
Journal of Computer Science 10 (1): 73-84, 2014
ISSN: 1549-3636
© 2014 Science Publications
doi:10.3844/jcssp.2014.73.84 Published Online 10 (1) 2014 (http://www.thescipub.com/jcs.toc)

Corresponding Author: Aram Baruch Gonzalez Perez, Department of Information Technologies and Computation,
 Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Estado de México, Mexico

73 Science Publications

JCS

STRATEGY PATTERNS PREDICTION MODEL

Aram Baruch Gonzalez Perez and Jorge Adolfo Ramirez Uresti

Department of Information Technologies and Computation,
Instituto Tecnológico y de Estudios Superiores de Monterrey,

Campus Estado de México, Mexico

Received 2013-05-21; Revised 2013-08-03; Accepted 2013-11-12

ABSTRACT

Multi-agent systems are broadly known for being able to simulate real-life situations which require the
interaction and cooperation of individuals. Opponent modeling can be used along with multi-agent systems
to model complex situations such as competitions like soccer games. In this study, a model for predicting
opponent moves based on their target is presented. The model is composed by an offline step (learning
phase) and an online one (execution phase). The offline step gets and analyses previous experiences while
the online step uses the data generated by offline analysis to predict opponent moves. This model is
illustrated by an experiment with the RoboCup 2D Soccer Simulator. The proposed model was tested using
22 games to create the knowledge base and getting an accuracy rate over 80%.

Keywords: Opponent Modeling, Machine Learning, Case Based Reasoning

1. INTRODUCTION

An agent can be defined as an autonomous entity in
an environment with the capacity of taking its own
actions in order to achieve a goal (Wooldridge, 2008).
Also, multi-agent systems take a set of agents in order to
cooperate and achieve a common goal that cannot be
completed without the help of other agents.

Multi-agent systems are broadly known for being able to
simulate real-life situations which require the interaction
and cooperation of individuals. These systems are really
good in modeling situations where different autonomous
individuals need to interact with each other and their
environment in order to accomplish a certain goal.

Due to the multi-agent systems’ nature, a common
practice is to use them to represent a competitive
environment in which two teams play against each
other in order to accomplish a goal that directly
interferes with the other team’s objective. An example
of this type of environments is the soccer game. A
soccer game features two teams composed by eleven
players each where the fundamental objective is to
score more goals than the opponent. Using agents to

represent each player is a natural way to model these
kinds of environments, since most players tend to
have similar capacities and in this case, only the
goalkeeper has to attend different rules, as it is the
only one who can grab the ball with its hands.

It was decided to test our Strategy Patterns
Prediction Model (SPPM) in a soccer-like
environment (Gonzalez and Uresti, 2011). This research
is based on opponent modeling on multi-agent systems
on RoboCup 2D Soccer Simulator, an environment
where participants are in constant movement and
interaction and it is focused on the defensive actions of
the team. It is accomplished following a complete cycle
that is going to be discussed in the rest of this document.

2. MATERIALS AND METHODS

2.1. Knowledge Base Creation

Knowing how the opponent is going to behave in a
competitive environment such as soccer is a great way to
increase a team’s effectiveness by being able to anticipate
the rival’s actions.

A.B. Gonzalez Perez and J.A. Ramirez Uresti / Journal of Computer Science 10 (1): 73-84, 2014

74 Science Publications

JCS

In general, the result of predicting the behavior and
movements of other agents and storing them in such a way
that it is useful for making predictions is known as
Opponent Modeling. Since it does not specify a unique
technique to achieve its goal, the algorithms and methods
used are chosen by each researcher. It can be
implemented in most competitive games that involve two
or more participants. While Opponent Modeling is a
proven techinque to improve players or teams results
(Del Giudice and Gmytrasiewicz, 2009; Richards and
Amir, 2007; Parker et al., 2006; McCracken and Bowling,
2004; Laviers et al., 2009), it also needs a lot of
information, in some cases it is needed to create a sub-
domain of the original environment to reduce complexity.

