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Abstract: Normally, the Linear Assignment Problem (LAP) has been 
solved by successful algorithms such as Lapjv and Munkres programmed as 
MATLAB codes. This study presented an improved algorithm for solving 
large scale LAP. A preprocessing (PP) algorithm was proposed to apply for 
constructing the kth transferred reduced cost matrix then this matrix was 
solved by Lapjvalgorithm. Performances of PP-Lapjvalgorithm were faster 
than theoriginal Lapjv about 1.90-8.20% when problem sizes are 
expanded from problem sizes 18000 to 34000 on integer number range 
[1,10] and [1,1000]. On the other hand, PP-Lapjvalgorithm was 
inefficient on integer number range [1, 1000000] due to more time-
consuming for executing Lapjv.m file in PP-Lapjvalgorithm. The 
enlargement of number ranges is influenced to the average computation 
time of Lapjvalgorithm raised about 53.63% and 32.05% when the range 
is expanded from [1,1000] to [1,1000000] on problem sizes 18000 and 
30000,respectively. The limitations of problem size were determined by 
virtual memory of the tested computer that both algorithms enabled to 
solve at the maximum problem size of 34000. 
 
Keywords: Large Scale Linear Assignment Problem, Complementary 
Slackness Conditions, Shortest Augmenting Path Method, Preprocessing 
Algorithm, Lapjv Code 

 

Introduction  

LAP is one of the most famous problems in linear 

programming and in combinatorial optimization. In the 

present, the scale of problems are expanded to large 

scale problems as the road network equilibrium traffic 

(LeBlanc et al., 1985), a fleet scheduling (Hane et al., 

1995) and the computing utility (Zhu et al., 2004) etc. 

The large scale problem appeared in the management 

science has been growing rapidly up to now. However, 

the large scale problem can be time-consuming in order 

to solve for the optimal solution. Algorithms for solving 

LAP can be divided into six groups; primal-dual, 

simplex-based, primal (non-simplex), dual simplex-

based, dual (non-simplex) algorithms and parallel 

algorithms (Burkard and Cela, 1999). 

Sixty years ago, Harold H. Kuhn proposed a primal-

dual algorithm as the Hungarian method, the first 

polynomial-time method for the assignment problem, 

can solve the real world problem easily. After that the 

new research area has been studying today known as the 

combinatorial optimization. The Hungarian method is 

improved by James R. Munkres who developed the 

Hungarian’s algorithm for solving the rectangular cost 

matrix. The Hungarian algorithm was written in the first 

computer code by R. Silver in 1960 using ALGOL 

language (Hung and Rom, 1980).  
Another primal-dual approach, is called the shortest 

augmenting path algorithm. Tomizawa’s shortest 
augmenting path was the alternative algorithm involved 
under the complementary slackness property and using 
the shortest path technique from Dijkstra’s algorithm for 
searching the optimal solution. 

Jonker and Volgenant developed a code to solve the 

LAP in PASCAL while G.Carpaneto, S.Martello and 

P.Tothcode was in FORTRAN. The auction algorithm 

was proposed by D.P. Bertsekas in1981. This algorithm 

being modeled using admissible transformation of the 

primal and dual solutions can be both updated 

simultaneously. In the Hungarian method, the value of 

dual objective function expands after all primal and 

dual solutions update, whereas in the auction 

algorithm it is certain that this objective function does 

not diminish. Other primal-dual algorithms are formed 
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as a minimum cost flow problem called a pseudo-flow 

algorithm. It is a flow which completes the capacity 

constraints. However, it does not accomplish the flow 

conversation constraints. This algorithm works with ε-

relaxations of the minimum cost flow problem that ε is 

decreased and the procedure is iterated until ε 

converges to 1/n. At this point, an optimal solution of 

the ε-relaxed flow problem is also an optimal solution 

for the minimum cost flow problem. The pseudo-flow 

algorithm applies ε-complementary conditions 

whereas the auction algorithm applies cost scaling. 

