

© 2017 Smitha Rajagopal, Katiganere Siddaramappa Hareesha and Poornima Panduranga Kundapur. This open access article

is distributed under a Creative Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Sciences

Original Research Paper

Optimising Pair Programming in a Scholastic Framework: A

Design Pattern Perspective

Smitha Rajagopal, Katiganere Siddaramappa Hareesha and Poornima Panduranga Kundapur

Department of Computer Applications, MIT, Manipal, India

Article history

Received: 22-06-2016

Revised: 10-01-2017

Accepted: 15-05-2017

Corresponding Author:

Poornima Panduranga

Kundapur

Associate Professor,

Department of Computer

Applications, MIT, Manipal,

India
Email: poornima.girish@manipal.edu

Abstract: Pair programming is one of the widely used practices of Extreme

Programming (XP). XP is a software development process which intends to

enhance quality of software code in order to cater to the ever increasing

demands of customers looking for IT solutions. Pair programming

promotes team building, raises confidence among individuals and

eventually results in richer and a better codebase. As an attempt to compare

solo and pair programming, group of post graduate students were assigned

the task to implement four out of 23 design patterns (pertaining to real

world scenarios) in their lab sessions. In this study, a systematic

investigation on pairing by contemplating a pair programming scenario

from a design pattern perspective has been presented. Results were obtained

using JavaNCSS tool by considering software code metrics which indicated

that pair programming can be beneficial in a scholastic framework.

Keywords: Extreme Programming, Maintainability Index, Cyclomatic

Complexity, Data Abstraction Coupling, JavaNCSS, Facade, Observer,

Mediator

Introduction

Pair programming is a software development

technique in which two individuals collaborate and work

at the same workstation as a pair. Typically, in a pair

programming scenario, individuals play two crucial roles

as that of driver and navigator. Driver codes, navigator

observes. They swap their roles quite often and are

termed as continuous brainstorming partners. The role

essayed by both driver and navigator is pivotal.

The idea of proposing a pair programming pedagogy is

greatly influenced by the immense popularity it has gained

over recent years in a software industry framework. With

critical deadlines to meet, customer demands to be fulfilled

and a constant desire to outshine their competitors, software

professionals adopt pair programming in every possible

situation (Lewis, 2011; Dogs and Klimmer, 2004).

This pair programming activity was conducted for

post graduate students of Computer Applications (a three

year course spanning across six semesters). These

students, who would be future professionals, need to get

accustomed to the functioning within the conventional

software industry. In this context, an attempt was made

to apply pair programming approach in a scholastic

framework augmented by a methodical study as

explained in the following segment. This paper explores

the essence of pair programming in a scholastic

framework by emphasizing upon quantitative evidence

in terms of code metric assessment using a tool called

Non Commented Source code Statements (JavaNCSS)

and comparing its results with solo programming.

Software code metrics like: Maintainability Index (MI),

Cyclomatic Complexity (CC) and Data Abstraction

Coupling (DAC) were considered. This work describes

the actual conduction of pair programming by considering

three different lab courses (Service Oriented Architecture,

Free and open source and Design patterns) at postgraduate

level in order to implement this pedagogy.

Furthermore, this paper aims to investigate pair

programming paradigm from a design pattern viewpoint

wherein complex codebases of design patterns like

Flyweight, Facade and Mediator were examined. Design

patterns are well-proven solutions for solving specific

problems and its advantage being programming language

independent which certainly, in most cases leads to more

flexible, reusable and maintainable codebase.

Literature Review

Programming was considered a solitary activity till

Kent Beck introduced Extreme Programming (XP)

and listed pair programming as one of its twelve

Smitha Rajagopal et al. / Journal of Computer Sciences 2017, 13 (6): 199.210

DOI: 10.3844/jcssp.2017.199.210

200

practices mentioned by Lewis and Colleen in their

work (Lewis, 2011).

As per the survey conducted by Dogs and Klimmer,

the most commonly used methodology was XP (38.6%)

followed by Feature Driven Development (FDD at

14.55%), Rational Unified Process (RUP at 1.9%) and

Scrum (at 7.2%) (Dogs and Klimmer, 2004).

Williams, a pioneer in agile software development

investigated the importance of pair programming.

According to her, pair programming is an efficient form

of defect removal before it propagates further.