Creating a good opponent model is not a trivial task and
can take a large amount of processing time because it needs
to include as many cases as possible, meaning a great
amount of data. This causes that creating a functional
opponent model, one that is based specifically on the actual
rival and without any previous knowledge, a difficult task
inside a dynamic environment such as soccer. It becomes
almost impossible because of the little number of
interactions that can be generalized into a real model of
the entire team including its strategies (Stone et al.,
2000). In this manner previous knowledge from the
opponent is needed (Ramon et al., 2002; Kuhlmann et al.,
2006; Del Giudice and Gmytrasiewicz, 2009).

2.2. Initial Setup

In order to create a useful opponent model for
Strategy Patterns Prediction Model (SPPM), it is
necessary to take into account previous experiences. In
this case, records and logs of past games were used.
These logs are automatically generated by the RoboCup
2D Soccer Simulator each time a game is executed and
they are saved in a RCG file. The RCG files and team
binaries used for this research can be found in the
RoboCup (2013). The RCG files are binaries that can be
reproduced by the Replay Tool Program (r2play) bundled
with the RoboCup 2D Soccer Simulator. The binary files
contain all the information necessary to recreate an entire
game. Since this type of file is binary, it is difficult to
obtain the information inside it because a format
specification is not given. Instead of trying to get all the
data from the RCG file, it can be converted to a readable
XML file where all the info of the corresponding game is
contained. For this process we used the rcg2xml tool, also
bundled with the RoboCup 2D Soccer Simulator.

The original XML file obtained from an RCG files
describes not only the server parameters, but also each of
the ball’s position, each player’s position and actions
across the game. Some information is presented even if

the element that it is describing did not change across
time. Keeping the data as it is presented can cause a big
overhead of unnecessary information.

The default parameters create a standard soccer field
with some flags that allow players to locate themselves
and the other elements inside the field. Figure 1 shows
the default and official soccer field generated by the
RoboCup 2D Soccer Simulator, it is the one used in
competitions and for this research.

The prediction model intends to forecast the ball
position when it is in the adversary’s possession, for this
reason not all the information contained in the XML is
useful. In order to reduce the time needed to create the
knowledge base, the unnecessary information inside the
XML files is completely removed. This leaves only the
data corresponding to the players’ actions, players’
positions, ball’s position and game status.

To reduce the complexity of the opponent modeling
process, it was decided that the field must be divided into
zones. This division allows the system to be tolerant to
the noise generated by the environment.

While dividing the field into zones has been done
before (Arias and Uresti, 2008; Berger and Herfert,
2009), there is not a related work on optimizing the field
division based on any criteria so we had to create a
division that would serve the SPPM’s purpose.

 The division was made in such way so that the size
of each one of the blocks generated is large enough to
reduce system complexity and small enough to keep the
prediction relevant. The division’s size decision was
made based on the fact that having a division consisting
of small zones would give us too many combinations
for search, resulting in no real advantages for creating a
division at all. Creating big division zones ends up
giving us a small search space allowing to reduce the
time employed looking inside the search tree for
possible solutions but it also affects the prediction’s
precision and therefore its usefulness.

This resulted in the soccer field being divided in
medium-sized zones that allowed us to generate a grid
consisting of 60 zones which is enough to keep the
prediction relevant and the search tree in a reasonable
size. Creating a different division with more zones ended
creating a bigger decision tree because some patterns were
divided in different leaves since the previous zones were
divided. On behalf, reducing the number of zones ended in
grouping patterns together and in cases creating an over
generalization of the patterns. The final division is shown in
Fig. 2. The number of zones was determined by trial and
error. The field division also takes advantage of the flags
provided by the RoboCup 2D Soccer Simulator which serve
as reference points for the agents inside the game.

A.B. Gonzalez Perez and J.A. Ramirez Uresti / Journal of Computer Science 10 (1): 73-84, 2014

75 Science Publications

JCS

Fig. 1. RoboCup 2D Soccer Simulator official field

Fig. 2. Field divided into zones

2.3. Patterns

The knowledge base contains a series of patterns that are
obtained from one or more RoboCup 2D Soccer Simulator
log files. A pattern is defined as the route that the ball
follows inside the game while one team keeps it. A team
gets the possession of the ball when a member of his team
kicks it and then loses it when a member of the opposing

team kicks it or when an event that alters the game status
change is presented, such as: A goal is scored, the ball goes
out of bounds, the play time is over or a foul is committed.
An example of a full pattern is shown in Fig. 3.

