

© 2017 Carlos Roberto Valêncio, André Francisco Morielo Caetano, Angelo Cesar Colombini, Mário Luiz Tronco and

Márcio Zamboti Fortes. This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Original Research Paper

A Fast Access Big Data Approach for Configurable and

Scalable Object Storage Enabling Mixed Fault-Tolerance

1
Carlos Roberto Valêncio,

1
André Francisco Morielo Caetano,

2
Angelo Cesar Colombini,

3
Mário Luiz Tronco

and

4
Márcio Zamboti Fortes

1Department of Computer Science and Statistics - DCCE, São Paulo State University (Unesp),

Institute of Biosciences, Humanities and Exact Sciences (Ibilce), Campus São José do Rio Preto, São Paulo, Brazil
2Department of Computer Science and Statistics, Federal University of São Carlos (UFSCar) São Carlos, São Paulo, Brazil
3Department of Mechanical Engineering – EESC, São Paulo University (USP) São Carlos, São Paulo, Brazil
4Department of Electrical Engineering – TEE, Fluminense Federal University (UFF), Niterói, Brazil

Article history

Received: 23-04-2017

Revised: 08-06-2017

Accepted: 20-06-2017

Corresponding Author:

Marcio Zamboti Fortes

Department of Electrical

Engineering – TEE,

Fluminense Federal University

(UFF), Niterói, Brazil
Email: mzf@vm.uff.br

Abstract: The progressive growth in the volume of digital data has become

a technological challenge of great interest in the field of computer science.

That comes because, with the spread of personal computers and networks

worldwide, content generation is taking larger proportions and very

different formats from what had been usual until then. To analyze and

extract relevant knowledge from these masses of complex and large volume

data is particularly interesting, but before that, it is necessary to develop

techniques to encourage their resilient storage. Very often, storage systems

use a replication scheme for preserving the integrity of stored data. This

involves generating copies of all information that, if lost by individual

hardware failures inherent in any massive storage infrastructure, do not

compromise access to what was stored. However, it was realized that

accommodate such copies requires a real storage space often much greater

than the information would originally occupy. Because of that, there is error

correction codes, or erasure codes, which has been used with a

mathematical approach considerably more refined than the simple

replication, generating a smaller storage overhead than their predecessors

techniques. The contribution of this work is a fully decentralized storage

strategy that, on average, presents performance improvements of over 80%

in access latency for both replicated and encoded data, while minimizing by

55% the overhead for a terabyte-sized dataset when encoded and compared

to related works of the literature.

Keywords: Erasure Coding, Data Storage, Cache, Object Storage, Big Data

Introduction

Large-scale data, or Big Data, resilient storage is one

of the major problems addressed in terms of infrastructure

support in computer science (Alnafoosi and Steinbach,

2013) (Hashem et al., 2015). This means that when it

comes to valuable information, storage systems design

needs planning in such a way that no data is ever lost,

regardless of external faults or factors common to any

computational environment, such as hard disk failures

and server crashes. In this sense, many of the existing

state-of-the-art technologies use a replication

methodology, which consists of entirely copying and

storing data at different locations, often

geographically distant, thus adding a degree of

redundancy (Gonizzi et al., 2015). Although this

technique has proved to be reasonably efficient in

several scenarios and is still pertinent in many contexts,

pure replication has its disadvantages. The biggest and

most obvious is the increase in the required disk capacity

to store a given dataset, which also implies a greater

overhead on each update to keep identical copies as well

as increases in hardware time and resources costs

(Weatherspoon and Kubiatowicz, 2002). In this sense,

new techniques have been progressively studied and

introduced in distributed environments, with emphasis

on methods that use error correction codes, also known

as erasure codes (Khan et al., 2012). Erasure coding

Carlos Roberto Valêncio et al. / Journal of Computer Science 2017, 13 (6): 192.198

DOI: 10.3844/jcssp.2017.192.198

193

algorithms split a data object d into n parts, each part

significantly smaller than d. Not being full copies, these

parts are instead generated using algebraic and logical

operations in order to store only a fraction of the original

data. Given an arbitrary number k < n, optimal erasure

coding algorithms provide that the data object d can be

fully restored by combining any k parts, therefore

tolerating up to any combination of possible n-k failures.

