint, on the 
other hand, mandates the duration required for trees in 
the selected harvest areas to grow and reach a minimum 
height before neighboring areas are selected for the next 
harvest (Boston and Bettinger, 2002; Ohman and Lamas, 
2003; Crowe et al., 2003; Goycoolea and Murray, 2005; 
Vielma et al., 2007; Bettinger and Jianping 2008; 
Konoshima et al., 2011; Nora and Toth, 2013). The 
implementation of adjacency constraints aims to protect 
living species and their habitats from the various impacts of 
clear cutting on forest landscapes, such as erosion and 
deterioration in water quality (Weintraub et al., 2000).  

Many studies have proposed the used of optimization 
techniques based on mathematical programming and 
meta-heuristic approaches to solve the models. 
Mathematical programming techniques, such as Linear 
Programming (LP), are currently used to generate 
optimal solutions in large forest areas without spatial 
constraints, while Integer Programming (IP) and Mixed 
Integer Programming (MIP) have been proposed to solve 
THP models in smaller forest areas that incorporate 
spatial constraints. Meta-heuristic optimization 
techniques have been used for larger sized problems 
incorporating several spatial constraints; these 
techniques include Monte Carlo Programming (MCP), 
Tabu Search (TS), Simulated Annealing (SA), Threshold 
Acceptance (TA) and Genetic Algorithm (GA) 
(Lockwood and Moore, 1993; Bettinger et al., 1997; 
2002; 2003; 2007; Richards and Gunn, 2000; 2003;  
Caro et al., 2003; Ohman and Eriksson, 2002; Lu and 
Eriksson, 2000; Liu et al., 2006; Daniel et al., 2012). 

2. MATERIALS AND METHODS 

2.1. Model Formulation  

The model proposed here is based on a selective 
cutting technique in which only trees that meet pre-
determined criteria are felled. These criteria include a 
Minimum Tree Diameter (MinTreeD) to ensure that only 
mature trees are selected for harvesting, a minimum number 
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of residual trees for future stock in each block (MinFStock) 
to ensure the continuous production of timber, a minimum 
number of trees to be cut in each block to ensure economic 
harvesting (EcoH) and a maximum number of trees 
permitted to be harvested per planning period (AwHVol) to 
avoid excessive logging in the specified period. The model 
can be divided into two phases: The pre-processing phase 
and the harvest area formation phase. 

2.2. Phase i. Pre-Processing Phase  

The objectives of the pre-processing phase include 
estimating the number of Damaged trees (DmgT), 
calculating the number of residual trees with a diameter 
of at least 30 cm diameter at breast height (dbh) for 
Future Stock (FStock) and calculating the amount of the 
Harvest Volume (HVol) based on the total number of 
trees that can be cut (T2Cut) in each harvest block.  

In this study, the pre-processing phase can be divided 
into two sub-processes: (i) estimating the number of trees 
that can be cut and calculating the number of damaged 
trees and (ii) identifying trees to be excluded from the 
harvest if the number of residual trees for future stock is 
lower than the minimum requirement (the tree-saving 
approach). The processes involves in the pre-processing 
phase are illustrated in Fig. 1.  

In sub-process (i), each tree with a diameter of at 
least 45 cm dbh is selected as a potential tree to be cut 
(PT2Cut). The analysis performed on each of these trees 
involves estimating the affected area based on the tree 
felling direction, identifying a list of trees that are 
located in the affected area, estimating the number of 
damaged trees based on the distance from the potential 
tree to be cut and estimating the number of residual trees 
with a diameter at least 30 cm dbh for future stock. If the 
number for future stock is sufficient, all the trees that 
have been selected for harvesting will be felled and the 
number of trees in the harvest volume can be estimated. 
Otherwise, we proceed to sub-process (ii). 

In sub-process (ii), the analysis identifies any 
potential tree to be cut that causes the highest number of 
damaged trees to be excluded from the harvest (T2Save). 
However, this process decreases the harvest volume and 
increases the number of residual trees. The same process 
is repeated until the number of trees for future stock is 
sufficient. If all the potential trees to be cut have been 
excluded from the harvest, but the number of trees for 
future stock is still lower than the minimum requirement, 
then the block would be excluded from the harvest. The 
outputs generated from this process include the number 
of trees in the harvest volume and the number of 
damaged trees in each harvest block. These data become 

inputs in the harvest area formation process. The model 
formulations for each task may be described as follows.  