In order to create a visualization of the actual strategy
patterns, we defined a short set of symbols that allowed
us to follow the pattern development. The set of symbols
is presented in Fig. 4.

A.B. Gonzalez Perez and J.A. Ramirez Uresti / Journal of Computer Science 10 (1): 73-84, 2014

76 Science Publications

JCS

Fig. 3. A pattern’s set

Fig. 4. Symbols for strategy patterns visualization

Each pattern inside the search tree is associated to a
full strategy or play. This strategy includes the movement
of each of the players that participate in it and the position
of the ball. An example of this is shown in Fig. 5.

The patterns used to create the knowledge base have a
minimum duration of 10 steps but not a maximum
duration. The minimum duration restriction was set so that
the team is able to search for the similar case or cases
inside the knowledge base and still have time to complete
a defensive action corresponding to the search result.

2.4. Search Tree

After the knowledge base is created, a search tree is
also generated in order to facilitate the comparison
between the actual game info and the patterns stored in
the knowledge base. The search tree allows the SPPM to
have an efficient way to find and compare similar
patterns by inside a file that is not only smaller than the
knowledge base one but also has the patterns ordered so
that it requires less time.

The search tree generated from the knowledge base
contains the zones where the ball and the attacking team

are positioned at the start of a pattern as shown in Fig. 6.
The ball’s position is used as the first comparison
parameter since it determines a team’s play and actions.
After the ball’s position, each following node indicates
the zones in which players are located. Since the
knowledge base, we only use the players that have a
direct interaction with the ball along the strategy pattern
in order to reduce both files’ size.

Each pattern was sorted (excluding the ball’s position
since it’s always the first value) so that when the tree
was created each of the branches keep an ascending
order. This was done in order to make comparisons faster
and to assure there is no need to implement a sorting
method after creating the tree.

The search tree must be stored in order to be read by
the team during a play. An XML file is used to do this
since both have a hierarchical nature. During a game, the
XML file is only read at the beginning in order to reduce
the time it takes for the leader to compare the actual
game status to the results in the search tree. An example
of the XML search tree file is shown in Fig. 7.

While reading the tree file from the file system can be
done in less than a game cycle, doing this repeatedly can
derive in some failures like the system not properly
freeing the file so it cannot be read immediately after it is
used. Also depending on the implementation, reading the
file can saturate the server since there are 6000 game
cycles in total and in the worst case scenario the file
must be read in each of the 6000 game cycles.

We ended up copying the entire search tree to the
leader’s memory. This approach did not cause any negative
repercussion to that agent’s performance during the game
and it helped avoiding the above mentioned problems.

A.B. Gonzalez Perez and J.A. Ramirez Uresti / Journal of Computer Science 10 (1): 73-84, 2014

77 Science Publications

JCS

Fig. 5. A full pattern visualization

Fig. 6. General structure of the search tree

The rest of the team does not need to have a copy of
the search tree since the leader is the only one that uses it
to retrieve strategy patterns’ information since we follow
a centralized approach.

The creation of the knowledge base and the search
tree using 22 RCG files took about 35 min. The search

time for a single pattern takes less than a game cycle but
there are times when a possible result is not found so the
SPPM repeats the search progress but it uses the ball’s
neighbor areas. Searching the neighbor areas can delay
the entire progress since it needs to search at least 9
different areas and their combinations.

A.B. Gonzalez Perez and J.A. Ramirez Uresti / Journal of Computer Science 10 (1): 73-84, 2014

78 Science Publications

JCS

Fig. 7. An example of the XML file for a search tree

2.5. In-Game Features

In order to make use of the knowledge base created in
the knowledge base creation phase of the model, SPPM
needs to use and test this data into new games. The
complete process that must be followed includes: Getting
the actual game status information (opponent players’
and ball positions), look for similar patterns inside the
knowledge base and return the possible zones where the
ball will be according to the cases stored in the
knowledge base with the potential cover zones that will
let the team respond to the rival.