As these parameters (n, k) are configurable, an erasure

coding algorithm could provide the same fault-

tolerance of replication methods, but instead providing

much less storage overhead (Li and Li, 2013). As

examples of method application we can cite the research

of Hyun et al. (2017; Al-Awami and Hossanein, 2016;

Gribaudo et al., 2016).

To avoid having to transfer all parts of an erasure

coded data object through the network of a distributed

system every time the object is accessed, which could

stress the network and decrease access time, one

alternative is to use some sort of caching mechanism. A

very common caching technique is LRU, which

implements a least recently used policy, swapping data

in and out of the faster access storage area based on

how recent was the last request to it (Li et al., 2014).

There is, though, an alternative technique with far

better hit ratio (Megiddo and Modha, 2004), which

means better usage of the limited cache area, than LRU.

Albeit having more complex implementation, the

adaptive replacement cache, or ARC, policy utilizes the

history of content removed from the cache and

dynamically allocates data on the faster access storage

based on both recency and frequency.

Ma et al. (2013) proposed the CAROM storage

architecture in their work, which was one of the first in

academic literature to suggest the combined use of

replication and erasure codes. The work focuses on cloud

environments and the tests performed at a datacenter

level. There is a per-datacenter global caching strategy

implemented, which however uses the very simple LRU

algorithm. This caching strategy uses RAM as a media

for faster access. More details on this cache are

available, but the architecture used is not Peer-to-Peer

(P2P), which may lead to single point of failure issues.

Later in related works we find Robot storage

architecture (Yin et al., 2013), which relies on the sole

usage of erasure codes for data storage and ignores

replication as combined approach, which according to

recent studies may be an error (Gribaudo et al., 2016).

However, it still presents good results and proposes a

mix of architectures, since in a general overview there

is clearly the figure of the master computers, which

are those responsible for encoding and decoding the

stored data, as well as controlling the metadata. On a

second part, the authors use a P2P ring network of

computers for data storage only and no further

processing. It does not present any caching strategy to

optimize access to this data.

The work proposed as the HDFS-Xorbas architecture

(Sathiamoorthy et al., 2013) relies on the HDFS

distributed file system (Borthakur, 2008). For that

reason, the architecture is similar or more likely an

extension to this file system, which design is master-

slave and therefore subject to single point of failure

problems. The main contribution of the paper is to

provide an erasure codes scheme for HDFS, which

initially uses only three-way replication. The work’s

proposal is a new type of code and authors implement it

in an integrated way to this already existing technology,

with good results, but still forcing the use of erasure

codes or replication, not both together. It also does not

use any kind of caching mechanism.
The work proposed by Tang et al. (2015), the MICS

architecture, is more recent and based partially on the
previous work that brought the CAROM architecture,
but with some notable differences. It uses a
management model with multiple masters and proposes
the storage in the form of objects, besides having as
one of the main contributions the creation of an update
function for the stored objects, since this function
usually depends on removing the object and reinserting
it, because there is no direct update. At the end of the
article, the authors suggest that the use of cache could
be desirable in works of this nature, but they chose not
to implement in their case.

The work proposed as the HRSPC architecture

(Li et al., 2016) focuses on directly improving some

aspects of erasure codes in order to merge them into a

mixed algorithm rather than using the two techniques

separately as other works. This, however, makes the

work much more theoretical than applied. Not many

architectural details are given and although it does

work well as other works, it does not use P2P

architecture explicitly, but it does suggest some

concepts in that sense. It also does not feature a cache

system, though it does suggest that using such a

technique can reduce disk read costs.