Collaborative programming practices like pairing

improves job satisfaction amongst professionals and

boosts their morale. She made remarkable contribution

in the field of pair programming by reiterating its

benefits in many of her outstanding publications

(Williams, 2000).

Cockburn and Williams conducted a study on the

costs and benefits of pair programming. They identified

certain significant paths like: Satisfaction, design quality,

team building, learning and problem solving which

serves as a strong basis to explore pair programming

further (Cockburn and Williams, 2001). Apart from the

above mentioned significant paths, pairing can be

explored by considering few more critical aspects to

comprehend it further.

Begal and Nagappan reported the results of a large

scale survey deployed at Microsoft Corporation to

gain better insights into perception towards pair

programming in industry. From their results, it could

be implied that 64% of the respondents believe that

pairing works well for them (Begel and Nagappan,

2008). There is scope for future research in terms of

presenting quantitative results to prove that pair

programming may lead to better prospects.

Stapel et al. (2010) emphasized upon the relevance of

communication structure in pair programming. They

derived an inference to measure the intra-pair

communication in pair programming. As per their

observation, developers improved their programming

abilities and did not talk much about code issues.

Successful team building skills were exhibited by

developers (Stapel et al., 2010). Future work can

encompass the usage of a tool to evaluate codebase and

fathom its results.

Kavitha and Ahmed put forward their research

findings whereby they suggested that pair programming

could prove to be a useful approach to facilitate

knowledge sharing among students. As demonstrated by

them, students performed well in their lab examinations

and expressed a sense of accomplishment during pair

programming tasks (Kavitha and Ahmed, 2015). There

may be basic level lab courses which demand a solo

programming pedagogy. For certain advanced level lab

courses, applying pairing would be suitable. Therefore, a

clear demarcation is required in this context to

understand when to introduce pair programming in a

scholastic framework.

Sajeev and Datta analyzed pair programming

behavior of programmers without prior experience in

XP. They discussed the significance of certain key

factors like: Whether it is better to train a pair by

assigning simple tasks or complex tasks, when to enforce

team building etc. As mentioned in their work, the

results obtained helps in inducting programmers who are

not skilled in XP (Sajeev and Datta, 2013). As a matter

of fact, the finely crafted work cited above serves as a

basis for undertaking pair programming research in

scholastic framework. Prospective students can be

trained through pair programming pedagogy before they

mark their beginning in software industry.

Williams et al. (2002) presented anecdotal evidence

from industry and statistical evidence from academia to

advocate the benefits of pair programming. They stated

that knowledge is passed continuously between partners

and pairing helps in every phase of software

development life cycle. They could interpret that due to

human nature, pairs put a positive pressure on each other

to deliver the best (Williams et al., 2002). Their

viewpoints can be manifested further by deriving

quantitative results which could make pair programming

research more substantial.

Through empirical research, Vanhanen and Lassenius

illustrated that pair programming affects project

attributes like: Project productivity, design quality, effort

estimation and knowledge transfer within the team

(Vanhanen and Lassenius, 2005). Similarly, from an

academic perspective, there is an absolute need to

evaluate the above mentioned attributes and determine

exact ways to capitalize upon the same.

Bernardo and Rafael elucidated the importance of the

state of the art Distributed Pair Programming (DPP)

from the teaching perspective. They put across a novel

practice which involved combining pair programming

with geographically distributed team members. It was

reported that DPP promotes work and communication

between teams (Estácio and Prikladnicki, 2015). The

quantitative analysis performed by them can be extended

further to get better insights on software code metrics

and its comparison with solo programming.

Plonka et al. (2015) carried out a systematic inquiry

on pair programming and discussed the manner in which

pairing influences the strategies, challenges and benefits

of driver and navigator. Their work urged developers to

utilize the maximum benefits from pairing sessions by

throwing more light on expert-novice constellations

(Plonka et al., 2015). Two other possible combinations

could be expert-expert and novice-novice. The selection

of a pairing combination entirely depends upon the

purpose as to whether it is being applied for knowledge

Smitha Rajagopal et al. / Journal of Computer Sciences 2017, 13 (6): 199.210

DOI: 10.3844/jcssp.2017.199.210

201

transfer (expert-novice), assessing the skills of

individuals (novice-novice) or for accomplishing the best

deliverables (expert-expert).