This process is only a part of the complete SPPM, it
is the one used during a game and it requires a
knowledge base and its corresponding search tree to be
created. While the search tree must be created from the
knowledge base, the defensive actions taken inside the
game can be totally independent of that process. The
SPPM process predicts the ball position over time by
analyzing and comparing actual game status and past
experiences. A defensive action can use this information
but it also can be a totally separated process.

To get the complete pattern and, knowing the fact
that this is a multi-agent system, it is needed to obtain the
partial information that each of the agents knows, due to

this situation, the number of messages listened per cycle
restrictions and the noise ones were eliminated.

2.6. Decision Process

Even with the modified communication parameters,
tryAing to follow a distributed decision process was not
possible since it required a full negotiation cycle
involving all of the agents. This resulted in time wasted
in just trying to coordinate who is going to take the
decisions because the simulator is designed to only allow
the agents to listen to their teammates’ messages a cycle
after they have been sent.

Therefore the initial prediction process was planned
as follows:

• An agent should identify an appropriate time to begin
the prediction process or it can be done in a fixed
time. An appropriate time can be defined as a moment
when the rival team is not in an imminent scoring
chance position. For an imminent scoring change
position, the rival team needs to have the possession
of the ball and being close to our goal zone

• The agent sends messages to the rest of the team so
the negotiation process is started

• Each agent evaluates if it can be the leader
(coordinator) for the prediction process. If a leader is
chosen then it informs its team about his new
acquired role. For electing the leader the following
factors were planned to be taken into consideration:
Player distance to the ball, player’s role (goalkeeper,
defense, midfield or attacker), player’s distance to
enemy’s team players and players position

• The leader agent sends messages to the rest of the
team in order to obtain their information that
includes their positions, the position of the ball and
the position of the opponent agents

• The leader agent uses the search tree and gets the
possible strategy patterns, then it evaluates each of the
search tree results and creates a new pattern that
contains the zones the ball is most likely to be located

• The leader sends the prediction pattern to its team

The minimum messages used to decide the leader
role are 6 since at least 3 messages are used (proposal,
answer and confirmation) and each message takes 1
cycle to be sent and 1 to be received. Another problem
with this process occurs when more than one agent has
the best possibility to acquire the leader role. Another
negotiation process between them must occur and even if
they can solve it with at their first try, it would require at
least another 4 cycles.

A.B. Gonzalez Perez and J.A. Ramirez Uresti / Journal of Computer Science 10 (1): 73-84, 2014

79 Science Publications

JCS

Having a constant time overhead whenever a
prediction is meant to be done extends the time the entire
process requires and, since RoboCup 2D Soccer
Simulator is an entirely dynamic environment, the time
consumed in deciding the team’s leader is un-viable
because the prediction may no longer coincide with the
actual field state.

In order to reduce the time spent on negotiation
issues, it was decided to follow a centralized approach
for decision process. In human soccer, the goalkeeper
usually has a complete vision of the field and also is the
player that most likely has the fewest interactions with
the ball. Based on the characteristics previously
mentioned, we decided that it should be the agent who
receives all the data and takes all the decisions. The final
communication process is shown in Fig. 8.

2.7. Prediction

Once all the data is received, it needs to be cleaned
and consolidated into a single pattern so that it can be
used into the search tree. The leader agent determines the
ball’s position by calculating an average from the
positions received and then a single zone can be
assigned. A similar process is followed for each of the
opponent players reported and duplicates are eliminated.
Then the information is merged in a single list in a
format that can be used by the search tree.

