
 

 
© 2015 The Mohd Fadzli Marhusin, Muhammad Firdaus Zul Kafli, Rossilawati Sulaiman, Shaharudin Ismail and Zul Hilmi 

Abdullah. This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0 license. 

 Journal of Computer Science 

 

 

 

Original Research Paper 

A Framework for a Multi-Layered Security of an Automated 

Programming Code Assessment Tool 

 
1
Mohd Fadzli Marhusin, 

1
Muhammad Firdaus Zul Kafli, 

2
Rossilawati Sulaiman,

 1
Shaharudin Ismail and 

1
Zul Hilmi Abdullah 

 
1Faculty of Science and Technology, Universiti Sains Islam Malaysia (USIM), Malaysia 
2Faculty of Information Science and Technology, The National University of Malaysia, Malaysia 

 
Article history 
Received: 03-02-2014 
Revised: 03-06-2014 
Accepted: 16-09-2014 
 
Corresponding Author: 
Mohd Fadzli Marhusin 
Faculty of Science and Technology, 
Universiti Sains Islam Malaysia, 
Malaysia 
Email: fadzlimarhusin@gmail.com 

Abstract: In a learning environment, a low student-lecturer ratio is 

considered a practical solution by many educational institutions. 

However, the number of students in information technology is 

increasing every year. This could lead to a significant increase in the 

workload of lecturers, who need to evaluate assignments, quizzes and 

projects. Hence, it is desirable that an automated assessment tool is used 

to lessen their workload. In the era where mobile devices are getting 

popularity, the high demand to execute suitable quality code is there and 

the cost is on the processing power of the CPU which has a direct 

implication on the power source or the battery used. With various 

implementations of cryptography algorithms available, many of them 

could satisfy different level of needs. In this research, we introduce the 

architecture for a multi-layered security of automated assessment of 

programming code. First, we review the existing research studies in the 

area. We describe the features of the tool, as part of a complex e-

learning environment. We also discuss the implementation of security, 

to protect data transmission and storage used by the tool. Challenges the 

system might face and the potential solutions, are also described.  

 

Keywords: Automatic Assessment, Automatic Grading, E-learning 

Security 

 

Introduction 

A low student-lecturer ratio is considered ideal in 

learning environments (Bloom, 1984). However, the 

number of students studying information technology 

is increasing each year and has a negative impact in 

terms of workload and efficiency (Jackson and Usher, 

1997). If insufficient time is available to evaluate 

assignments, quizzes and projects, it will affect the 

quantity of knowledge that students are able to absorb. 

An automated assessment tool could alleviate the 

increased workload. 

Hence, the motivation of work in this area is to 

assist lecturers to overcome the problems so that a 

more quality time could be spent by lecturers to their 

students and at the same time the quality of lecture 

and assessment could be improved. The assessment 

outcome could be delivered almost in an instant, thus, 

allowing immediate feedback to the students, 

enhancing their understanding on the particular 

subject they are learning. All the aforementioned 

objectives are possible to achieve via the use of 

Automatic Assessment System (AAS).  

E-learning is gaining headway, in line with 

development and innovation of the World Wide Web 

and increased significance of the e-learning 2.0 

phenomenon (Downes, 2005). There are currently 

some open-source e-learning systems, such as 

Moodle, course manager, class web 2.0 and Sakai 2.0 

(Amant and Still, 2007). With advances in the user 

interface of web 2.0 and standard features in many e-

learning systems, opportunities are opened up for 

developers and researchers to develop compatible 

tools. 



Mohd Fadzli Marhusin et al. / Journal of Computer Science 2015, 11 (2): 406.415 

DOI: 10.3844/jcssp.2015.406.415 

 

407 

Delivering a programming course via an e-learning 

system such as Moodle (2013), is quite a challenge. 

Although tests and quizzes in an objective-based 

format (true/false or multiple-choice questions) can 

easily be implemented, an evaluation and assessment 

of the format of programming code would require a 

more dynamic technique. This is due to the fact that 

the programming code applied by an individual 

student can be unique, as various code formats will 

produce the required response to the question posed 

and produce the anticipated output. Using this tool, a 

lecturer would not be affected by an increase in the 

number of students taking a programming subject. 

The tool would automatically evaluate assignments, 

quizzes and tests submitted by the students, by 

comparing the code submitted with an answer scheme, 

which could cover one or more possible solutions. A 

full report may contain student profiles, scores and 

feedback, to enable the students to receive an 

assessment more quickly and, improve their 

understanding of the subject area they are studying.  