2.3. Damaged Trees Estimation  

The number of damaged trees is estimated using the 
following steps: 

 
• Determine the affected area based on the cutting 

degree (CutDg): 
 
Affected area=1 if CutDg ≥ 0 and CutDg<90 (1) 
 
Affected area = 2 if CutDg≥90 and CutDg<180 (2) 
 
Affected area = 3 if CutDg≥180 and CutDg<270 (3) 
 
Affected area = 4 if CutDg ≥ 270 and CutDg <360  (4) 
 
The affected area is divided into four areas. The affected 
area is assigned to 1 if the cut degree is in between 0 to 
89 degree (Equation 1). The affected area is assigned to 
2 if the cut degree is in between 90 to 179 degree 
(Equation 2). The affected area is assigned to 3 if the cut 
degree is in between 180 to 269 degree (Equation 3). The 
affected area is assigned to 4 if the cut degree is in 
between 270 to 359 degree (Equation 4).  
 
• Determine the tree felling direction: 
 

( )
If Affected area 1 or 3

 Felling direction affected area 90 CutDg

=
= × −

  (5) 

 

( )( )
If Affected area 2 or 4

Felling direction CutDg affected area 1 90

=

= − − ×
 (6) 

 
The tree felling direction is determined based on the 

affected area. Equation (5) represents the formulation to 
estimate the tree felling direction in affected areas 1 and 3. 
While Equation (6) represents the formulation to estimate 
the tree felling direction in affected areas 2 and 4.  

• Calculate the distance (Dist) of the neighboring trees 
from the potential trees to be cut: 

 
Dist2 = (Dx1- Dx0)2 + (Dy1-Dy0)2 (7) 
 
Where: 
(Dx0, Dy0) = The location of the potential tree to be cut 
(Dx1, Dy1) = The location of neighboring trees in the 

affected area 
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Fig. 1. Pre processing phase 
 

Equation (7) represents the formulation to calculate 
the distance of the neighboring trees in order to identify 
the potential damaged trees. 
 
• Calculate the number of damaged trees: 
 
DmgT 1:  if Dist stem height= ≤  (8) 

 
where, stem height refers to the height of the potential 
tree to be cut. Equation (8) represents the formulation to 
calculate the damaged tree. The neighboring tree will be 
marked as a damaged tree, if the distance is less than the 
stem height of the potential tree to be cut. 

2.4. Future Stock Estimation  

Future stock refers to the residual trees with diameters in 
the range of 30 to 44 cm dbh. The formulation used to 
calculate the number of trees for future stock in each harvest 
block may be depicted as follows:  
 
FStocki= | y | i = {1,2,…n} (9) 

where, i refers to the block number and y refers to the 
residual trees with diameters between 30-44 cm. The 
future stock in each harvest block is equal to the total 
number of the residual trees with diameter in between 
30-44 cm (Equation 9). 

2.5. Harvest Volume Estimation  

Harvest volume refers to the total number of trees to 
be cut in each block. The harvest volume in each harvest 
block is estimated based on the number of trees for 
future stock, as follows:  
 
• If the number of FStock is greater than the minimum 

requirement, the formulation to calculate the harvest 
volume is: 

 
{ }iHVol t2cut i 1,2, n= = …  (10) 

 
where, |t2cut| refers to the total number of trees 
allowed to be cut in each block. Thus, the harvest 
volume is equal to the total number of trees to be 
cut (Equation 10). 
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• If the number of FStock is smaller than the 
minimum requirement, the formulation to calculate 
the harvest volume is: 

 
{ }iHVol pt2cut t2save i 1,2, n= − = …  (11) 

 
where, |pt2cut| refers to the total number of potential 
trees to be cut and |t2save| refers to the total number 
of trees to be excluded from the harvest. Thus, the 
harvest volume is equal to the remaining number of 
potential trees to be cut (Equation 11). 

• If the number of FStock is smaller than the 
minimum requirement and all the PT2Cut have been 
excluded from the harvest, the formulation to 
calculate the harvest volume is: 

  
HVol i = 0 i = {1,2,…n} (12) 
 

The harvest is equal to zero. This means that the 
block is excluded from the harvest (Equation 12). 
 