Once the result is taken from the search tree, we get all
the possible patterns’ IDs with the best matches. The criteria
to decide those matches is based in the distance between the
actual field status and the one contained in the pattern,
giving more importance to strategies that involve more
players. This is called the similarity measure. The similarity
measure formula is the following:

()()2 2
br bp br bp

2 2
n pri ppi pri ppi

i=1

s = (X - X) + (Y - Y) × α

(X - X) + (Y - Y)
+

n
∑

where, Xbr and Ybr are the X and Y positions of the ball
in the actual status and Xbp and Ybp are the X and Y
positions of the ball inside the pattern. Xpri and Ypri are
the X and Y position of the players in the actual status
while the Xppi and Yppi indicate the position of the
players inside the pattern analyzed. The symbol α
represents a constant value used to give the ball’s
position more importance in the comparison. For our

tests we decided to use a value of α = 1.5.This process
can be compared and is based on Case Based Reasoning
(CBR). CBR uses human like thinking in order to react
to actual circumstances based on previous experiences. It
has been openly used in this domain (Arias and Uresti,
2008; Berger and Herfert, 2009). The basic CBR process
is defined as the following actions:

• Retrieve-Similar cases or situations must be
retrieved from memory given the actual problem
conditions

• Reuse-The retrieved cases must be mapped to the
new problem even if they need to be adapted to fit
the situation

• Revise-Test and evaluate the possible solutions in
the new scenario

• Retain-After adapting, testing and evaluating, store
the new solution as a new case in the memory

CBR is considered as a cycle that allows the system
to constantly learn new experiences or cases.

Having all the play patterns that coincide with the
actual in-game status, the zones where the ball was
during those plays can be taken from the knowledge base
created from previous data and for the prediction a
sample is taken each 5 steps (again this is determined in
this case by the distance a player can travel). With this
information the probabilities of the ball being in a certain
zone can be deducted and this is shown in Fig. 9.

Having the zones at a 5 cycle interval step, we can
determine which ones need to be covered by our players
(the ones with most possibilities of the ball being there)
and the ones that can be ignored. Being this a soccer
game, the areas that need to be covered are the ones that
surround the predicted zones and that are between the
ball position and our team’s goal box.

The next step is to decide whether it is a viable
option to send the players to the zones, if it is already
too late or even if the prediction is wrong and therefore
there is no point to cover them. Another issue to take
into account is that even if the entire search process
takes about 1 or 2 steps to be completed, there are cases
when it takes about 12 to 15 steps to end the entire
process. In those cases, a condition in which the
process stops if it has taken too much time or if the ball
is close to the goal box must be included. These
situations affect the goalkeeper’s ability to react to an
attack, so it must stop performing the decision process
and focus in defending its own goal box.

A.B. Gonzalez Perez and J.A. Ramirez Uresti / Journal of Computer Science 10 (1): 73-84, 2014

80 Science Publications

JCS

Fig. 8. SPPM Communication process

A.B. Gonzalez Perez and J.A. Ramirez Uresti / Journal of Computer Science 10 (1): 73-84, 2014

81 Science Publications

JCS

Fig. 9. Darker zones indicate a higher probability

After analyzing all the combinations of possible

situations mentioned in the previous paragraph that
can be present during a game, it was decided that the
following are the only ones that can really affect the
team and in particular the goalkeeper’s individual
goals: Catching the ball, reacting to opponents
approaching the goal line and clearing the ball from
the penalty area.

 If the goalkeeper determines that it is viable to make
a defensive action, it communicates it to the rest of the
team with the time and zones that need to be covered so
that the players that are closest to those zones go to them
and try to recover the ball.

If any of the agents perceive that the ball or the play
is not similar to the prediction, then an alert message is
sent to inform that the covering zones have almost no
probabilities to have the ball inside.

The logs generated from the test files can be
analyzed and included inside the knowledge base; this
allows the system to evolve and to get more
information about different and new situations. This
feature allows our SPPM to respond better in next
matches and to evolve across time.

3. RESULTS

The tests made during this research were divided
into three types: Test with our team against teams that
were previously analyzed and included inside the
knowledge base, tests against teams not included in
the knowledge base and games where our team was
not involved at all.

The first test type was intended to prove the system
reliability against opponents’ movement of already
known teams. The second one does the same but with
other teams and situations that are unknown for the
system. The third set is made to test it the prediction’s
accuracy in general.