Coman et al. (2008) opined that pair programming is

a formalization and enhancement of naturally occurring

interactions between developers. They differentiated

between experimental and observational studies on pair

programming. From this study, it can be inferred that

the scenario in which pair programming is advocated

plays a vital role for it to be widely accepted and

encouraged (Coman et al., 2008). From an academic

perspective, it should be implemented only when there

is a demand for enhancing the quality of codebase. Pair

programming reinforces the idea of creating an

enriching learning environment by mutual exchange of

intellectual thoughts.

Some of the key advantages of pair programming

could be perceived from the above mentioned literature.

Additionally, many researchers have also focused upon

the kind of impact pair programming creates on

individuals who apply it (di Bella et al., 2013; Turk et al.,

2014; Hanks et al., 2011; Nawahdah et al., 2015).

Methodology

As mentioned in the previous section I, pair
programming task was introduced for post graduate
students of Computer Applications in their 5th semester.

This particular group of students was considered because
they would be starting their software career soon. Thus
they needed a practical understanding of pairing. The
primary focus of this task was to compare it with solo
programming which was adopted earlier for the previous
batch of students but was not successful in enhancing the

quality of codebase. A sincere attempt was made by the
guiding faculty members to implement this pedagogy for
all the lab courses of 5th semester namely: Design
patterns, Free and open source software and Service
Oriented Architecture (SOA). The above mentioned lab
courses had theory elements to them which were taught

separately by the guiding faculty members in theory
sessions. Pair programming activity involved the
execution of the following sequence of steps:

• Creation of possible combinations of pairs

• Conducting 20 lab sessions to complete the lab cycle

of prescribed programming courses

• Each student essayed the role of a driver and

navigator ten times respectively during these lab

sessions. Whenever a student happened to be a driver,

he/she coded. His/her partner (navigator) observed.

Only driver had control over keyboard and mouse.

During the next lab session, they swapped their roles

• Deriving the list of parameters which would help

in examining the different aspects of pair

programming approach

• Analyzing the outcome of pairing task through a

dichotomous questionnaire

• Reporting the results and eventually comparing it

with previously adopted solo programming

The following research questions were formulated for

which answers are provided in forthcoming section:

RQ1: Which parameters are taken into consideration to

ascertain that pair programming is better than solo

programming?

RQ2: What are the possible combinations for creating a

pair?

RQ3: How do you measure the effectiveness of pair

programming strategy?

Since pair programming pedagogy was never applied

in the past, seeking permission from the concerned

authorities was mandatory to proceed further. It is

depicted in Fig. 1.

A student who is considerably good in programming

was asked to team up with a student who has average

programming skills for Scholar-Naive combination

(Lui and Chan, 2006).

Two individuals with sound knowledge of

programming collaborate for Scholar-Scholar

combination (Lui and Chan, 2006).

Naive-naive combination doesn’t yield any benefits

in a scholastic framework. Thus it is not dealt with in

this context (Lui and Chan, 2006).

Structural and Behavioural Design Patterns

aid in Loose Coupling

Design patterns form an integral part of software

development and reuse. Students are required to grasp

the meaning and discern the usage of design patterns

prescribed in their curriculum.

Design patterns can be best explained by relating the

23 patterns to case studies. In this view, students were

instructed to take up certain case studies which should be

intriguing in the real world context.

Structural design patterns are composed of classes

and objects to form larger, complex structures. During

pair programming task, all the structural design patterns

were studied, analyzed and implemented by students.

Among the seven structural design patterns, two

codebase were slightly complex than the rest. They are:

Flyweight and Facade.

The flyweight pattern describes how to share objects.

Each flyweight object has two parts: Intrinsic and

extrinsic. The flyweight pattern can be used in

conjunction with other objects to handle different

applications. The object with intrinsic state is called the

flyweight object (Gamma et al., 1994).

Smitha Rajagopal et al. / Journal of Computer Sciences 2017, 13 (6): 199.210

DOI: 10.3844/jcssp.2017.199.210

202

Fig. 1. Overall process of pairing

The best use of flyweight could be explained by

considering an example of war strategy simulation game.

This application involves the tracking of each and every

unit on the battlefield. Large amount of memory is

required to hold the details of individual objects.

Flyweight pattern conserves memory space by sharing

single copy of intrinsic state across all objects. Flyweights

are stored in factory’s repository. The usage of flyweight

seems to be economical wherein it can be used to decrease

memory footprint and improve performance.

A simple example can be visualized for a flyweight.