In this study, we discuss a framework for an agent-

based multi-layered security of an automated assessment 

tool. We begin with a review of the background to the 

study. The architecture of the system, covering its 

essential components, is discussed. A detailed 

description is given of the major role of functional 

agents, which comprise several agents that represent 

operations involving users, as well as the key 

components of the system.  

An information system where security and privacy 

are not properly handled would be unacceptable in 

current circumstances, where information theft is 

prevalent. Hence, security and privacy are empirical 

issues that must be addressed in the design of any 

information system. The concept of multi-level user 

security based on different data sensitivities is 

described, showing the levels of encryption strength 

that offer various degrees of confidentiality for 

different users. Not all of the users require very strong 

encryption, such as the students. In a network used by 

thousands of students, implementing the strongest 

encryption may impact on efficiency, such as network 

speed, which would be affected by the addition of 

encryption processing overhead. 

We also discuss aspects of the assessment process 

and how the programming evaluation is achieved. The 

marking process is not only based on an output 

specified by the lecturer. Instead, it is based on the 

source code level, where reconstructions of code are 

implemented. Preceding the conclusion, there is a 

discussion of the threats the system might face and the 

potential solutions for those challenges. 

Literature Review 

Background of Automated Marking Tools 

Over the past decades, there have been research 

studies that offer solutions for automated marking of 

programming code (Matt, 1994; Foxley et al., 1997; 

Masrom et al., 2009; Ashoo et al., 2013). The vision to 

have interesting system features has been discussed in 

the past. It is significant that technology was the only 

constraint to some of that development. In the early 

stages, the central focus was on the mechanics of 

automated marking and less focus was given to general 

protection or specific security for the features. 

The unix-based Ceilidh, was developed by the 

Learning Technology Research group at Nottingham 

University and was first used in 1988, mainly designed to 

evaluate C and C++ assignments (Foxley et al., 1997). It 

could handle more than one submission made by each 

student for each assignment. This would enable 

students to improve their codes in order to get higher 

scores. In addition, its aim was to handle a range of 

different types of tests, such as assessing programme 

code, multiple choice questionnaires and evaluating 

constructed responses and essays. It presents the 

results of an analysis to the students in a transparent 

manner, so that they will not only get the score, but 

also the justification and evidence. 

Kassandra, was a system designed to ease the 

burden of teaching assistants, by evaluating all 

programming assessments, for example, fortran, 

maple, MATLAB and oberon assignments (Matt, 

1994). Its main purpose was to check the accuracy of 

programmes produced by students. The Kassandra 

system was based on the observation that a number of 

assignments could be easily and fairly evaluated. 

Accuracy was tested by comparing the student 

submissions with the results provided by instructors. 

This system would respond to errors made by the 

students. Kassandra also provided a feature for the 

students to check their own scores. All the students 

could access their assignments for correction or 

review. Security-wise, distinct programmes were 

created for students and lecturers. The results 

generated were stored in a log file, which was only 

accessible by lecturers. 

CourseMarker (Foxley et al., 2001), was a flexible, 

secure and user-friendly system, that was developed at 

the University Nottingham, as a successor to the 

Ceilidh system (Higgins et al., 2003). CourseMarker 

had an object-oriented design, to overcome the 

weaknesses in Ceilidh. CourseMarker also had a 



Mohd Fadzli Marhusin et al. / Journal of Computer Science 2015, 11 (2): 406.415 

DOI: 10.3844/jcssp.2015.406.415 

 

408 

number of additional capabilities, for example, the 

assessment of diagram-based work. Lecturers were 

given a wide variety of statistical data as part of the 

results (Joy et al., 2000). Besides that, CourseMarker 

had a plagiarism detector in its system, where it 

compared the submission it marked with others produced 

by the rest of the students (Higgins et al., 2002). In the 

later version (Higgins et al., 2005), enhancements were 

made, including some security features. 

The BOSS Online Submission System, was 

developed by an employee in the computer science 

department at Warwick university (UW, 2009). The 

system was designed to facilitate the delivery of 

online programming exercises and at the same time 

allowed each assessment to be evaluated immediately 

(Joy et al., 2005). BOSS offered a user-friendly 

system, where students could use this system to test 

their programming exercises. Once satisfied, they 

could securely submit their assignments to a specific 

lecturer (Douce et al., 2005). The BOSS system 

provided a form of preliminary checking when the 

assignment was submitted. The system was based on 

the comparison of the textual output (Joy et al., 2000). 

The BOSS system also provided a dedicated graphical 

user interface for students and lecturers. The latest 

version of the system included a web-based 

application. This would allow the lecturers to review 

submissions using a traditional web-browser. Similar 

to CourseMarker, the BOSS system also had a 

plagiarism detector (Douce et al., 2005). 