Twenty-seven analyses were done to get the results
presented here, where 12 analyses were done over
previously analyzed teams, 3 over not previously
analyzed teams and 12 over games that did not involve
the team developed for this research.

The following was used in order to create the
knowledge base for these results:

• 22 games were used (143 MB in GZ files)

A.B. Gonzalez Perez and J.A. Ramirez Uresti / Journal of Computer Science 10 (1): 73-84, 2014

82 Science Publications

JCS

• An XML file was created for each of the 22 games
(1.4 GB)

• A single knowledge base created with 604 strategy
patterns (1.06 MB XML file)

• A single search tree was created (62.6KB XML file)

The entire knowledge base creation was done in a 2.0
GHZ dual core PC and it took about 35 min for the entire
process to be completed.

Overall our SPPM achieved to get a prediction of the
ball position with a precision over the 80% in an
acceptable range defined by being in a distance
equivalent to at most one zone far from the real ball
position. This lets the team define coverage zones along
time so that the adversary team can be stopped and the
ball recovered.

The prediction accuracy was probed in three different
groups of tests. The first group involved testing the same
teams used to create the knowledge base against our team
(PA-Previously Analyzed), the second group follows a

similar mechanic but whit teams that were not included in
the learning phase (NPA-Not Previously Analyzed) and
finally the third group consists of a set of games in where
our team did not participate (OT-Other Teams).

The results involving the actual distance and the
predicted one are shown in Fig. 10. According to the
results, taking into consideration the mean distances in X
and in Y separately is the best way to get the actual
position of the ball.

Given the results generated by analyzing the
distances, the predictions obtained during the course of
this research where accommodated in their respective
group based on the mean distance during the whole play
between the prognosticated zones and the real ones.

The Fig. 11 shows the percentage of the results and
the group that they belong to, this graphic only takes into
account the results in mean distance in X and Y because
of the results previously generated. It is shown that most
of the time (more than 80%); the zones predicted are
close enough to the real ones to make a defensive action
that lets the team try to recover the ball.

Fig. 10. Distances got in the results for Previously Analyzed teams (PA), Not Previously Analyzed teams (NPA) and Other Teams

(OT) that not involve the one developed for this research

Fig. 11. Percentage of usefulness got in the results for Previously Analyzed teams (PA), Not Previously Analyzed teams (NPA) and

Other Teams (OT) that not involve the one developed for this research

A.B. Gonzalez Perez and J.A. Ramirez Uresti / Journal of Computer Science 10 (1): 73-84, 2014

83 Science Publications

JCS

4. DISCUSSION

Analyzing the results and the circumstances
presented inside the games that were shown the
following circumstances were observed.

There are some teams less susceptible to fall into the
model predictions. This is caused depending on the
opponent team’s ability to react to our predictions and
the capacity of both teams to play the game. There are
some strategies that are more likely to be presented in a
game with certain circumstances (like a team’s dominion
over its rival) than in others.

Some predictions do not end in the zone that was
supposed to be in because in some cases the opponent
changes its route when a member of our team got close.
In other cases the opponent directly shot to goal during
the circumstance described and sometimes our team
managed to get the ball effectively ruining the
prediction. All these situations can reduce the system’s
prediction precision because given the actual game
status; those situations can change completely the
strategy outcome.

Some teams change their tactics depending on the
score and the time left to end the game.

While the prediction process got a good accuracy rate
(over 80%), the defensive actions implemented by our team
did not allow us to corroborate the entire SPPM’s goal. The
actual game results did not change in our favor since our
team is way below actual competing teams’ level.

Even though the considerations described before, it is
considered that the predictions have a very good
accuracy rate and are done in an efficient time so that the
agents can react to it in real time.

5. CONCLUSION

In this study a model for opponent strategies modeling
(SPPM) is presented. SPPM obtains information from
RoboCup 2D Soccer Simulation log files, converts this
information into a knowledge base containing strategy
patterns used by opponents. With these strategy patterns a
search tree is generated to index all possible cases in such
a way that any search of the tree is fast enough to be
useful in real-time. When in play, the opponent formation
of players and ball position is detected, analyzed for
possible matches in our knowledge base, a probability of
the ball position in the future states is generated and a final
decision on how to defend against this possible strategy is
made. All this process is done fast enough so a useful real-
time decision is made.