There may be a huge collection of objects used to draw

lines. A flyweight would create one line object for each

color: Green and red. If there is a drawing with 100 red

and 400 green lines, only two lines are instantiated

instead of 500 lines.

A facade pattern is known to provide a simple

interface to a complex body of code. Facade reduces the

dependencies between sub systems. The idea behind

facade pattern is to hide the complexities of subsystems

from the client. Facade promotes loose coupling.

As depicted in Fig. 2 and 3, facade defines an

interface that makes sub systems easier to use. All the

client has to do is to use facade as a first point of access

to interact with any of the subsystems as per their choice

(Gamma et al., 1994).

As part of their pairing task, a general E-commerce

problem scenario was programmed by a student pair.

The series of steps are mentioned below:

• Create a SmartphoneShopee interface

• Create a Smartphone class which will implement

SmartphoneShopee interface

• Create three classes that will implement

SmartphoneShopee interface: Asus, Samsung and

Lenovo

• Create a concrete class called Retailer

• Create a CustomerFacade class who purchases any

of the three smartphones from SmartphoneShopee

through Retailer

The idea here is to perceive the fact that

CustomerFacade is a class which uses Retailer as the

interface to purchase smartphones of their choice like:

Samsung, Asus or Lenovo.

Smitha Rajagopal et al. / Journal of Computer Sciences 2017, 13 (6): 199.210

DOI: 10.3844/jcssp.2017.199.210

203

Fig. 2. Interface without a facade

(http://www.cs.unc.edu/~stotts/GOF/hires/pat4efso.htm)

Fig. 3. Interface with a façade

(http://www.cs.unc.edu/~stotts/GOF/hires/pat4efso.htm)

A small portion of the code segment is given below:

public class Asus implements SmartphoneShopee {

 @Override

 public void model () {

 System.out.println("Asus Zenphone6");

 }

 @Override

 public void price() {

 System.out.println("Rs 17,000");

 }

 };

public class Retailer {

 private SmartphoneShopee Asus;

 private SmartphoneShopee Samsung;

 private SmartphoneShopee Lenovo;

 public Retailer(){

 zenphone = new Asus();

 samsungj7 = new Samsung();

 lenovovibe = new Lenovo();

 }

 public void asussales(){

 asus.modelNo();

 asus.price(); }

 // Samsung sales here

{ }

 // Lenovo sales here{}};

From the above code fragment, it can be noted that

Facade pattern contributes to a decrease in the lines of

code. The code looks modularized too.

Loose coupling is a coupling mechanism in which

two components are linked in such a way that the

services that they offer are not dependent on each

other. Facade pattern promotes loose coupling by

emphasizing on functionality rather than internal

details. The design will not get affected upon

extending the subsystem.

Observer pattern contributes a lot towards greater

code reuse and better maintainability. A clear

demarcation between UI and business logic is necessary.

It is quite common for UI requirements to change

without prior notification similar to how business

requirements change without regard to the UI. So, the

separation between both makes logical sense and

observer pattern is best suited for such object oriented

software development (Lui and Chan, 2006).

The primary advantage of design patterns lies in the

fact that they encourage reusability. Observer pattern is a

behavioral pattern which maps one-to-many-dependency

between objects. Whenever there is any change in any

object’s state, all its dependencies are notified and

updated automatically. A typical observer pattern is

shown below in Fig. 4.

A student pair implemented an observer pattern as

described below. The outline of the case study is as

follows. Kroger health mart is an online drug shop which

specializes in manufacturing, marketing and ensuring

abundant availability of different drugs for mass

consumption. Three patients are in need of Morpheme

mind plus capsules, a type of vitamin supplements.

Currently they are out of stock.

All three users clicked on “notify me” button to

receive alerts as soon as the capsules are available. In

this scenario, all the users who clicked “notify me” are

observers. The subject of their observation is vitamin

supplements. So, Morpheme mind plus is observable.

A small portion of the code implemented through

observer pattern is mentioned below:

public class User implements Observer

{

 private Observable obs = null;

 public User(Observable obs)

 {

 this. obs=obs;

 }

@ override

Smitha Rajagopal et al. / Journal of Computer Sciences 2017, 13 (6): 199.210

DOI: 10.3844/jcssp.2017.199.210

204

 public void update()

{

 purchaseMorpheme();

 unsubscribe();

}

 public void purchaseMorpheme()

 {

 System.out.println(“Bought Morpheme”);

}

 public void unsubscribe()

 {

 obs.removeObserver(this);

 }

};

User implements Observer. Morpheme can be

purchased as and when it is available for sale. Users

can unsubscribe from notify me depending upon their

interest.