The outline of this paper is organized as follows:

First, there will be a section to describe the developed

work, along with the contributions related to previous

works. The following sections will present materials,

methods and experiments performed in order to evaluate

our work. There will be a section dedicated to the

discussion of results obtained and how these results

relate to other works in literature. The final section will

present conclusions on this paper.

Proposed Work and Contributions

This work contribution is comprised of a fully

decentralized storage architecture with a cache

mechanism to improve response time. The architecture

was named Griddler - namesake to a Japanese numerical

Carlos Roberto Valêncio et al. / Journal of Computer Science 2017, 13 (6): 192.198

DOI: 10.3844/jcssp.2017.192.198

194

puzzle in which the objective is to reconstruct data that

at first is unknown.

The developed solution complements and expands

the other storage architectures in order to study the

possibility and benefits of a fully decentralized P2P

storage system to mitigate single points of failure in a

network of nodes. Li and Liao (2005) comment about

load balancing problem in P2P systems in their research.

There is no single point of failure, as we use the Chord

P2P protocol (Stoica et al., 2001). While an evaluation

determines on whether a fully distributed system favors

performance in data encoding and decoding, we also

consider and provide replication as an alternative

available when necessary. By supporting simultaneously

and not alternately, replication and erasure coding of

data, it is unique amongst other architectures because it

supports efficient storage for data both hot - frequently

accessed, more suitable for replication - and cold -

rarely accessed, more suitable for coding. Awareness of

hot and cold data access patterns is imperative for Big

Data systems and analytics, as shown by authors of

previous works (Kambatla et al., 2014). In addition to

those contributions, this work studies the behavior of

an improved cache algorithm that overcomes the

limitations of the LRU algorithm used in CAROM. For

this work, the selected cache algorithm was ARC, an

Adaptive Replacement Cache algorithm, which

integrates the architecture. ARC well knowingly

outperforms LRU and experimental results for disk-read

large web requests have shown scenarios where the hit

ratio for ARC is over 40% and LRU just about 27%

(Megiddo and Modha, 2004).

On Fig. 1 it is possible to observe a simple read

operation and the placement of the cache, which is also

local to each node and not global, as in CAROM. The

read, or GET, operation converts the requested input

key, for example “video1.mp4”, into an unique string

by means of a secure hashing algorithm. That key is

used to exactly identify the data object, which was

previously stored in the network and has the same hash.

Such behavior is defined by the Chord protocol. The

search goes through the adaptive replacement cache

area, which has two lists for both recently and

frequently used data and these lists size increase or

decrease based on another two metadata lists, the ghost

lists. All cached data is stored on RAM. Given a cache

hit, data returns without further operations. After a

chache miss, the request forwards to other peers of the

network using a routing table, also known as finger

table. Ultimately the request resorting to disk if not

found in any cache areas of any nodes.

Figure 2 is a representation of the complete topology

used in Griddler architecture, which is a ring, as

necessary for the Chord protocol. The use of cache on

each node is the great differential of this architecture.

Fig. 1. Overview of access by means of ARC, in Griddler

Fig. 2. Network topology for storage environment

Materials and Methods

There were four experiments conducted in order to

produce this manuscript in order to measure latency of

access with and without cache, processing time for

encoding data, processing time for decoding data and

total overhead of data when replicated or encoded. In

order to write this paper the testing environment used

hardware virtualization running on a single physical

computer, although we are considering future

experiments in larger distributed environments. The

general specifications of the physical computer were

an Intel Core i7 Haswell - 4700MQ 2.4 GHz, 6 MB

Cache (3.40 GHz with Max Turbo) processor, 16 GB

Corsair Vengeance DDR3 (1600 MHZ)/(2×8 GB)

Carlos Roberto Valêncio et al. / Journal of Computer Science 2017, 13 (6): 192.198

DOI: 10.3844/jcssp.2017.192.198

195

RAM and a 1TB-7200 RPM HDD. Atop the hardware,

there were several virtual servers with one virtual

CPU, 2 GB of RAM and 50 GB storage space,

connected to the same virtual network. All virtual

nodes created use the 64-bit version of the Linux

operating system. Our data varied between single-

object sets with a few megabytes up to a 1 terabyte set

with thousands of objects, thus not standing back when

compared to other works.