The importance of the creation of the knowledge
base that supports the model is also discussed as well
as the actions that take place inside the environment
that the model is used. The model was tested in the
RoboCup 2D Soccer Simulator so that it is proved in a
dynamical environment which also has an opponent
who takes its own decisions and follows its own
course of action. The model discussed in this study
gives an accuracy of around 80% in the tests. Taking
into consideration the dynamic nature of the
environment in which it takes place, it can be said it is
a really good percentage.

6. REFERENCES

Arias, M.A. and J.R. Uresti, 2008. Team agent
behavior architecture in robot soccer. Proceedings
of the IEEE Latin American Robotic Symposium,
Oct. 29-30, IEEE Xplore Press, Natal, Rio Grande
do Norte, pp: 249-256. DOI:
10.1109/LARS.2008.35

Berger, R. and D. Herfert, 2009. AT Humbolt Team
Description 2009. Proceedings of the RoboCup
International Symposium, Jun. 30-Jul. 3, Springer-
Verlag, Austria.

Del Giudice, A. and P. Gmytrasiewicz, 2009. Towards
strategic kriegspiel play with opponent modeling.
Proceedings of the AAAI Spring Symposiam,
Mar. 26-28, AAAI Press, California.

Gonzalez, A.B. and J.A.R. Uresti, 2011. Strategy
Patterns Prediction Model (SPPM). Proceedings
of the 10th International Conference on Mexican
Advances in Artificial Intelligence, Nov. 26-Dec.
4, Springer Berlin Heidelberg, Puebla, Mexico,
pp: 101-112. DOI: 10.1007/978-3-642-25324-9_9

Kuhlmann, G., W. Knox and P. Stone, 2006. Know thine
enemy: A champion robocup coach agent.
Proceedings of the 21st National Conference on
Artificial Intelligence, Jul. 16-20, AAAI Press,
Menlo Park, CA., pp: 1463-1468.

Laviers, K., G. Sukthankar, D.W. Aha, M. Molineaux
and C. Darken et al., 2009. Improving offensive
performance through opponent modeling.
Proceedings of the 5th Artificial Intelligence for
Interactive Digital Entertainment Conference, Oct
14-16, AAAI Press, Darken, Christian, pp: 58-63.

McCracken, P. and M. Bowling, 2004. Safe strategies for
agent modelling in games. University of Alberta.

A.B. Gonzalez Perez and J.A. Ramirez Uresti / Journal of Computer Science 10 (1): 73-84, 2014

84 Science Publications

JCS

Parker, A., D. Nau and V.S. Subrahmanian, 2006.
Overconfidence or paranoia? Search in imperfect-
information games. Proceedings of the 21st National
Conference on Artificial Intelligence, (CAI’ 06),
AAAI Press, pp: 1045-1050.

Ramon, J., N. Jacobs and H. Blockeel, 2002. Opponent
modeling by analysing play. Proceedings of the 1st
Workshop on Agents in Computer Games, Jul. 27-
27, Edmonton, Canada, pp: 1-8.

Richards, M. and E. Amir, 2007. Opponent modeling in
scrabble. Proceedings of the 20th International Joint
Conference on Artifical Intelligence, Morgan
Kaufmann Publishers Inc. San Francisco, CA, USA.,
pp: 1482-1487.

RoboCup, 2013. RoboCup Official Repository.
Stone, P., P. Riley and M. Veloso, 2000. Defining and

using ideal teammate and opponent agent models:

A case study in robotic soccer. Proceedings of the
4th International Conference on MultiAgent
Systems, Jul. 10-12, IEEE Xplore Press, Boston,
MA., pp: 441-442. DOI:
10.1109/ICMAS.2000.858515

Wooldridge, M., 2008. An Introduction to MultiAgent
Systems. 1st Edn., John Wiley and Sons, ISBN-10:
0470353473, pp: 366.