2.6. Phase II. Harvest area Formation Phase  

The objective of the harvest area formation phase 
is to combine a number of blocks to form the harvest 
area with the greatest harvest volume and the lowest 
number of damaged trees that adheres to the 
restrictions of the minimum and maximum number of 
trees that can be cut in each block and in a single 

planning period. The process involved in forming the 
harvest area is illustrated in Fig. 2.  

For example, if the variable EcoH is set to seven 
and the variable MaxHVol is set to 25, the harvest 
areas may be formed by selecting and combining any 
block in which the HVol is equal to or greater than 
seven. Thus, three harvest areas can be generated, 
with area_1 consisting of blocks [1] and [4], area_2 
consisting of blocks [1] and [6] and area_3 consisting 
of blocks [4] and [6]. The selected harvest area would 
include the highest number of trees to be cut with the 
lowest number of damaged trees. The model 
formulation to form the harvest area is as follows: 
 

n

i i
i 1

Max Q HVoI X
=

=∑  (13)  

 
Subject to: 
 

iHVoI EcoH≥  (14)  
 

n

i
i

HVoI AwHVoI≤∑  (15)  

 
n

i
i 1

DmgT MnDmgT
=

<∑  (16)  

 

iX {0,1}=  (17)  

 

 
 

Fig. 2. Harvest area formation phase 
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The symbol Q in Equation (13) represents the 
objective function that attempts to maximize the total 
number of trees in the harvest volume subject to 
constraints (14-16). Constraint in Equation (14) 
represents the minimum number of trees to be cut in each 
harvest block. The harvest volume in each block must 
be greater than the minimum requirement to ensure for 
economic harvesting. Constraint in Equation (15) 
represents the maximum number of trees that can be 
cut in one planning period. The total number of 
harvest volume in one planning period is at most equal 
to the maximum number of trees permitted to be 
harvested per planning period to avoid excessive 
logging in the specified period. Constraint in Equation 
(16) represents the lowest number of damaged trees. 
The selected harvest area for harvest has the lowest 
number of damaged trees. The variable X in Equation 
(17) is used as a decision variable. The value of X is 
equal to 1 if the block is allowed for harvesting; 
otherwise, the value of X is equal to 0. 

2.7. Data  

The proposed model was tested using actual and 
hypothetical data. The actual data were obtained from 
the reserved forest of Bintang Hijau in Kuala Kangsar. 
The forest area was divided into smaller harvest blocks. 
Seven harvest blocks were used, comprising a total of 
636 trees with an average of 90 trees in each block. A 
total of 165 trees were categorized as potential trees to 
be cut with an average of 22 trees in each block. A total 
of 139 trees were categorized as protected trees, with 
an average of 20 trees in each block. The remaining 
trees which had diameters below 30 cm dbh, were 
categorized as normal trees. The average number of 
normal trees in each block was 47 trees. Meanwhile, 30 
blocks of hypothetical data were randomly generated to 
represent a larger problem. 

In this study, two experiments were conducted with 
the following objectives: (i) to form a harvest area based 
on maximum HVol and the smallest number of damaged 
trees and (ii) to identify a suitable optimization technique 
to be used in the harvest area formation process and 
tested using actual and hypothetical data types. Three 
optimization techniques were used to solve the harvest 
area formation problem: MCP, SA and TA.  

The best solution is gained through the iteration 
process. In the MCP solution approach, the number of 
iterations is controlled by a variable t, whereas in the SA 

approach, the number of iterations is controlled using 
temperature and the variables involved are start-
temperature, reduction-rate and end_temperature. The 
implementation of the TA method in this study was 
conducted based on the SA technique and the number of 
iterations is, therefore, controlled using temperature, 
with an additional variable to control the threshold value. 

The value for each variable was determined based 
on the results from several trial-and-error 
experiments. Therefore, the variable t was set to 145 
and the variables start_temperature, reduction_rate 
and end_temperature were set to 10000, 0.09 and 
0.001, respectively, for both the SA and TA 
techniques. The threshold value was set at 10% of the 
AwHVol and the threshold value for the small-sized 
problem was set to-10. Meanwhile, the threshold 
value was set to -200 for the large-size problem. 