The family of pseudo-flow algorithms were developed 

by J.B.Orlin and R.K.Ahuja in 1987, A.V.Goldberg, 

S.A.Plotkin and P.Vaidya in 1993, A.V.Goldberg and 

R.Kennedy in 1995 (Burkard et al., 2009).  
Normally, the traditional Hungarian, shortest 

augmenting path methods are written as source codes for 
solving LAP in FORTRAN and PASCAL. The 
Hungarian method was written in FORTRAN by 
E.L.Lawler in 1976, by G.Carpaneto and P.Toth in 
1980, by G.Carpaneto, S.Martello and P.Toth in 1988 
for both dense and sparse matrices. The shortest 
augmenting path method was written in FORTRAN by 
N.Tomizawa in 1971 found in the book by R.E.Burkard 
and U.Derigs in 1980, in PASCAL by R.Jonker and 
A.T.Volgenant in 1986 (Burkard and Cela, 1999). 
However, the format of FORTRAN and PASCAL 
language are inefficient for constructing a large scale 
cost matrix. While the MATLAB software are designed 
for supporting large scale matrix which can be applied to 
write source code in almost large scale problems with 
both fully dense and sparse matrices.  
Nowadays, the large scale problems involve 

widely in decision making such as crew assignment 
problem in airline industry that need weekly large 
scale flight scheduling. The problem size should 
expand rapidly until the traditional algorithms are 
unable to solve them. 
This study intends to introduce the admissible cell 

generation that uses the successive complementary 
slackness condition for searching the admissible cells to 
replace the fully dense cells for solving large scale LAP. 
Comparative performances between the traditional 
algorithm and the proposed algorithm consist of the 
Hungarian, shortest augmenting path and the pre-
processing algorithms. 

Material and Methods 

Mathematical Model 

Burkard et al. (2009) stated that consider a problem 
of matching n persons to n tasks where for each person i 
and for each task j. There is an associated cost cij of 
assigning person i to task j. The LAP is the problem of 
matching n persons to n tasks in order to minimize the 

total cost. The standard integer programming of the LAP 
is defined as follows: 
 

 1  person      ,  0
ij ij

Let x if i is assigned to task j otherwise x= =  

 

1 1

n n

ij ij

i j

Minimize c x

= =
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1
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x i n

=
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ij
x i j n∈ ∀ =  (4) 

 

Complementary Slackness Condition 

Burkard et al. (2009) stated that the dual problem is 
associated with dual variables ui and vj with assignment 
constraints (2) and (3) respectively as follows: 

 

1 1

n n

i j

i j

Maximize u v

= =

+∑ ∑  (5) 

 
Subject to: 

 

           , 1,2,...,
i j ij

u v c i j n+ ≤ ∀ =  (6) 

 
Rearrange Equation 6: 

 
 0        , 1,2,...,

ij i j
c u v i j n− − ≥ ∀ =  (7) 

 

( ) 0
ij i j
c u v− + ≥  (8) 

 

0
ij ij
c w− ≥  (9) 

 
From Equation 7: 

 

 
ij ij i j
c c u v= − −  (10) 

 

where, 
ij
c  is called the reduced cost. 

Theorem 1 (Complementary slackness theorem).  
Let x = [xij] be a primal feasible solution and w = 

[wij] be a dual feasible solution to a symmetric pair of 
linear programs. Then x and w become an optimal 
solution pair if and only if the following 
complementary slackness conditions are satisfied 
(Fang and Puthenpura, 1993) 
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Multiply Equation 9 by: 
 

; ( ) 0
ij ij ij ij
x x c w− ≥  (11) 

 

Case a: if xij = 0 and cij-ui-vj ≠ 0 then there exists at 
least a violation in inequality for some i and j; 
therefore, this condition has an opportunity for 
improving solution. 

Case b: if xij = 1 and cij-ui-vj ≥ then they satisfy 
Equation 4 and inequality (7) for all i and j; 
therefore, xij and ui, vj can be an optimal 
solution. 

 
Both cases can be applied to the corresponding 

linear programming model both in primal and dual 
forms of the LAP. 

Basic Preprocessing Algorithm 

Burkard et al. (2009) introduced the algorithm for 
solving LAP that adopt a Basic Preprocessing (BPP) 
phase to find a feasible dual solution and a partial primal 
solution (which it to be less than n rows) satisfying the 
complementary slackness conditions. A BPP algorithm 
for finding feasible dual solution and partial primal 
solution can be written as this Pseudocode 1. 
 