Programming Contest control (PC
2
), was 

developed at California State University, Sacramento 

(Ashoo et al., 2013). It is a popular system used to 

host programming competitions around the world. 

Virtual internet-based and site-based competition 

modes are possible. PC
2
 lets the contestants submit 

the programming source code to the judge via a 

network. The judge then retrieves the source code, 

recompiles and executes the programme. PC
2
 also 

offers automated marking, based on specific 

programme input and output. The system uses a 

cryptographic mechanism to provide protection on the 

competition data. The software provides disk files 

encryption and network traffic encryption. 

Ceilidh, Kassandra, CourseMarker, the BOSS 

Online Submission System were examples of AASs 

evolved from various requirement of their owners. 

Lots of new generation of the software were 

introduced in recent years such as Web-CAT 

(Edwards and Perez-Quinones, 2008), Easyaccept 

(Sauve and Neto, 2008), VERKKOKE (Alstes and 

Lindqvist, 2007) to name a few. Each of these offers 

some features i.e., VERKKOKE introduced a feature 

that make it compatible with the existing popular 

Learning Management System (LMS) Moodle and 

Optima via SCORM package.  

Petri et al. (2010) presented a systematic literature 

review of the more recent AASs. They argued that there 

were many systems developed by researchers, where the 

prototypes were mainly for internal use. Petri et al. 

(2010) highlights the need for a standard of auto marking 

systems. By having a standard, we can avoid from 

repeating developing researcher-oriented systems.  

Hence, we are motivated towards improving the 

existing framework of AAS, highlighting what are 

desired features should be in the consideration for 

developing an open system with security in mind for 

educational purposes at higher learning institutions in the 

future. In this study, we highlight several important 

design and security issues including on the need for 

multi-layered security implementation on the system.  

Multi-agent Systems 

Much traditional software design was a host-based 

architecture and later moved into client/server based. 

An multi-agent approach (Marhusin et al., 2008; 

Sulaiman et al., 2011) offers a more dynamic social-

oriented based communications.  

The features of Multi-Agent Systems (MAS), have 

within the frame of their objectives the ability to be 

proactive, reactive, social, truthful, benevolent, 

adaptive, autonomous and rational (Bellifemine et al., 

2007; Weiss, 2013) are the reasons for adopting this 

approach in software systems (Soh et al., 2004; 

Masrom et al., 2009). MAS is a multi-platform 

environment, in which an agent can be added or 

removed with minimal impact to the system. 

An agent-based automated programme code 

assessment tool was introduced (Masrom et al., 2009). 

They described the main components and the 

functional features of the system. The student, lecturer 

and assessment modules are the main components. 

The functionality of the system includes the roles 

played by some agent-based components, such as 

tasks related to the central agent, student and lecturer 

agents and the agent that performs the assessment. 

The Proposed Architecture 

Our proposed solution is called the Automated 

Programming Code Assessment tool (APCA) and is 

based on a multi-agent architecture. The solution can 

be developed as a full-fledged system on its own, or 

as a plugin for a large e-learning system, such as 

(Moodle, 2013). Integration with a mobile app to cater 



Mohd Fadzli Marhusin et al. / Journal of Computer Science 2015, 11 (2): 406.415 

DOI: 10.3844/jcssp.2015.406.415 

 

409 

for mobile users is also possible via the use of cross-

device platform such as android base. Figure 1 shows 

the main architecture of APCA.  

Based on Fig. 1, five main actors are identified. 

The administrator is only involved in system 

administration, such as initialising default data, 

maintaining records, creating top user accounts. The 

lecturer and the course coordinator are both 

designated lecturers, but the latter is created for a 

course taught by more than one lecturer. The tutor is 

the person who conducts the tutorial session which 

could be a student, a tutor, or the lecturer. The 

students are the people who enrol in the course. 

The figure can be viewed from the functional agent 

perspective. The agents process and transfer data 

among them in a secure way, where the data and the 

system are viewed as being independent of each other 

via the application of cryptography. 

We describe the major roles of functional agents 

and security issues they are concerned with, in the 

following sections. 

The Components 

APCA users are classified as (1) students, (2) 

tutors, (3) lecturers, (4) course coordinators and (5) 

administrators. The other components of the tool can 

be categorised into the marking and security-related 

operations, which include the question engine, the 

answer engine, the scoring engine and the security 

engine. Overall, there are nine parts in the system, 

which require careful design. 

Major Roles of Functional Agents 

We identified nine parts as the major functional 

components of the system. Each part will be transformed 

as an agent.  

Student Agent 

One student may have one tutor, belong to one 

tutorial group and also be under one larger lecture group. 