The implementation of the proposed solutions 
required seven additional variables, including 
curr_HVol, curr_DmgT, new_HVol, new_DmgT, 
MxHVol, MnDmgT and X. The variables curr_HVol and 
curr_DmgT were used for the current values of HVol 
and DmgT, respectively. The variables new_HVol and 
new_DmgT were used for the new values of HVol and 
DmgT. Meanwhile, the variables MxHVol and 
MnDmgT were used for the largest value of HVol and 
the smallest value of DmgT.  

2.8. Proposed Solution Approaches  

A harvest area is formed by combining a number of 
randomly generated blocks. The process includes 
calculating the number of trees to be cut (HVol) in each 
block. The process is repeated until the HVol is at most 
equal to the maximum number of trees allowed to be cut 
in one planning period (AwHVol). The proposed 
solutions were used to generate a harvest area with the 
highest HVol subject to the predefined AwHVol and 
with the lowest number of damaged trees (DmgT).  

In the proposed approaches, an initial harvest area is 
formed by selecting blocks in which HVol is at least 
equal to the predefined value of EcoH. The total HVol 
and DmgT are determined by calculating the number of 
trees to be cut and the number of damaged trees. The 
process will be repeated until the total HVol is at most 
equal to AwHVol. The algorithm used to generate the 
initial solution is shown below. 
Generate initial solution: 
 
Set the value of variables EcoH,  
AwHVol, X 
  Randomly form an initial harvest area  
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  If HVol < EcoH 
 × ← 0 

 If HVol ≥ EcoH 
 × ← 1 
initial_area← Calculate HVol 

Total HVol ≤ AwHVol 
curr_HVol ← Total HVol  
curr_DmgT ← Total DmgT  
curr_area ← initial area 

 
Meanwhile, the current solution is obtained by 

comparing the new solution and the initial solution. If the 
new solution is better than the initial solution, the new 
solution will be accepted as the current solution to 
replace the initial solution. Otherwise, the initial solution 
remains the current solution. In the SA approach, 
however, a poor solution with a certain probability will 
replace the initial solution. 

In the TA approach, the acceptance of a poor solution 
is based on the predefined threshold value. In the 
proposed approaches, a new solution will be accepted to 
replace the current solution if and only if, the difference 
between new_DmgT and curr_DmgT is less than zero 
and the difference between new_HVol and curr_HVol is 
equal or greater than zero.  

In addition, the best solution is obtained by 
comparing the values of curr_HVol and curr_DmgT with 
the values of MxHVol and MnDmgT, respectively. The 
current solution is accepted as a best solution if the value 
of curr_HVol is greater than or equal to the value of 
MxHVol and the value of curr_DmgT is less than the 
value of MnDmgT. In the MCP approach, however, this 
comparison is not required because the current solution 
represents the best solution and the current solution will, 
therefore, be reported as the best solution. The algorithms 
for the MCP, SA and TA techniques are as follows: 

MCP Approach 

while (!termination_criterion) 
 add 1 to t 
 form a new harvest area  

If HVol < EcoH 
× ← 0 

If HVol ≥ EcoH 
× ← 1 
new_area ← Calculate HVol 
Total HVol ≤ AwHVol 
new_HVol ← Total HVol  
 new_DmgT ← Total DmgT  

Calculate the difference (∆HVol) of  
new_HVol and curr_HVol 
 If ∆HVol ≥ 0 
 Calculate the difference ∆DmgT)  
 of new_DmgT and curr_DmgT 
 If ∆DmgT < 0 

curr_HVol ← new_HVol 
curr_DmgT ← new_DmgT 
harvest_area ← new_area 

If ∆DmgT ≥ 0 
curr_HVol ← curr_HVol 
curr_DmgT ← curr_DmgT 
harvest_area ← curr_area  

If ∆HVol < 0 
 curr_HVol ← curr_HVol 
 curr_DmgT ← curr_DmgT 
 harvest_area ← curr_area 

SA Approach 

Set the value of variables  
MxHVol ← curr_HVol of curr_area 
MnDmgT ← curr_DmgT of curr_area 
Set the value of variables, start_temperature, 
reduction_rate and end_temperature 
form new harvest area  
 If HVol < EcoH 