Pseudocode 1% BPP algorithm  
% dual variables 
for i = 1:n; 
ui = min {cij: j = 1,2,…,n}; 
end for; 
for j = 1: n; 
vj = min {cij: ui: i = 1,2,…,n} 
end for; 
% partial feasible solution 
for j = 1 to n; 
 row(j) = 0; 
 for i = 1 to n; 

  if row(j) = 0 and 0
ij i j
c u v− − =  then 

  
xij = 1 and row(j)=i; 

  break; 
  end if; 
 end for; 
end for; 
 
The partial primal solution from a BPP algorithm can 

be allocated in ϕ as: 
 

  if row( ) is assigned to column ( )
( )  , 1,2,...,

0  otherwise 

j i j
i i j nϕ


= ∀ =


 (12) 

 
The ui and vj values are determined by the left hand 

side statements of Equation 7. The xij values achieve 
satisfying the complementary slackness conditions in 
Equation 11. 

The Proposed Preprocessing Algorithm 

The preprocessing (PP) algorithm is applied from the 

BPP algorithm that it makes many admissible cells on 
each row or column allocated in the kth reduced cost 

matrix. This matrix is transferred all admissible cells to 
be their unit costs in the kth transferred reduced cost 

matrix without assigning partial primal solution as the 
BPP algorithm. The kth transferred reduced cost matrix 

is solved by some traditional algorithms to provide the 
assignment solution and total cost. Then repeating the 

new u-v dual variables from the kth reduced cost matrix, 
the new kth transferred reduced cost matrix to be 

constructed and solved by traditional algorithms again. 
Until the new total cost is certainly unchangeable and 

the computation goes to terminate; therefore, the last 
total cost and the last assignment solution are the 

optimal solution. The difference between the BPP 
algorithm and the PP algorithm includes that the BPP 

provides the partial assignment solution, whereas the 
PP algorithm arranges the admissible cells for 

searching the optimal solution later.  
PP algorithm uses conditions on both cases “a” and 

“b” to provide the admissible cells as: if cij-vj≤ 0 then xij 
has an opportunity for improving solution. The procedure 
of the PP algorithm can be explained as follows: 
 
Pseudocode2 % PP algorithm  
z_1 = 0; 
for k = 1:n; 
 % dual variables 
for i = 1:n; 

min{ : 1,2,..., }
i ij
u c j n= =

; 
end for; 
for j = 1:n; 

min{ : 1,2,..., };
j ij i

v c u i n= − =

 
end for; 
 % admissible cells 
for j = 1 to n; 
 for i = 1 to n; 

  if 0
ij i j
c u v− − ≤  then 

   ij ij
c c= ; % admissible cell 

  else 

   
'NaN

ij
c = ; 

 end if; 
 end for; 
end for; 
 % assignment solution (a) and total cost (z) 

 [a,z] = Lapjv(
ij
c ) or Munkres(

ij
c ); 

 % convert the reduced cost to the equivalent unit cost 
cij = ij

c  ; 

% loop controller (z) 
 if z-z_1 = 0 then 
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  break; 
 else 
z_1 = z; 
 end if; 
end for k; % 
 

Applied the Preprocessing Algorithm  

Determine the admissible cells from the PP 
algorithm; consequently, applying the PP algorithm 
creates the reduced cost matrix and executes it by some 
traditional algorithms.  
The PP algorithm is operated to search the 

admissible cells that is transformed them to construct 
a transferred reduced cost matrix. This matrix consists 
of a unit cost value of each admissible cell and NaN 
symbol in place of zero values each non-admissible 
cell. It is solved by some traditional algorithms for 
searching the current total cost and current assignment 
solution and is turned to iterate searching the new the 
admissible cells and the new total cost and assignment 
solution. If total cost to be unchangeable then this 
total cost is optimal and terminates the iteration, 
otherwise turn to find the new admissible cells. This 
approach is called the k-preprocessing (k-PP) 
algorithm that can be illustrated by its procedure as 
below: 
 

• Generate a random unit cost matrix  

• Find the u-v dual variables 

• Construct the kth reduced cost matrix computing 

ij ij i j
c c u v= − −  for all 

ij
c . 