Griddler consists entirely of C/C++ code,

including programming libraries that implement the

methods for performing the measurements described

on the tests section. Experiments were conducted

under low stress, nearly idle, operating systems, with

dedicated resource usage and a short interval between

each test. As it will be described on each test, we

utilize standard methods for obtaining the results in

each tests, always working with the average of a

relevant amount of measurements, such as defined by

the RFC 2544 (Bradner and McQuaid, 1999) for

latency measurements. Reproducing the following

tests would be as simple as to recompile the code on a

different Linux environment. The source code is not

yet available but full disclosure is something the

authors are considering, even though it is under

constant improvements.

Results

The first experiment intended to verify the latency of

data access, with and without the use of the cache. For

this experiment, latency measurement model followed

the definitions of RFC 2544 therefore the average of 20

measurements performed for each data object, which in

this case are large binaries. The measurements incurred

from the variation of the size of objects stored with

three-way replication or with erasure coding. For this

and following tests, the erasure coding algorithm used

was Liberation (Plank, 2008) with parameters (6,2).

Results on Table 1 and Fig. 3 represent measurements

for replicated data. Erasure coded data measurements

follow on Table 2 and Fig. 4.

Second experiment intends to show that each node

has enough processing power to contribute for erasure

encoding operations. Therefore, storage architecture

would benefit from a fully decentralized strategy. There

would be no need for masters or nodes with specific

functions of processing and storage like previous works

suggested. In this experiment a varying number n of

binary data objects, each with 10 MB of size, composed

each dataset. Datasets size varied from 50 GB up to 1 TB

of data and operations ran on a single node. Results

follow on Table 3 and Fig. 5.

Fig. 3. Latency graphical comparison for replicated data (in

seconds)

Fig. 4. Latency graphical comparison for encoded data (in

seconds)

Fig. 5. Encoding time for different datasets (in seconds)

On a similar fashion, the third experiment intends to

show that each node has enough processing power to

contribute for erasure decoding operations. In this

experiment a varying number n of binary data objects, each

with 10 MB of size, composed each dataset. Datasets size

varied from 50 GB up to 1 TB of data and operations ran on

a single node. Results follow on Table 4 and Fig. 6.

Carlos Roberto Valêncio et al. / Journal of Computer Science 2017, 13 (6): 192.198

DOI: 10.3844/jcssp.2017.192.198

196

Fig. 6. Decoding time for different datasets (in seconds)

Fig. 7. Overhead comparison for both redundancy techniques

Table 1. Average latency for different objects, triple-replication

Size Cache-less ARC

14 MB 0.075427s 0.027292s

277 MB 1.069707s 0.196161s

553 MB 2.176905s 0.385806s

1,1 GB 15.241922s 0.808186s

Table 2. Average latency for different objects, erasure coded

Size Cache-less ARC

26 MB 0.203074s 0.058756s

519 MB 3.565754s 0.551705s

1,1 GB 17.730196s 1.054749s

1,6 GB 21.805975s 1.269461s

Table 3. Encoding time for different volumes of data

n Total size Time

5000 50 GB 131.390s

10000 100 GB 269.676s

50000 500 GB 1389.382s

100000 1 TB 3063.399s

Table 4. Decoding time for different volumes of data

n Total size Time

5000 50 GB 89.237s

10000 100 GB 183.615s

50000 500 GB 874.102s

100000 1 TB 1914.271s

Table 5. Overhead for binary object storage (in bytes)