× ← 0 
 If HVol ≥ EcoH 

× ← 1 
new_area ← Calculate HVol 

Total HVol ≤ AwHVol 
new_HVol ← Total HVol  
new_DmgT ← Total DmgT  

Calculate the difference (∆HVol) of  
new_HVol and curr_HVol 

If ∆HVol ≥ 0 or random() <  
exp((∆HVol)/t) 

 Calculate the difference (∆DmgT)  
 of new_DmgT and curr_DmgT 

If ∆DmgT < 0 
curr_HVol ← new_HVol 
curr_DmgT ← new_DmgT 

If ∆DmgT ≥ 0 
curr_HVol ← curr_HVol 

 curr_DmgT ← curr_DmgT 
If ∆HVol < 0 

curr_HVol ← curr_HVol 
curr_DmgT ← curr_DmgT 
If curr_HVol ≥ MxHVol and curr_DmgT <  



Munaisyah Abdullah et al.  / Journal of Computer Science 10 (1): 54-65, 2014 

 
61 Science Publications

 
JCS 

MnDmgT 
MxHVol ← curr_HVol 
MnDmgT ← curr_DmgT 
Harvest_area ← new_area  

If curr_HVol < MxHVol dan curr_DmgT ≥  
MnDmgT 

MxHVol ← MxHVol 
MnDmgT ← MnDmgT 
Harvest_area ← curr_area  

TA Approach 

Set the value of variables  
MxHVol ← curr_HVol of curr_area 
MnDmgT ← curr_DmgT of curr_area 

Set the value of variables  
start_temperature, reduction_rate,  
end_temperature and threshold_value 

form new harvest area  
If HVol < EcoH 
X ← 0 

 If HVol ≥ EcoH 
X ← 1 

new_area ← Calculate HVol 
Total HVol ≤ AwHVol 
new_HVol ← Total HVol  
new_DmgT ← Total DmgT  

Calculate the difference (∆HVol) of  
new_HVol and curr_HVol 
If ∆HVol ≥0 or ∆HVol >  
threshold_value  
Calculate the difference  

 (∆DmgT) of new_DmgT and  
 curr_DmgT 

If ∆DmgT < 0 
curr_HVol ← new_HVol 
curr_DmgT ← new_DmgT 

If ∆DmgT ≥ 0 
curr_HVol ← curr_HVol 
curr_DmgT ← curr_DmgT 

If ∆HVol < 0 
curr_HVol ← curr_HVol 
curr_DmgT ← curr_DmgT 

If curr_HVol ≥ MxHVol and curr_DmgT <  
MnDmgT 

MxHVol ← curr_HVol 
MnDmgT ← curr_DmgT 
Harvest_area ← new_area  

If curr_HVol < MxHVol dan curr_DmgT ≥  
MnDmgT 

MxHVol ← MxHVol 

MnDmgT ← MnDmgT 
Harvest_area ← curr_area  

3. RESULTS 

This section shows the results obtained from the 
experiment that attempted to identify a suitable 
optimization technique to solve the harvest area 
formation problem. 

3.1. Harvest Area 

The experiment was repeated 15 times. Table 1 
presents the sample results obtained from the harvest 
area formation process using the MCP algorithm. The 
results show that two harvest areas are generated. The 
harvest areas are shown in Fig. 3. 

3.2. Algorithms Performance Comparison 

Table 2 shows the performance of each algorithm 
with the data involving seven (7) blocks and 30 blocks, 
in term of the percentages of the solutions generated in 
each category. The algorithms performance comparisons 
based on harvest volume and damaged tree for both 
categories are presented in Fig. 4 and 5 respectively.  
 
Table 1. Harvest area 
Run No. HVol DmgT Harvest area 
1 100 121 4,1,2,3 
2 100 121 1,2,3,4 
3 100 121 3,1,4,2 
4 100 121 3,1,2,4 
5 100 121 1,4,2,3 
6 100 121 1,3,2,4 
7 99 129 6,1,3,4 
8 100 121 2,4,3,1 
9 100 121 4,2,3,1 
10 99 129 4,6,3,1 
11 100 121 3,4,1,2 
12 100 121 2,1,4,2 
13 100 121 4,1,3,2 
14 100 121 3,1,2,4 
15 100 121 3,2,1,4 