 
Transfer the reduced cost matrix in these criteria: 

 

• If the reduced cost value of any cells is equal to zero 
or being less than zero, allocate its unit cost on a cell 

• Otherwise, allocate a ‘NaN’ symbol on its cell 
 
Solve the kth transferred reduced cost matrix by 

Lapjv/Murkres source codes. 
Check the following conditions: 

 

• If total cost value is unchangeable then the current 
total cost and assignment solution are optimal and 
terminates the iteration 

• Otherwise, turn to step 2 

 
Procedure depicts that if the current total cost has 

been unchangeable then it is certainly optimal. 
Moreover, the k-time of iterations are involved with 
particular of each number range whenthe optimal 
solution already achieves. 
This k-PP algorithm must execute Lapjv or 

Munkres source code with time of iterations together; 

consequently, it operates inefficiently on the running 
time. To solve this disadvantage, the k-PP algorithm 
can be improved by firstly providing the kth 
transferred reduced cost matrix and secondly, this 
matrix can be solved by Lapjv or Munkres source 
code once only. When executing Lapjv or Murkres 
with one iteration, it can diminish obviously the 
overall running time. While the kth iteration of 
providing the kth transferred reduced cost matrix can 
find from testing the k-PP algorithm with the same 
number range. The improved algorithm referred as the 
preprocessing (PP) algorithm that can be explained as 
the following procedure. 
 
Steps 1-4 follow the procedure previously described 

in the k-PP algorithm: 
 

• Perform steps 2-4 k iterations 

• Solve the kth transferred reduced cost matrix by 
Lapjv or Murkres source code 

• The obtained total cost and assignment solution 
from step 6 are optimal and terminate the iteration 

 
PP algorithm must operate using k time of iterations 

from k-PP algorithm with the same number range. If 
number range expands sharply, it can be also influenced 
to increase the value of k. 
This successive admissible cell method can be 

applied in the primal simplex-based algorithm such as 
the column generation method (Boonphakdee and 
Charnsethikul, 2014). This method uses some heuristics 
to search the initial basic solution then constructing 
the Restricted Master Problem (RMP). This RMP is 
merely allocated with 2n-1 basic variables which 
utilizes less memory space used to appropriately 
solving large scale LAP. Primal simplex algorithm is 
conducted to solve RMP in order to search its dual 
variables for computing all reduced costs. The 
minimal negative reduced cost is selected to generate 
an admissible cell which to be attached to the sparse 
RMP matrix. Return to solve iteratively on this sparse 
matrix using the primal simplex method until all 
reduced costs are nonnegative then terminates 
iteration. Therefore, the solution of the last iteration is 
an optimal solution. Advantage of this method can solve 
larger problem size due to less memory space used; 
however, it must use more time-consuming for searching 
a required admissible cells one at a time. 

Computational Experiments 

This study intends to concentrate the performance 

of the proposed algorithm comparing with the 

successfully algorithms such as Hungarian 

(Munkres.m) and shortest augmenting (Lapjv.m) 

algorithms. The proposed algorithms consist of the 
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applied preprocessing algorithm for searching the 

initial basic feasible solution matrix and solved by the 

faster algorithm. MATLAB 2011a is implemented to 

write source codes for all algorithms because it can 

construct large scale matrix efficiently. 

PP-Lapjvalgorithm applies the PP algorithm to 

create the kth reduced cost matrix then using the 

Shortest augmenting path or Hungarian algorithm 

searches an optimal assignment solution. Hungarian 

[Munkres.m version 2.3] and shortest augmenting 

path [Lapjv.m version 3.0] algorithms have been 

applied for MATLAB source code written by Yi Cao 

at Cranfield University (Cao, 2011; 2013). The Lapjv 

(Jonker-Volgenant) algorithm is faster than the 

famous Hungarian algorithm. Cao’s source code 

modified from the original C++ code which was made 

by Roy Jonker, one of the inventors of this algorithm. 