Each student will first need to authenticate, after which 

their programming code in answer to the problem 

assigned by their lecturer will be submitted. 

Tutor Agent 

A tutor will handle a tutorial session and this could 

also be the lecturer. Upon authentication, a tutor can 

post a question, supply an answer scheme and 

configure scoring details, which could be unique for 

that tutorial group.  

Lecturer Agent 

A lecturer may teach one or more programming 

subjects. For each subject, the lecturer may have 

several tutorial groups. Upon authentication, a lecturer 

can post a question, supply an answer scheme and 

configure scoring details.  

 

 
 

Fig. 1. The main architecture of APCA 



Mohd Fadzli Marhusin et al. / Journal of Computer Science 2015, 11 (2): 406.415 

DOI: 10.3844/jcssp.2015.406.415 

 

410 

Course Coordinator Agent  

One course might be taught by many lecturers, either 

team teaching or not. After authentication, a course 

coordinator will have the power to synchronise the 

management of the assessment tool. 

Administrator Agent  

In the system, an administrator’s main role is to set 

up the environment. Upon authentication, the 

administrator is responsible to pre-register students, 

tutors, lecturers, course coordinators and courses. 

Using data encryption, the administrator will not be 

able to view communication among other users, 

unless the administrator is the intended recipient. 

The following agents are non-human and are not 

bound to any tutor, lecturer, course coordinator, or 

administrator. 

Question Agents  

The agents will collect questions and post them to 

the students. Questions could also be passed from 

coordinators, to lecturers, to students and to question 

agents accordingly. 

Answer Agents  

The agents will collect answer schemes and the score 

details and post them to the respective answer agents of 

lecturers and tutors. The answer agents could also pass 

the information from coordinators, to lecturers, to 

students and to answer agents accordingly. 

Scoring Agents  

These agents will reside on the trusted side of the 

team and they could be either at the host of any tutor, 

lecturer, or course coordinator and perform the scoring 

operations there. 

Security Agents  

These agents are responsible for authenticating and 

authorising users, such as students, tutors, lecturers 

and course coordinators. They also authenticate and 

authorise the operations performed by other agents. 

Security agents determine the strength of security 

required for each agent communication and also for 

storage. 

Discussion 

The Assessment Process 

Foxley et al. (1997) described the types of evaluation 

possible in two ways: Static and dynamic. 

Static Properties: 

 

• Code layout 
• Indentation 
• Choice of identifiers 
• Readability 

• Comments 

• Program structure 

• Denotations 

• Complexity 

• Warnings 

• Constructs  

 

Dynamic Properties: 

 

• Run against several test data sets 

• Compare against other approaches to the same 

program 

• Validate the output 

• Measure the execution speed or performance 

 

What was suggested by Foxley et al. (1997) were 

just a set of assessment facets and the sum of these 

could be used to gauge a performance. The output of 

the compiled version of the program will be compared 

with the schema provided. Marks are given depending 

on the results of the comparison by taking into 

consideration those facets 

Inspired by their work, the marking process should 

evaluate both the static and dynamic properties of the 

student’s programme, using certain metrics. A dynamic 

answer agent should be able to evaluate program code 

not merely based on a rigid expected programming 

output. The dynamic output is possible when the 

program expects some input from users or from other 

programs. Some dynamics could also happen when the 

program involve in using random engine or some 

artificial intelligence algorithms. 

In the event where the solution to a programming 

problem could be dynamic, the answer agent should 

be able to construct several versions of potential 

solutions and would consider a solution by a student 

as a potential new solution as well. In the case where 

a submission of programme code is not correct or 

contains compile errors, the answer and scoring agents 

should work together to reconstruct the code to reach 

potential solutions and give a score based on some 

ratio, depending on the number of codes potentially 

generating correct solutions. 

The Security 

Kassandra (Matt, 1994) introduced security feature 

as a way to ensure a distinct access between lecturer 



Mohd Fadzli Marhusin et al. / Journal of Computer Science 2015, 11 (2): 406.415 

DOI: 10.3844/jcssp.2015.406.415 

 

411 

and students. To achieve that, a separate user interface 

is created with a method of authentication. 

Implementation by Foxley et al. (1997) did not 

describe its security features. In the later version 

called CourseMarker (Foxley et al., 2001) a secure 

feature was introduced. The aim was to ensure the 

execution of the code were done within a sandbox 

environment so that any harmful execution would be 

just within the contained environment. 

Kassandra was among the earliest AAS (Matt, 1994) 

and its security features were limited to protection 

against unauthorised access and access rights on read 

and update records in the system. 