Object size Replication 3x Erasure Coding

52428 B 157284 B 70651 B

104857 B 314571 B 140382 B

157286 B 471858 B 210112 B

209715 B 629145 B 279842 B

262144 B 786432 B 349573 B

314572 B 943716 B 420220 B

367001 B 1101003 B 489951 B

419430 B 1258290 B 559681 B

471859 B 1415577 B 629411 B

524288 B 1572864 B 699142 B

576716 B 1730148 B 769790 B

629145 B 1887435 B 839520 B

681574 B 2044722 B 909250 B

734003 B 2202009 B 978980 B

786432 B 2359296 B 1048711 B

838860 B 2516580 B 1119359 B

891289 B 2673867 B 1189089 B

943718 B 2831154 B 1258819 B

996147 B 2988441 B 1328549 B

1048576 B 3145728 B 1398280 B

On a ring P2P network, each node would be able to

receive and process requests like the ones tested above

simultaneously. Therefore, by testing the performance of

a single node processing, it is possible to estimate that a

larger number of nodes processing requests in parallel

would decrease the overall encoding and decoding times.

P2P is then the only model that allows for maximum

node contribution in such situations.

The fourth experiment intends to show that although

coding requires additional processing, it has much less

overhead when compared to pure replication.

Experiments measured varying object sizes and values

represent total number of bytes, for better precision.

Results follow on Table 5 and Fig. 7.

Discussion

Regarding the caching mechanism used, given that

ARC is notably an improvement of LRU in terms of hit

ratio, the first question at hand was whether a per-node

cache system on a P2P networked storage system would

provide any benefits for data access. As it was shown in

the first experiment, our cache system dramatically

reduces access times on each node, providing over 80%

improvement on access latency for both replicated and

encoded data when compared to a cache-less alternative.

Since each node may actively process requests, on a real

environment several users would benefit from faster

responses. Since ARC uses implementation in RAM, a

lower latency than the hard disk was expected. Thus, the

usage of ARC instead of LRU is an improvement from

previous works, specifically over the CAROM

architecture, but also improving all other works who do

not consider caching mechanisms to improve access

Carlos Roberto Valêncio et al. / Journal of Computer Science 2017, 13 (6): 192.198

DOI: 10.3844/jcssp.2017.192.198

197

Second and third experiments have shown that the

current algorithms for erasure coding have feasible

execution time on each node. Therefore, it is natural to

want to maximize the number of processing nodes and in

that sense the P2P model provides an optimal solution,

since all nodes actively contributes to the whole system.

Assuming a network of n nodes in parallel, such as a

cluster in a Cloud environment, previous works used

only n-k of those nodes for coding, but with our

approach the actual performance gains in terms of

processing time could easily be reach up to 100% in

comparison, given that our work uses all n nodes.

Separating processing nodes and storage nodes would

only add additional network transfer time and for that

reason, Griddler uses nodes for both functions. This is

also an improvement from previous works, such as

MICS and HRSPC. Both these works have some sort of

master-slave relation in distributed storage, therefore

having possible problems with single points of failure.

The fourth experiment reinforced the importance of

erasure codes in terms of storage overheads, thus

surpassing previous works limited to replication. When

compared to three-way replication, the same data, when

coded, induces around 55% less overhead, in average.

When it comes to Big Data, this characteristic would

allow for larger volumes of data stored using the same

hardware. When processing time is more of an issue than

storage overhead, the proposed system is capable of

storing data in replicated fashion as well, while some

previous works were limited to erasure coding, such as

Robot and HDFS-Xorbas.

Conclusion and Future Works

Efficient and secure storage of data is paramount in

Big Data scenarios that rely on continuous access to

information. At the same time as there is a considerable

increase in data volume, which requires innovative

technologies to increase storage capacity, it is even more

important to use fault tolerance techniques for

availability assurance such as replication and erasure

codes. This scenario served as motivation for the work,

which sought to develop a P2P data storage architecture

with mixed fault tolerance, combining the two

mentioned techniques, in an automated and configurable

way. A fully decentralized topology lacks in similar

works previously found in the literature and therefore

this is an improvement. As an additional contribution,

the proposed system implements a caching scheme,

which led to an improvement in the speed of data access.