Both algorithms were compared the performance and 

tested the exact solution with a simple test problem 

from OR- library (Beasley, 1990) in 100×100 and 

300×300 problem sizes. The faster algorithm was 

interesting to improve the performance for solving 

large scale LAP later. The effect of integer uniformly 

randomly generated in the range parameter K (with K 

= 10, 103, 106) are tested within 10 substances of both 

the improved algorithm and the original algorithm. 

 This study was interested in the computation time 

and the maximum problem size solving by the 

proposed algorithm and the effect of related input 

integer number data on the computation time. The 

proposed algorithm used the integer uniformly 

randomly generated numbers for a fully dense cost 

matrix. All developed programs were performed using 

a HP “Pavilion” personal computer with processor: 

Intel ® core ™i3-530 CPU@2.93GHz 12 GB usable 

RAM and the operating system was Windows 7 64 bit. 

Results and Discussion 

Verified Test 

To verify all source codes, both the successful 

algorithms were tested using data from Beasley (1990) 

such as A100.txt and A300.txt. The result of testing can 

be illustrated in Table 1. 

In Table 1, the performances of Lapjv code can 

execute to be faster than those of Munkres code about 

64.71 and 56.00% for A100.txt and A300.txt sample, 

respectively. Amico and Toth indicated that the time 

complexity of Lapjvalgorithm was O(n3) whereas 

Burkard et al. (2009) stated that the time complexity 

of Munkres algorithms was O(n4). Therefore, this 

study intended to improve Lapjvalgorithm for solving 

large-scale LAP. The PP algorithm was applied for 

constructing the initial basic solution sparse matrix 

then it was solved by Lapjv code. PP-Lapjvalgorithm 

was tested and compared with Lapjvalgorithm from 

A100.txt and A300.txt problems shown in Table 2. 

In Table 2, the average computation time of PP-

Lapjv is faster than the original Lapjvalgorithm for 

operating A300.txt about 10.30%. On the other hand, 

PP-Lapjv is slower for running A100.txt about 

50.00%. This result shows that if the number of tasks 

is expanded to a large scale size, Table 2 depicts that 

trend of computation time curve of PP-Lapjv can be 

the faster one. The total cost solution of A100.txt to 

be displayed “305” on workspace window of 

MATLAB shown as Fig. 1a and 1b. 

Computing k Times of PP Algorithm 

PP algorithm need k-times for computing the 

transferred reduced cost matrix on the kth iteration. 

The k-PP algorithm determines k-time on different 

number ranges shown in Table 3. These k can be 

appropriately difference values depend upon problem 

structure of cij. 

The Average Computation Time for Solving Large-

Scale AP 

When the large-scale LAP was started from problem 

size 2000 to problem size 26000 and range of unit cost 

[1,25], the computation time enlarged rapidly. The 

comparative performance between Lapjv and PP-Lapjv 

can be illustrated in Fig. 2. 

 
Table 1. Total cost (Z) and the average computation time (s.) 

of Lapjv and Munkres codes 

Data Lapjv Munkres 

A100.txt.(Z) 305.000 305.000 
A300.txt.(Z) 626.000 626.000 

A100.txt.(s.) 0.018 0.051 
A300.txt.(s.) 0.165 0.375 

No. of samples 10.000 10.000 

 
Table 2. Total cost (Z) and the average computation time (s.) 

of Lapjv and PP-Lapjv code 

Data Lapjv PP-Lapjv 

A100.txt (Z) 305.000 305.000 
A300.txt (Z) 626.000 626.000 

A100.txt (s.) 0.018 0.027 
A300.txt(s.) 0.165 0.148 
No. of samples 10.000 10.000 

 
Table 3. k-Time for constructing the transferred reduced cost 

matrix 

Number range [1,10] [1,25] [1,1000] [1,1700000] 

k-time 2 2 2 7 
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(a) 

 

 
(b) 

 
Fig. 1. (a) Window of MATLAB workspace when Lapjvalgorithm operates with A100.txt (b) Window of MATLAB workspace 

when PP-Lapjvalgorithm operates with A100.txt 

 

 
 