 Username and password is no longer a safe 

implementation (RSA, 2011), various additional 

approaches are needed to enhance security. Thus, 

various proposed systems in the literature employed 

some level of security features. Whether their 

implementation details are sufficient is subject to 

further discussions. We always play some trade-offs, a 

highly secure system might just have features that 

overkill the fundamental idea of having the system in 

the first place and raise usability issues. 

Nevertheless, cryptography remains the most 

effective way of obstructing illegitimate access to data. 

At logon page, we have seen cryptography at work in 

captcha/recaptcha Google, 2014 and various one time-

based token techniques (RSA, 2011). 

PC
2
 encryption implementation ensure data safe 

while in storage and in transit (Ashoo et al., 2013). 

However the strength of the encryption is not dynamic. 

What is desired here is the freedom to automatically 

choose the right strength dynamically, knowing that 

there are various constraints on devices. 

The key size of the encryption algorithm is an 

important parameter. Giry (2014) gives a 

recommendation on the key sizes of the algorithm. The 

recommendation is based on a specific calculation theory 

using the number of years the key strength could 

guarantee protection. However, the formula is designed 

to resist mathematical attacks and attacks specially 

crafted with the aim to cut the time required while 

cracking the encryption key. 

There are many choices of encryption algorithm 

that experts have proven to be reliable, which could 

be used in agent communications. We could obtain a 

set of varied key length from the algorithms as per 

Table 1. In order to ensure the performance penalty of 

the system is within the acceptable level, the 

performance evaluation need to be assessed and 

applied automatically by the system but with options 

to override the configuration. 

Table 1. Encryption algorithms and possible key strength 
to be used 

 Potential algorithms Key strengths 

1 AES 259-bit 
2 AES 192-bit 
3 AES 128-bit 
4 3DES 168-bit 
5 Blowfish 112-bit 

 

Agents’ communication is not restricted to any 

private or public network, which means students, 

tutors, lecturers and coordinators, can access the tool 

from anywhere within a local area network or the 

Internet using their credentials. In order to strengthen 

the communication channel and the data, multi-level 

security encryption is proposed, similar to previous 

evaluations (Sulaiman, 2010; Sulaiman et al., 2011). 

A trade-off is necessary between the need to 

achieve a certain level of data confidentiality related 

to the auto marking mechanism and at the same time 

to manage the volume of traffic efficiently is 

necessary. Theoretically a stronger encryption 

algorithm and a longer key tend to have consequences 

in terms of speed and bandwidth. As the number of 

students varies, but most of the time there is a high 

volume, it is desirable to apply the lowest, yet 

effective encryption algorithm and key, so that the 

submission of programming code is secure. The 

volume of traffic generated by all students in an e-

learning environment where the strongest available 

encryption algorithm and the longest possible key is 

used, compared to a situation without such an 

implementation, is something we would like to 

evaluate in subsequent research. 

Communication between tutors/lecturers and 

lecturers/course coordinators, would require an 

elevated level of security, for example, asymmetric 

encryption algorithms and keys. Understandably, the 

information they deal with would require a suitable 

level of confidentiality. The number of this type of 

users in an e-learning environment is smaller. Thus, 

implementing the strongest encryption algorithms 

with some key length could be possible, without 

hampering the performance of the e-learning 

environment and the traffic of the network involved. 

The same detailed security implementation is needed 

for the data storage. When the data needs to be stored on 

the same machine using the strongest security 

mechanism, it would not be a problem because the 

constraint is only on the CPU load to implement the 

encryption and decryption (Ferguson and Schneier, 

2003). However, when the data needs to be transferred 

from one agent to another, involving a different host, 



Mohd Fadzli Marhusin et al. / Journal of Computer Science 2015, 11 (2): 406.415 

DOI: 10.3844/jcssp.2015.406.415 

 

412 

determination of a suitable encryption algorithm and 

key strength are required because each machine tend to 

have different processing power (Sulaiman, 2010; 

Sulaiman et al., 2011). In case of mobile devices, 

stronger encryption means extra load of processing 

requirement which definitely can drain the battery. 

Threats/Challenges and Potential 

Mitigations/Solutions 

With the implementation of data encryption to 

multi-level users, it is aimed that the system could 

provide secure data in transit and storage. The transfer 

of the data is by using the agent-based technique, 

which offers the ability to build much needed features 

such as data security, portability on data transmission 

and failover recovery, so as to ensure a failure on one 

agent will not affect the whole system. The following 

are among the threats to the system.  