 
Table 2. Algorithms performance comparison 
   HVol   DmgT 
Block Methods Optim-um ≤5% >%5 Below Ave ≤10% ≥10% 
7 MCP 100 0 0 100 0 0 
 SA 100 0 0 100 0 0 
 TA 99 1 0 99 1 0 
30 MCP 9 91 0 61 27 12 
 SA 16 84 0 52 40 8 
  TA 10 90 0 57 30 13 
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Fig. 3. Harvest Areas 
 

 
 

Fig. 4. Percentage of optima solutions based on problem size 
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Fig. 5. Percentage of damaged trees 
 

The percentage of damaged trees in the category of 
greater than 10% above average for the MCP, SA and TA 
techniques are 8, 12 and 13%, respectively. Thus, the SA 
technique is a better method than the MCP or TA 
techniques for use in solving the harvest area formation 
problem using the proposed model, regardless of data size. 

4. DISCUSSION 

The combination of blocks that form the harvest area is 
generated based on the maximum HVol and the smallest 
number of damaged trees. The harvest area is formed by 
combining a number of blocks from a sequence of blocks 
that is randomly generated in every process cycle. The 
results show that two harvest areas are generated: Area_1, 
consisting of a combination of blocks 1, 2, 3 and 4; and 
area_2, consisting of a combination of blocks 1, 3, 4 and 
6. The maximum numbers of HVol in the respective 
harvest areas are 100 and 99 and the number of damaged 
trees is 121 in area_1 and 129 in area_2.  

In this study, the performance of the algorithms is 
evaluated based on the following two factors: (i) the 
ability to meet the maximum number of trees allowed for 
harvesting in one planning period and (ii) the ability to 
minimise the damage to residual trees. The solutions 
obtained are classified into the following three 
categories: (a) an “Optimal” solution, in which the total 

number of HVol is equal to the MxHVol or the total 
number of damaged trees is below average; (b) a 
“Reasonable” solution, in which the total number of 
HVol is within 5% below the optimal solution or the 
total number of damaged trees is within 10% above 
average; and (c) a “Bad” solution, in which the total 
number of HVol is greater than 5% below the optimal 
solution or the total number of damaged trees is greater 
than 10% above average.  

After 100 runs using a small-sized problem, both the 
MCP and SA techniques provide 100% optimal solutions 
compared to 99% with the TA technique. Thus, the MCP 
and SA techniques are better at forming the harvest area 
in a small-sized problem. With data involving 30 blocks, 
the solutions obtained from the SA technique better 
maximize the total number of trees in the harvest volume 
than the solutions obtained with the MCP and TA 
techniques. For example, 16% of the solutions generated 
using the SA technique is optimal, compared to 10 with 
the TA technique and 9% with the MCP technique.  

However, in terms of minimizing the number of 
damaged trees, it appears that the MCP technique 
generated better results. The percentage of damaged 
trees that is below average generated from the MCP 
technique is higher than in the results obtained using 
the SA and TA techniques. The values are 61, 52 and 
57%, respectively. However, as shown in column 
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DmgT under the category of >10% above average, the 
SA technique obtains the lowest percentage of damaged 
trees compared to the MCP and TA techniques. 

5. CONCLUSION 

In this study, we proposed an optimization model for 
THP based on selective cutting to reflect the cutting 
technique utilized in tropical countries. The proposed 
model is used to form the harvest areas with the 
objective of maximizing the harvest volume, subject to 
the maximum number of trees allowed for harvesting and 
the minimum number of damaged trees per planning period. 
In addition, the model implements an approach to exclude 
one or more potential trees to be cut from the harvest to 
fulfil the minimum number of future stock required for 
timber sustainability. The minimum number of trees to be 
cut is also imposed in each block to ensure economical 
harvesting; thus, the harvest areas are formed by combining 
and selecting a number of blocks in which the harvest 
volume is at most equal with the maximum number of trees 
allowed for harvesting in one planning period. 

Three optimization techniques have been developed 
and tested to identify the most suitable technique for 
use in solving the problem of harvest area formation. 
The obtained results indicate that the SA technique 
provides better solutions than the MCP and TA 
techniques, regardless of the size of the problem. For 
future research, a component to predict tree growth 
may be incorporated into the model to form the harvest 
areas and generate harvest plans for several planning 
periods simultaneously. 
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