Fig. 2. The average running time of  Lapjv.m file in Lapjvand PP-Lapjv algorithms on  integer range [1,25] 
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Fig. 3. The average total computation time of Lapjv and PP-Lapjv algorithms on integer range [1,25] 

 
In the above figure, at n>18000, the trend of the 

average computation time in Lapjv.m file of PP-
Lapjvalgorithm begins to improve at n = 20000, 22000, 
24000 and 26000 about 22.17, 7.79, 9.39 and 18.01%, 
respectively. On the other hand, at n <4000, the average 
time solved by Lapjv.m file of PP-Lapjvalgorithm are 
slower than the direct Lapjvalgorithm. This result can 
be supported from the fact that PP-algorithm provided 
the kth reduced cost matrix using the Lapjv.m file to 
find the optimal solution from the admissible cells in 
the sparse kth transferred reduced cost only whereas 
Lapjv.m file of Lapjvalgorithm must start to operate 
with a fully dense cost matrix. 
The running time of PP-Lapjv in Fig. 2 combines 

with time for constructing the kth transferred reduced 
cost matrix and time for generating random unit cost 
matrix, the result in Fig. 3 depicts the average total 
computation time of PP-Lapjvalgorithm on number 
range [1,25] to be faster than Lapjvalgorithm about 5.73, 
2.65 and 8.34% at problem sizes 20000, 24000 and 
26000, respectively.  
Shortest augmenting path algorithm usually consists 

of two part: Firstly, compute a primal partial solution 
and a dual feasible solution which satisfy the 
complementary slackness conditions and for the second 
part, the primal solution is added one row-column 
assignment at a time till the current primal-dual 
solution is iterated in order to hold the complementary 
slackness conditions and become feasible solution. PP 
algorithm also provides the first part for searching the 
admissible cells which are allocated in the transferred 
reduced cost matrix (step 2-4 of PP-Lapjvalgorithm) to 
replace a fully dense cost matrix. 

Effect of Integer Number Ranges 

Integer number of a dense cost matrix is interesting in 
this experiment. Performance of Lapjvalgorithm is 
measured and divided into three parts as time for 

generating random unit cost matrix, time for running 
Lapjv.m file and total running time whereas the 
performance of PP-Lapjvalgorithm to be divided into 
four parts which include three parts as the same time for 
running Lapjvalgorithm and one part as time for 
constructing the kth transferred reduced cost matrix. 
However, this study is interested in time for running 
Lapjv.m file and its total running time which are 
illustrated as Table 4 and 5. 
Table 5 depicts that the average total time of both 

algorithms trend to expand continuously when 
extending the upper bound of range cost; therefore, 
number range impacts significantly for running time 
performances. This behavior of PP-Lapjvalgorithm 
can be explained in Fig. 4. 
In Fig. 4,theaverage total time of Lapjvalgorithm at 

problem sizes 18,000 and 30,000 using range [1, 106] are 
greater than range [1, 103] about 53.51 and 36.27%, 
respectively and the average total time of PP-
Lapjvalgorithm at problem sizes 18,000 and 30,000 
using range [1, 106] are also greater than range [1, 103] 
about 63.51 and 51.33%, respectively. The enlargement 
of the average total time corresponds with time of 
iteration. The unit cost of PP-Lapjvalgorithm on range 
[1, 106] must be executed with 7 iterations for 
constructing the 7th reduced cost matrix whereas the unit 
cost of Lapjvalgorithm on number range [1, 103] to be 
merely operated in two iterations. 

Comparative Study 

Performances of both algorithms can be compared 
in order to identify better algorithm for solving large 
scale problem sizes. From results of the last section, it 
indicates that the unit cost affects to the running time; 
hence, analyzing on various number range is 
significant certainly. Figures 5-10 depict comparison 
of both algorithms at number ranges [1,10], [1, 103], 
[1, 106] as follows. 
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Fig. 4. The average total running time of Lapjv and PP-Lapjvalgorithms at problem sizes 18,000 and 30,000 

 

 

 
Fig. 5. The average running time of Lapjv.m file in Lapjv and PP-Lapjv algorithms on integer range [1,10] 

 

 