The User is not really the Account Holder  

This could possibly happen when the user account 

has been stolen such as via brute force attack. It is 

where the illegitimate user already knows the targeted 

user-id and the password is guessed via brute force 

dictionary. However, we can protect the user account 

from this kind of attack by implementing an account 

lockout policy. An attempt to unlock the account 

would require a secondary communication medium, 

for example, an email. Another potential for account 

loss is if the user accesses a machine which has been 

installed with a key logger. We assume here that the 

user, before using the system, must activate some 

security mechanism, for example, an anti-virus 

programme that has been installed beforehand to 

detect malware. The implementation of ReCaptcha 

(Sor, 2013) would also help to frustrate the attacker. 

Vulnerability Exploitation 

If a machine has vulnerability and the attacker 

knows the kind of suitable exploits, there is a 

potential of remote shell execution happening. If this 

occurs, the machine is no longer considered safe, but 

the attacker also needs to break the encrypted data as 

well. The most critical part in the system is the central 

server, which keeps the authoritative data. Even 

though other computers can keep the same copy of a 

particular record, there must be at least one copy that 

is marked as the primary source. 

One potential solution is to make sure data is 

replicated to other hosts as well and the moment the 

record is saved, its integrity is checked and recorded. 

There could be an Integrity Agent, which has the role 

to check the integrity of data files in all participating 

hosts. Inevitably, we must rely here on the assumption 

that it is unlikely that a particular file is corrupted due 

to vulnerability exploitations if all hosts have the 

same hash value, unless the hacker must access all 

participating hosts and update the data. 

There are also security issues which is considered 

very fundamental when recently a serious security 

vulnerability in the open SSL library called the heart 

bleed was come to surface (Finkle, 2014; 

Heartbleed.com, 2014). With that level of vulnerability 

any computers implementing whatever encryption 

algorithm, as long as the encryption relies upon the 

library, they are virtually susceptible to attack that can 

harvest the encryption key from the memory. 

Solving a vulnerability require us to patch it so 

that no one else could exploit it. The gap between a 

vulnerability discovered and patched remains the main 

problems that require fixing. Auto update sometime 

requires software or system reboots that might 

prohibit user from choosing this option. Alternatively, 

we require a mechanism such as a detection model 

which is described in (Marhusin, 2012) to detect any 

attempts to exploit vulnerable software or system as 

any code will require execution and/or transmission. 

Admin Privilege Exploitation 

Assuming the privacy of the data in the system is 

fully safe from an unintended user, the next threat is 

only when an administration privilege is misused to 

delete a user account. If the cascade update and 

cascade delete in the database is implemented, a 

deletion of primary key data will result in a total 

deletion of all records associated to that primary key. 

A disaster like this could be prevented by 

implementing a strict procedure for any request to 

delete a user account. 

API Hooking 

Assuming there is no malware in the machine, the 

system might be safe. However, if the machine is 

infected with some malware capable of API hooking, 

the use of encryption is grossly defeated. This is 

because the malware could capture the plaintext at the 

lower layer, as the encryption process is implemented 

at the higher layer. Note that there are various reasons 

for API hooking are used legitimately. Thus, it is 

challenging task to detect any malicious API hooking. 

Rogue Agents 

Dubious agent in an agent environment is serious 

issue software developers must deal with. With a 



Mohd Fadzli Marhusin et al. / Journal of Computer Science 2015, 11 (2): 406.415 

DOI: 10.3844/jcssp.2015.406.415 

 

413 

lacking agent security, attacker could intercept traffics 

and replay the series of traffics at later time. Even if 

the attacker could not reveal the traffic, by chance, the 

play could possibly trigger a data integrity disaster in 

a data-critical related system. Protection against this 

attack is possible by means of strong authentication 

and authorization checking.  

The authentication of agents can be related to what 

the end-user use or something generated by the system 

itself in a unique form. The authorization is important 

to ensure no rouge agent executing command not 

entitled for it to execute. Ferraiolo and Kuhn (1992) 

suggested that are three generic rules are possible 

related to authorization, namely in term of role 

assignment, role authorization and transaction 

authorization. From agent point of views the 

following rules may applicable: 

 

• An agent can only execute x only if the agent has 

been assigned to a specific role 

• If the agent’s main role is to execute x, it must be 

authorized to do that only and should not execute 

y which is belongs to other distinctive agent roles 

• The agent can execute x in which x is authorized 

to be executed under a particular role that the 

agent is classified into 

 

In term of operation and implementation, there are 

expected that more computing resources required 

running this tool due to more features involved. 

Agent-based system with embedded security function 

such as cryptography and authentication features 

required more processing power and memory. 

Conclusion 

In this study we discussed a number of systems, 

related to automated programming code assessment 

and their limitations. We also proposed our 

architecture, called the automated programming code 

assessment tool for use in an e-learning environment. 