Thus, it is possible to state that observer pattern

allows loose coupling by separating the logic between

observer and observable to make them independent of

each other. Any change done to observable will not

impact observer.

The next segment focuses on another behavioral

pattern namely Mediator. As shown in Fig. 5 and 6, it is

possible to compare and contrast how objects would

interact in the absence of mediator pattern and in its

presence respectively.

Fig. 4. An observer pattern (Gamma et al., 1994)

Fig. 5. Tight coupling without Mediator

(http://javapapers.com/design-patterns/mediator-design-

pattern/)

Fig. 6. Loose coupling with Mediator

(http://javapapers.com/design-patterns/mediator-design-

pattern/)

Smitha Rajagopal et al. / Journal of Computer Sciences 2017, 13 (6): 199.210

DOI: 10.3844/jcssp.2017.199.210

205

As part of the case study undertaken by a student

pair for mediator pattern, a real time scenario was

examined. Sky scanner is a B2C travel aggregator

which offers a convenient platform for

travellers/tourists to search compare and buy flight

tickets, book hotels and hire cabs. Hotels, Airlines and

travel agents have their own share of responsibilities

and there is absolutely no need to interact with each

other. Such travel aggregators act like a mediator to

ensure the best deal for tourists. Mediator pattern is

used to simplify the communication between many

objects. The idea is to have a central point of access

for many communicating parties. Unnecessary

communication between peer objects can be

eliminated through mediator pattern.

A code snippet implemented by a student pair is

given below:

public interface Skyscanner

 {

 void deal ();

 }

public class Airline implements Skyscanner

 {

 @ override

 public void deal()

 {

 System.out.println(“Airline:: deal()”);

 }

 };

public class Hotel implements Skyscanner

{

 @ override

 public void deal()

 {

 System.out.println(“Hotel:: deal()”);

 }

};

public class Taxi implements Skyscanner

{

 @ override

 public void deal()

 {

 System.out.println(“Taxi:: deal()”);

 }

};

Colleague classes constitute an important part of

Mediator pattern wherein they interact with it in

situations in which they could have interacted with each

other. E.g.: A tourist will get the best deal by not

explicitly interacting with airline, hotels or travel

agencies. In the above example, all the three deals are

handled by the travel aggregator independently by

essaying the role of mediator.

Impact of Code Metrics on Pairing

Normally, software code metrics are considered as

the most pertinent tools for improving the quality of

codebase. There is a need to have appropriate

standards in place to differentiate between good,

average and bad code. Code metrics indicate as to

what extent certain desired software characteristics

are present, which ones may be deficient and how it

could be improved. Software can be maintained

reasonably well if due importance is given to software

code metrics evaluation and assessment.

During this pair programming effort, three

predominant code metrics were evaluated in order to

gain a better understanding of the developed codebase:

• Maintainability Index (MI): This software metric

indicates how maintainable the source code is

(Butler et al., 2010). MI can be calculated using (1):

()

() ()

171 5.2 * log

0.23* 16.2 * log

MI V

G LOC

= −

− −
 (1)

V refers to Halstead volume, G refers to cyclomatic

complexity and LOC refers to lines of code.

• Cyclomatic Complexity (CC): This metric indicates

complexity of the software codebase. It is a

quantitative measure of the independent paths in a

program’s source code (Butler et al., 2010)

McCabe's Cyclomatic metric, V (G) of a graph "G"

with "n" vertices and "e" edges is given by the

following formula shown in (2):

() – 2V G e n= + (2)

• Data Abstraction Coupling (DAC): This metric

measures the number of instantiations of other

classes within a single class (Elish and Alshayeb,

2011)

DAC = number of ADTs defined in a class. ADT’s

refer to abstract data types.

As a part of forthcoming exercise on pair

programming task, students were advised to devise

wider test coverage and concentrate on afferent and

efferent coupling. Afferent coupling (Ca) is defined as

a measure of the number of classes and interfaces

from other packages that depend upon classes in the

analyzed package. Efferent coupling (Ce) is a measure

of outgoing dependencies or the number of classes or

interfaces inside a package that depends on other

types (Sato et al., 2007).