For Griddler validation, our results were put in context

with previous works shows another improvement, given

that most works do not consider the usage o cache

structures and the work that proposes the CAROM

architecture uses an inferior cache algorithm than the one

we use in our work. Access time of the data in the

distributed system was measured, as well as other factors

such as encoding and decoding time, with expressive

results of over 80% response time gain for access and

about 55% less general data overhead when encoding. It

is evident that this work finds several applications in real

situations and authors expect, when consolidating its

development, to make it available in real situations that

depend on large-scale distributed data storage. There is

room for improvements, though, given that our work

does not consider some relevant aspects of data storage,

such as data security and privacy. We have yet to verify

our architecture in larger computational environments

for longer periods of time, with real user´s requests.

There is also an interest in testing our caching

mechanism with Solid-State Drives (SSD) instead of

RAM in order to have larger cache areas available.

Acknowledgement

This work was financed by the Coordination for the

Improvement of Higher Education Personnel (CAPES)

and the National Counsel of Technological and

Scientific Development (CNPq), both from Brazil.

Author’s Contributions

Carlos Roberto Valêncio, Angelo Cesar

Colombini, Mário Luiz Tronco and Márcio Zamboti
Fortes: Participated in all the project decisions that

defined the scientific contributions of this work,

definition and analysis of the data, writing and reviewing

of the article.

André Francisco Morielo Caetano: Participated in

all the project decisions that defined the scientific

contributions of this work, definition and analysis of the

data, writing and reviewing of the article was responsible

for most of the programming, testing and creation of the

sub-products of this work.

References

Al-Awami, L. and H.S. Hossanein, 2016. Distributed

data storage systems for data survivability in

wireless sensor networks using decentralized erasure

codes. Comput. Netw., 97: 113-127.

 DOI: 10.1016/j.comnet.2016.01.008

Alnafoosi, A.B. and T. Steinbach, 2013. An integrated

framework for evaluating big-data storage solutions-

IDA case study. Proceedings of the Science and

Information Conference, Oct. 7-9, IEEE Xplore

Press, London, UK, pp: 947-956.

Borthakur, D., 2008. HDFS architecture guide-Apache
TM

Hadoop.

Bradner, S. and J. McQuaid, 1999. Benchmarking

methodology for network interconnect devices.

RFC 2544.

Carlos Roberto Valêncio et al. / Journal of Computer Science 2017, 13 (6): 192.198

DOI: 10.3844/jcssp.2017.192.198

198

Gonizzi, P., G. Ferrari, V. Gay and J. Leguay, 2015.

Data dissemination scheme for distributed storage

for IoT observation systems at large scale. Inform.

Fus., 22: 16-25. DOI: 10.1016/j.inffus.2013.04.003

Gribaudo, M., M. Iacono and D. Manini, 2016.

Improving reliability and performances in large

scale distributed applications with erasure codes

and replication. Future Generat. Comput. Syst., 56:

773-782. DOI: 10.1016/j.future.2015.07.006

Hashem, I.A.T., I. Yaqoob, N.B. Anuar, S. Mokhtar and

A. Gani et al., 2015. The rise of “big data” on cloud

computing: Review and open research issues.

Inform. Syst., 47: 98-115.

 DOI: 10.1016/j.is.2014.07.006

Hyun, S., K. Sun and P. Ning, 2017. FEC-Seluge:

Efficient, reliable and secure large data dissemination

using erasure codes. Comput. Commun., 104: 191-203.

DOI: 10.1016/j.comcom.2017.01.005

Kambatla, K., G. Kollias, V. Kumar and A. Grama,

2014. Trends in big data analytics. J. Parallel

Distrib. Comput., 74: 2561-2573.