The proposed tool is developed using agent-based 

architecture and incorporates multi-level user security, 

which uses asymmetric encryption algorithms to 

strengthen security during data transmission and 

storage. The implementation of these encryption 

algorithms would vary, depending on the role of the 

various users such as students, tutors, lecturers, course 

coordinators and administrators. We also explained 

several threats the system might face and the potential 

solutions to these challenges. Some of these elements 

require separate area of research i.e., malware and 

intrusion detection systems. 

The proposed architecture is limited to 

programming code based assessment. We did not 

discuss the capability in non-programming-code-

based evaluation mechanism. 

Our next research in this topic is to extend the 

capability of the system to deal with comprehension-

based questions too. We intend to integrate the 

existing cognitive domain theories into the assessment 

mechanism to ensure that the questions are up to a 

certain standard and we will measure the quality and 

accuracy of such system.  

Funding Information 

The authors have no support or funding to report. 

Author’s Contributions 

All authors equally contributed in this work. 

Ethics 

This article is original and contains unpublished 

material. The corresponding author confirms that all 

of the other authors have read and approved the 

manuscript and no ethical issues involved. 

References 

Alstes, A. and J. Lindqvist, 2007. Verkkoke: Learning 

routing and network programming online. 

Proceedings of the 12th Annual SIGCSE 

Conference on Innovation and Technology in 

Computer Science Education, Jun. 23-27, ACM, 

Dundee, Scotland UK, pp: 91-95. 
 DOI: 10.1145/1268784.1268813 
Amant, K.S. and B. Still, 2007. Handbook of 

Research on Open Source Software: 

Technological, Economic and Social 

Perspectives. 1st Edn., Idea Group Inc (IGI), 

Hershey PA, ISBN-10: 159140892X, pp: 728. 

Ashoo, S.E., T. Boudreau and A.L. Douglas, 2013. 

Welcome to the PC
2
 home page.  

Bellifemine, F.L., G. Caire and D. Greenwood, 2007. 

Developing Multi-Agent Systems with JADE. 1st 

Edn., John Wiley and Sons, Chichester, England, 

ISBN-10: 0470058404, pp: 300. 

Bloom, B.S., 1984. The 2 sigma problem: The search 

for methods of group instruction as effective as 

one-to-one tutoring. Educ. Res., 13: 4-16. 

 DOI: 10.3102/0013189X013006004 

Douce, C., D. Livingstone and J. Orwell, 2005. 

Automatic test-based assessment of programming: 

A review. ACM J. Educ. Resources Comput., 5. 

DOI: 10.1145/1163405.1163409 



Mohd Fadzli Marhusin et al. / Journal of Computer Science 2015, 11 (2): 406.415 

DOI: 10.3844/jcssp.2015.406.415 

 

414 

Downes, S., 2005. E-learning 2.0. eLearn, 10: 1-1. 

DOI: 10.1145/1104966.1104968 

Edwards, S.H. and M.A. Perez-Quinones, 2008. Web-

CAT: Automatically grading programming 

assignments. Proceedings of the 13th Annual 

Conference on Innovation and Technology in 

Computer Science Education, Jun.-Jul. 30-02, 

ACM, New York, pp: 328-328. 

 DOI: 10.1145/1384271.1384371 

Ferguson, N. and B. Schneier, 2003. Practical 

Cryptography. 1st Edn., Wiley, Indianapolis, 

ISBN-10: 0471223573, pp: 410. 

Ferraiolo, D.F. and D.R. Kuhn, 1992. Role-Based 

Access Controls. Proceedings of the 15th 

National Computer Security Conference, Oct. 13-

16, Baltimore, MD, pp: 554-563.  

Finkle, J., 2014. Little Internet users can do to thwart 

‘Heartbleed’ bug.  

Foxley, E., C. Higgins, E. Burke, C. Gibbon and A.M. 

Zin, 1997. The Ceilidh system an overview and 

some experiences of use. Proceedings of the 

Asian Technology Conference in Mathematics. 

Foxley, E., C. Higgins, P. Symeonidis and A. 

Tsintsifas, 2001. The coursemaster automated 

assessment system-a next generation Ceilidh. 

Proceedings of the Conference on Computer 

Assisted Assessment to support the ICS 

Disciplines, University of Warwick.  

Giry, D., 2014. BlueKrypt.  

Heartbleed.com, 2014. The Heartbleed Bug. 

Heartbleed.com.  

Higgins, C., T. Hegazy, P. Symeonidis and A. Tsintsifas, 

2003. The course marker CBA system: 

Improvements over ceilidh. Edu. Inform. Technol., 

8: 287-304. DOI: 10.1023/A:1026364126982 

Higgins, C., P. Symeonidis and A. Tsintsifas, 2002. The 

marking system for course master. Proceedings of 

the 7th Annual Conference on Innovation and 

Technology in Computer Science Education, Jun. 