In general, all software artifacts have a certain degree

of instability. Based on Ca and Ce it is possible to

Smitha Rajagopal et al. / Journal of Computer Sciences 2017, 13 (6): 199.210

DOI: 10.3844/jcssp.2017.199.210

206

calculate instability associated with a software artifact as

shown in (3):

()/e e aInstability C C C= + (3)

Consider the following code fragment which is a part

of Mediator codebase.

 Class Traveller

 {

 Airline airline;

 Hotel hotel;

 Taxi taxi;

 };

This class would have a high Ce as it depends on

three types: Airline, Hotel and Taxi. Ca would depend

upon the number of classes that depend upon these three

classes. A software artifact is stable when Instability is

close to zero. If instability is close to one, the software

artifact is considered unstable.

Within the stipulated time, student pairs could

understand the impact of Ca and Ce theoretically only.

Data Collection and Key Parameters

Data was collected from 80 students and 6 guiding

faculty members twice. Firstly, they were asked to

answer a questionnaire which was designed and

validated in consultation with all guiding faculty

members. From these results, shortcomings of solo

programming could be determined. Secondly, to

establish the authenticity of pair programming, a

dichotomous questionnaire was formulated and

corresponding data was collected. The questionnaire

highlighted the interesting aspects of pair programming

approach as mentioned below in Table 1.

Table 1. List of parameters

Sl. no Parameter

1. Discipline

2. Resilient flow

3. Interruptions
4. Collective code ownership

5. Higher Design quality

6. Decrease in LOC (Lines of code)

7. Performance

8. Bug density

9. Code complexity
10. Coding skills

11. Debugging skills

12. Use of new tools

13. Shortens program development time

14. Exploring test cases to analyze programs

15. Satisfaction

To assess the impact of pair programming on
students, a questionnaire was developed which
highlighted the key parameters as explained below:

• Discipline: It was observed that students maintained

lot more discipline during lab sessions as compared

to programming solo.

• Resilient flow: Whenever a program encountered an

exceptional condition, students found it easier to

deal with it in the presence of a partner.

• Interruptions: Students requested less number of

breaks during lab sessions during the execution of

pair programming activity.

• Collective code ownership: The onus was on both

individuals whenever code worked or failed.

• Higher Design quality: Students devoted

substantial amount of time towards design process

(which was lacking during solo programming)

when they were asked to program in pairs.

• Decrease in LOC (Lines of code): Quite often,

readability suffers due to numerous lines of code.

When two students work in pairs, there is a scope to

decrease the lines of code by removing redundant

portions of codebase.

• Performance: Our hypothesis clearly shows that

students performed better during pair

programming activity.

• Bug density: Bug density refers to a measure used

to understand the ability of developers to err. In

case of pairing, it was noticed that a student erred

lesser as he was always coupled with a partner.

• Code complexity: Due to mutual exchange of

intellectual thoughts, students developed codebase

which were relatively easier to understand and

eventually led to reasonable reduction in code

complexity.

• Coding skills: As compared to solo programming,

there was a remarkable improvement in students’

coding skills.

• Debugging skills: Fixing bugs in a program is a

far more difficult task to do than coding a new

program. Students got ample scope to debug their

partner’s code.

• Use of new tools: Students were interested to

explore new tools and also search for different free

and open source softwares which was a clear

indication of their inquisitiveness.

• Shortens program development time: The

program development time taken by the class

(which worked in pairs) to make programs fully

functional was lesser.

• Exploring test cases to analyze programs: Students

went a step ahead towards determining various test

cases to check the correctness of programs.

Smitha Rajagopal et al. / Journal of Computer Sciences 2017, 13 (6): 199.210

DOI: 10.3844/jcssp.2017.199.210

207

• Satisfaction: Quite apparently, there was a greater

amount of satisfaction found in both students as well

as faculty members.

A sample dichotomous questionnaire is shown below

in which some questions were specific to guiding faculty

members. They are as follows:

• Was there a higher level of discipline exhibited

by current batch of students who did pair

programming than previous batch who

programmed solo? Yes/No

• Do you feel that students requested for less number

of breaks during lab sessions? (Duration of each lab

session was 3 h). Yes/No

• Do you think that students devoted ample time to

understand design aspect of all case studies?