 
Fig. 6. The average total computation time of Lapjv and PP-Lapjv algorithms on range [1,10] 
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Fig. 7. The average running time of Lapjv.m file in Lapjv and PP-Lapjv algorithms on integer range [1, 103] 

 

 
 

Fig. 8. The average total computation time of Lapjvand PP-Lapjv algorithms on range [1, 103] 

 

 
 

Fig. 9. The average running time of Lapjv.m file in Lapjv and PP-Lapjv algorithms on range [1, 103] 



Warut Boonphakdee and Peerayuth Charnsethikul / Journal of Computer Sciences 2016, 12 (8): 424.435 

DOI: 10.3844/jcssp.2016.424.435 

 

433 

 
 

Fig. 10. The average total computation time of Lapjv and PP-Lapjv algorithms on range [1, 103] 

 
Table 4. The average computation time of Lapjv.m file in Lapjv and PP-Lapjvalgorithms on range [1,10], [1, 103], [1, 106] 

 Lapjv   PP-Lapjv 

Algorithm --------------------------------------------------- --------------------------------------------------- 
Number range [1,10] [1, 103] [1, 106] [1,10] [1, 103] [1, 106] 

n = 10,000 185.45 83.14 188.77 198.3 95.27 190.32 

 14,000 374.77 206.84 593.58 399.08 231.45 635.60 

 18,000 660.31 420.99 1195.43 698.19 468.73 1188.45 

 22,000 2649.05 2187.22 3321.56 2301.26 1915.21 3235.54 

 26,000 4642.76 3876.73 5481.35 4182.47 3643.63 5654.72 

 30,000 8363.56 6955.18 10867.45 7590.69 6587.80 10249.88 

 34,000 13071.24 13492.97 16153.61 11560.35 11380.75 16169.52 

No. of samples 10.00 10.00 10.00 10.00 10.00 10.00 

 
Table 5. The average total computation time of Lapjv and PP- Lapjvalgorithms on range [1,10], [1, 103], [1, 106] 

 Lapjv   PP-Lapjv 

Algorithm ------------------------------------------------------- ----------------------------------------------------- 
Number range [1,10] [1, 103] [1, 106] [1,10] [1, 103] [1, 106] 

n = 10,000 526.39 415.69 495.91 559.36 451.38 619.63 

 14,000 1044.64 877.33 1230.80 1136.55 935.86 1527.961 

 18,000 1720.80 1472.03 2259.78 1876.23 1651.81 2700.84 

 22,000 4295.05 3769.95 4987.56 4054.63 3644.80 5572.51 

 26,000 6891.90 6107.80 7688.41 6696.75 6174.10 9035.58 

 30,000 11434.72 10000.25 13627.48 10936.37 9809.41 14844.92 

 34,000 16822.72 16923.69 19886.97 15397.73 15535.24 21981.33 

No. of samples 10 10 10 10 10 10 

The kth reduced cost  - - - 2 2 7 

 

Figure 5 depicts that the running time of Lapjv.m file 
in PP-Lapjvalgorithm to be faster than the direct 
Lapjvalgorithm about 13.13, 9.91, 9.24 and 11.56% at 
problem sizes 22000, 26000, 30000 and 34000, 
respectively. When n>18000, the running time of Lapjv.m 
file in PP-Lapjvalgorithm can be improved efficiently. 
The running time of PP-Lapjv in Fig. 5 combines 

with time for constructing the kth transferred reduced 
cost matrix and time for generating random unit cost 
matrix, whereas Fig. 6 depicts the average total 

computation time of PP-Lapjvalgorithm on number 
range [1,10] to be faster than Lapjvalgorithm about 5.60, 
2.83, 4.36 and 8.47% at problem sizes 22000, 26000, 
30000 and 34000, respectively. 
In Fig. 7, the running time of Lapjv.m file in PP-