24-26, ACM New York, pp: 46-50. 

 DOI: 10.1145/544414.544431 

Higgins, C.A., G. Gray, P. Symeonidis and A. Tsintsifas, 

2005. Automated assessment and experiences of 

teaching programming. ACM J. Educ. Resources 

Comput., 5: 3-3. DOI: 10.1145/1163405.1163410 

Jackson, D. and M. Usher, 1997. Grading student 

programs using ASSYST. Proceedings of the 28th 

SIGCSE Technical Symposium on Computer 

Science Education, Feb-Mar. 27-01, San Jose, ACM 

New York, pp: 335-339. 

 DOI: 10.1145/268085.268210 

Joy, M., P.S. Chan and M. Luck, 2000. Networked 

submission and assessment. Proceedings of the 

8th Annual Conference on the Teaching of 

Computing LTSN Center for Information and 

Computer Sciences, (ICS’ 00), University of 

Southampton, pp: 335-339.  

Joy, M., N. Griffiths and R. Boyatt, 2005. The BOSS 

online submission and assessment system. J. 

Educ. Resources Comput. 

 DOI: 10.1145/1163405.1163407 

Marhusin, M.F., 2012. Improving the effectiveness of 

behaviour-based malware detection. PhD, Thesis, 

University of New South Wales, Canberra, Australia. 

Marhusin, M.F., D. Cornforth and H. Larkin, 2008. 

An overview of recent advances in intrusion 

detection. Proceedings of the 8th IEEE 

International Conference on Computer and 

Information Technology, Jul. 8-11, IEEE Xplore 

Press, Sydney, NSW, pp: 432-437. 

 DOI: 10.1109/CIT.2008.4594714 

Masrom, S., A.S.A. Rahman and A.S. Shafie, 2009. 

Computer assisted assessment for computer 

programming course with agent based architecture. 

Proceedings of the 8th WSEAS International 

Conference on Telecommunications and Informatics 

(CTI’ 09), Istanbul, Turkey, pp: 21-25.  

Matt, U.V., 1994. Kassandra: The automatic grading 

system. SIGCUE Outlook, 22: 26-40. 

 DOI: 10.1145/182107.182101 

Moodle, 2013. Moodle.org: Open-source community-

based tools for learning-Mozilla Firefox.  

Petri, I., A. Tuukka, V. Karavirta and O. Seppälä, 

2010. Review of recent systems for automatic 

assessment of programming assignments. 

Proceedings of the 10th Koli Calling International 

Conference on Computing Education Research, 

Oct. 28-31, Koli, Finland, ACM New York, pp: 

86-93. DOI: 10.1145/1930464.1930480 

RSA, 2011. Why passwords aren’t strong enough. Making 

the case for strong authentication, EMC Corporation. 

Sauve, J.P. and O.L.A. Neto, 2008. Teaching software 

development with ATDD and easy accept. 

Proceedings of the 39th SIGCSE Technical 

Symposium on Computer Science Education Mar. 

12-15, New York, USA, ACM, pp: 542-546. 

 DOI: 10.1145/1352135.1352317 

Soh, L.K., H. Jiang and C. Ansorge, 2004. Agent-based 

cooperative learning: A proof-of-concept experiment. 

Proceedings of the 35th SIGCSE Technical 

Symposium on Computer Science Education, Mar. 

03-07, Norfolk, Virginia, ACM New York, pp: 

368-372. DOI: 10.1145/971300.971427 



Mohd Fadzli Marhusin et al. / Journal of Computer Science 2015, 11 (2): 406.415 

DOI: 10.3844/jcssp.2015.406.415 

 

415 

Sor, 2013. RECAPTCHA library for Java 0.0.7.  

Sulaiman, R., 2010. MAgSeM: A multi-agent security 

framework for secure cyber services. PhD Thesis, 

University of Canberra, Australia. 

Sulaiman, R., D. Sharma, W. Ma and D. Tran, 2011. 

A new security model using multilayer approach 

for E-health services. J. Comput. Sci., 7:       

1691-1703. DOI: 10.3844/jcssp.2011.1691.1703 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UW, 2009. BOSS online submission system. University 

of Warwick.  

Weiss, G., 2013. Multiagent Systems. In: Intelligent 

Robotics and Autonomous Agents Series, Weiss, G., 

(Ed.)., MIT Press, Cambridge, Massachusetts, 

ISBN-10: 0262018896, pp: 867.  