• Yes/ No

• As a guiding faculty member of this lab course, do

you feel that readability of codebase has been

better? Yes/No

• Do you think there is a decrease in the erring facet

of student pairs? Yes/No

• Do you think codebase developed by this batch of

students is less complex? Yes/No

• Is there an improvement in students’ coding and

debugging skills since this class worked in pairs?

Yes/No

• Were students interested in exploring new tools and

softwares? Yes/No

• Did you notice that students showed an interest

towards exploring test cases? Yes/No

• As a guiding faculty member, were you satisfied

with the overall performance of student pairs?

Yes/No

The following dichotomous questions were answered

by students:

• Were you able to handle exceptional conditions in

programs in a better way in presence of your

partner? Yes/No

• Did you feel that onus of codebase was equally

shared with your partner too? Yes/No

• Did you give ample importance to comprehend the

design aspect of all case studies? Yes/No

• Were you able to remove redundant piece of code

since you worked with your partner? Yes/No

• Do you feel your coding and debugging skills have

improved after this pair programming activity?

Yes/No

• Did you use new tools and softwares apart from the

ones prescribed for you? Yes/No

• Did you feel the need to explore test cases to check

the correctness of your programs? Yes/No

• Was there a decrease in your erring facet during pair

programming? Yes/No

• Were you satisfied with this pair programming task?

Yes/No

• Do you feel that there has been a considerable

decrease in your program development time since

you worked in pairs in this semester as compared to

the previous semester when you programmed solo?

Yes/No

Results and Implications

The parameter score was calculated by the formula as

given below:

100

Number of positive responses
Score

Total number of participants
= × (2)

where Score denotes the score which was calculated

individually for each parameter.

From the results displayed in Fig. 7 and 8, it is a clear

indication of the fact that pair programming has

performed better than solo programming. As an add-on,

we present results obtained from Non Commented

Source code Statements (JavaNCSS) which only

enhances our study. JavaNcss is a command line tool

used to perform quantitative analysis of code written in

java. It can be conveniently used at the command line

(Tomas et al., 2013). The reason behind using this

particular tool is that it requires code written in Java and

students preferred to use Java as the programming

language to implement design pattern case studies.

Results are tabulated in Table 2-4 which further

augments the pair programming outcome.

The lab course titled Design patterns comprised of 23

design patterns categorized as creational, structural and

behavioral. An implementation of these patterns was done

in Java. Only five complex codebase were reviewed and

the values of predominant metrics were calculated.

As a result of the experiments conducted,

following are the answers to the research questions

formulated in the previous section III. RQ1: To

ascertain that pair programming is better than solo

programming, fifteen parameters were considered as

explained in previous section VI. RQ2: There are

three possible combinations of pairs. In this context,

two combinations of pairs were considered. They are:

(1) Scholar-Naive (2) Scholar-Scholar. RQ3: To

measure the effectiveness of pair programming,

JavaNCSS tool was used as explained above along

with code metrics.

Smitha Rajagopal et al. / Journal of Computer Sciences 2017, 13 (6): 199.210

DOI: 10.3844/jcssp.2017.199.210

208

Fig. 7. Solo v/s pair programming (1/2)

Fig. 8. Solo v/s pair programming (1/2)

Table 2. MI solo v/s pair

Pattern MI(Solo) MI(Pair)

Flyweight 60.25 80.23

Facade 45.56 63.25

Observer 39.26 55.80

Iterator 43.60 47.99

Mediator 67.88 79.00

Table 3. CC solo v/s pair

Pattern CC(Solo) CC(Pair)

Flyweight 25 18

Facade 30 22

Observer 27 21

Iterator 32 25

Mediator 30 24

Table 4. DAC solo v/s pair

Pattern DAC(Solo) DAC(Pair)

Flyweight 23 16

Facade 19 15

Observer 22 17

Iterator 14 10

Mediator 16 12

As observed in this study, advantages of pair

programming pedagogy can be summarized as

follows:

• Pair programming pedagogy was fairly successful

• Produces better quality of code

Smitha Rajagopal et al. / Journal of Computer Sciences 2017, 13 (6): 199.210

DOI: 10.3844/jcssp.2017.199.210

209

• Students can tackle programming tasks in different

ways

Conclusion

In this study, a sincere attempt was made to

establish that pair programming is better than solo

programming for certain advanced level lab courses in

postgraduate studies. All the above mentioned

parameters were chosen after a systematic analysis of

pair programming paradigm. The quantitative analysis

discussed in this study shows that pair programming

has a great potential of generating desirable software

code. Key advantages identified in the study on pair

programming include better quality of code, tackling

programming exercises differently and a higher

success rate than solo programming. Overall, pair

programming can be termed as a noteworthy XP

practice which can be definitely recommended for

postgraduate students.