Lapjvalgorithm to be faster than Lapjvalgorithm about 
12.44, 6.01, 5.28 and 15.65% at problem sizes 22000, 
26000, 30000 and 34000, respectively. Therefore, the 
running time of Lapjv.m file in PP-Lapjv can be 
improved efficiently.  
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In Fig. 8, the average total computation time of 
PP-Lapjvalgorithm on number range [1, 103] to be 
faster than Lapjvalgorithm about 3.32, 1.91 and 
8.20% at problems sizes 22000, 30000 and 34000, 
respectively.  
Figure 9 depicts that the running time of Lapjv.m file 

in PP-Lapjvalgorithm to be faster than Lapjvalgorithm 
about 0.58, 2.59 and 5.68% at problem sizes 18000, 
22000 and 30000, respectively. However, the running 
time of Lapjv.m file in PP-Lapjvalgorithm cannot be 
improved significantly. 
In Fig. 10, PP-Lapjvalgorithm cannot solve efficiently 

at all problem sizes with range [1,106] since the running 
time of Lapjv.m file of PP-Lapjvalgorithm (Fig. 9) 
overcomes Lapjvalgorithm slightly. So, the average total 
running time of PP-Lapjvalgorithm is still slower. 
From Fig. 5-10, PP-Lapjvalgorithm can enhance 

better performances for solving large scale LAP when 
the problem size is expanded over 18000 and its unit cost 
matrix to be in range [1,1000].  

Maximum Problem Size Solving 

Large scale LAP can be solved with problem size 
expanded until MATLAB command window shows 
“out of memory”. Memory spaced used by MATLAB 
can be displayed on command window by ‘memory’ 
command. For running Lapjv and PP-
Lapjvalgorithms, actual memory space used by 
MATLAB to be illustrated in Fig. 11. 

In Fig. 11, memory used for running Lapjv and PP-

Lapjvalgorithms differ slightly. When the problem size n 

is expanded over the value of 34000, its memory space 

used by MATLAB closes to the maximum problem size. 

Expanding n experimentally, until MATLAB command 

window displays ‘out of memory’ as shown in Fig. 12. 

When the problem size is expanded to 35000, 

Lapjvalgorithm fails to operate due to out of memory 

space used. Therefore, the maximum problem size was 

possible on 34,000. Figure 12 depicts that actual memory 

space used by MATLAB should be less than 9,824 MB. 
 

 
 

Fig. 11. Actual memory space used by MATLAB of Lapjv and PP-Lapjv algorithms 

 

 
 

Fig. 12. Memory space used by MATLAB at problem size 35,000 
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Limitation of Lapjv code in this experiment cannot 
solve large scale LAP on a dense cost matrix with 
problem size over 34,000. This limitation can be 
improved by using the preprocessing algorithm for 
constructing an admissible sparse matrix. This sparse 
matrix will be solved efficiently by a sparse Lapjv code 
which can solve with less memory space used. 
Therefore, this sparse code could be solve large scale 
LAP with more problem size. However, a sparse Lapjv 
code was just written in FORTRAN and PASCAL 
language (Jonker and Volgenan, 1987). 
Normally, Lapjvalgorithm was designed to solve 

efficiently with a fully dense matrix. PP-Lapjvalgorithm 
can generate the admissible cells matrix which is 
transferred to a sparse cost matrix. If Lapjv code is also 
improved to solve a sparse matrix, this code will execute 
with both less time-consuming and the higher maximum 
problem size. 
Authors are interested in applying the PP algorithm to 

improve the performance of both primal-dual and 
simplex-based algorithms for solving transportation and 
shortest path problems. 

Conclusion 

Nearly thirty years ago, LAP has been efficiently 
solved by the successful shortest augmenting path 
algorithm; nevertheless, this study proposes the PP 
algorithm to improve the performance of the successful 
algorithm. The problem size was extended, the PP 
algorithm generated the successive admissible cells to 
allocate in a sparse cost matrix replacing a fully dense 
cost matrix in order to solve with both less time-
consuming and less memory space used. On the other 
hand, Lapjvalgorithm executed on a fully dense cost 
matrix with more time-consuming. However, if the 
integer number range is expanded, the PP algorithm 
will be executed a more k iterations leading to an 
increase on running time. In this case, performances of 
PP-Lapjvalgorithm is inefficient for solving LAP on a 
large related number range. The problem size and 
memory space used are related reversely. The proposed 
algorithm can utilize with much less memory space 
used and it can solve the problem with larger sizes as 
compared to the direct approach. 
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