 DOI: 10.1016/j.jpdc.2014.01.003

Khan, O., R. Burns, J. Plank, W. Pierce and C. Huang,

2012. Rethinking erasure codes for cloud file

systems: Minimizing I/O for recovery and degraded

reads. Proceedings of 10th USENIX Conference on

File and Storage Technologies, Feb. 14-17, San

Jose, USA., pp: 1-14.

Li, J. and B. Li, 2013. Erasure coding for cloud storage

systems: A survey. Tsinghua Sci. Technol., 18:

259-272. DOI: 10.1109/TST.2013.6522585

Li, J., J. Wu, G. Dan, A. Arvidsson and M. Kihl, 2014.

Performance analysis of local caching replacement

policies for internet video streaming services.

Proceedings of IEEE 22nd International

Conference on of Software, Telecommunications

and Computer Networks, Sept. 17-19, IEEE Xplore

Press, pp: 341-348.

 DOI: 10.1109/SOFTCOM.2014.7039112

Li, S., Q. Cao, S. Wan, L. Qian and C. Xie, 2016.

HRSPC: A hybrid redundancy scheme via exploring

computational locality to support fast recovery and

high reliability in distributed storage systems. J.

Netw. Comput. Applic., 66: 52-63.

 DOI: 10.1016/j.jnca.2015.12.012

Li, Z.J. and M.H. Liao, 2005. Modeling load balancing

in heterogeneous unstructured P2P systems. J.

Comput. Sci., 1: 323-331.

 DOI: 10.3844/jcssp.2005.323.331

Ma, Y., T. Nandagopal, K.P.N. Puttaswamy and

S. Banerjee, 2013. An ensemble of replication and

erasure codes for cloud file systems. Proceedings of

IEEE INFOCOM, Apr. 14-19, IEEE Xplore Press,

Turin, Italy, pp: 1276-1284.

 DOI: 10.1109/INFCOM.2013.6566920

Megiddo, N. and D.S. Modha, 2004. Outperforming

LRU with an adaptive replacement cache

algorithm. Computer, 37: 58-65.

 DOI: 10.1109/MC.2004.1297303

Plank, J.S., 2008. The RAID-6 liberation codes.

Proceedings of 6th USENIX Conference on File and

Storage Technologies, Feb. 26-29, San Jose, USA.,

pp: 1-14.

Sathiamoorthy, M., M. Asteris, D. Papailiopoulos,

A.G. Dimakis and R. Vadali et al., 2013. XORing

elephants: Novel erasure codes for big data.

Proceedings of VLDB Endowment, Aug. 26-30,

Trento, Italy, pp: 325-336.

 DOI: 10.14778/2535573.2488339

Stoica, I., R. Morris, D. Karger, M.F. Kaashoek and

H. Balakrishnan, 2001. Chord: A scalable peer-to-

peer lookup protocol for internet

applications. IEEE/ACM Trans. Netw., 11: 17-32.

DOI: 10.1109/TNET.2002.808407

Tang, Y., J. Yin, W. Lo, Y. Li and S. Deng et al., 2015.

MICS: Mingling chained storage combining

replication and erasure coding. Proceedings of IEEE

34th Symposium on Reliable Distributed Systems,

Sep. 28-Oct. 1, Montreal, Canada, pp: 192-201.

DOI: 10.1109/SRDS.2015.25

Weatherspoon, H. and J.D. Kubiatowicz, 2002. Erasure

coding vs. replication: A quantitative comparison.

Proceedings of the 1st International Workshop on

Peer-to-Peer Systems, Mar. 07-08, Springer-Verlag,

pp: 328-337. DOI: 10.1007/3-540-45748-8_31

Yin, C., J. Wang, C. Xie, J. Wan and C. Long et al.,

2013. Robot: An efficient model for big data storage

systems based on erasure coding. Proceedings of

IEEE International Conference on Big Data, Dec. 6-9,

IEEE Xplore Press, Silicon Valley, USA., pp: 163-168.

DOI: 10.1109/BigData.2013.6691569