As part of future work for student pairs, cognitive

complexity, a software metric used to test the quality

of code will be introduced. Cognitive complexity is a

far more sophisticated metric than cyclomatic

complexity to track control flow in codebase.

Acknowledgment

The authors would like to express their gratitude to

5
th

 semester MCA students and faculty members of

Manipal University for participating in pair

programming activity.

Author’s Contributions

Smitha. R, preparation of the manuscript. Hareesha.

K.S responsible for reviewing the manuscript and

offering valuable suggestions. Poornima Panduranga

Kundapur contributed towards organization of the

manuscript and offered meaningful inputs.

Ethics

The authors confirm that this manuscript has not been

published elsewhere and that no ethical issues are

involved.

References

Begel, A. and N. Nagappan, 2008. Pair programming:

What’s in it for me? Proceedings of the 2nd ACM-

IEEE International Symposium on Empirical

Software Engineering and Measurement, Oct. 09-10,

ACM, New York, pp: 120-128.
 DOI: 10.1145/1414004.1414026

Butler, S., M. Wermelinger, Y. Yu and H. Sharp,

2010. Exploring the influence of identifier names

on code quality: An empirical study. Proceedings

of the 14th European Conference on Software

Maintenance and Reengineering, Mar. 15-18,

IEEE Xplore Press, Madrid, pp: 156-165.

 DOI: 10.1109/CSMR.2010.27

Cockburn, A. and L. Williams, 2001. The Costs and

Benefits of Pair Programming. Extreme

Programming Examined, Succi, G. and M. Marchesi

(Eds.), Addison-Wesley, pp: 223-243.

Coman, I.D., A. Sillitti and G. Succi, 2008. Investigating

the usefulness of pair-programming in a mature

agile team. Proceedings of the Agile Processes in

Software Engineering and Extreme Programming,

Jun. 10-14, Springer Berlin Heidelberg, pp: 127-136.

DOI: 10.1007/978-3-540-68255-4_13

di Bella, E., I. Fronza, N. Phaphoom, A. Sillitti and

G. Succi et al., 2013. Pair programming and

software defects--a large, industrial case study.

IEEE Trans. Software Eng., 39: 127-136.

 DOI: 10.1109/TSE.2012.68

Dogs, C. and T. Klimmer, 2004. An evaluation of the

usage of agile core practices. MSc Thesis, Blekinge

Institute of Technology, Sweden.

Elish, K.O. and M. Alshayeb, 2011. A classification of

refactoring methods based on software quality

attributes. Arabian J. Sci. Eng., 3: 1253-1267.

 DOI: 10.1007/s13369-011-0117-x

Estácio, B.J.D.S. and R. Prikladnicki, 2015. Distributed

pair programming: A systematic literature review.

Inform. Software Technol., 63: 1-10.

 DOI: 10.1016/j.infsof.2015.02.011

Gamma, E., R. Helm, R. Johnson and J. Vlissides, 1994.

Design Patterns: Elements of Reusable Object-

Oriented Software. 1st Edn., Addison-Wesley,

ISBN-10: 0201633612, pp: 395.

Hanks, B., S. Fitzgerald, R. McCauley, L. Murphy and

C. Zander, 2011. Pair programming in education: A

literature review. Comput. Sci. Educ., 21: 127-136.

DOI: 10.1080/08993408.2011.579808

http://javapapers.com/design-patterns/mediator-design-

pattern/

http://www.cs.unc.edu/~stotts/GOF/hires/pat4efso.htm

Kavitha, R.K. and M.S.I. Ahmed., 2015. Knowledge

sharing through pair programming in learning

environments: An empirical study. Educ. Inform.

Technol., 20: 319-333. DOI: 10.1007/s10639-013-

9285-5

Lewis, C.M., 2011. Is pair programming more effective

than other forms of collaboration for young

students? Comput. Sci. Educ., 21: 127-136. DOI:

10.1080/08993408.2011.579805

Smitha Rajagopal et al. / Journal of Computer Sciences 2017, 13 (6): 199.210

DOI: 10.3844/jcssp.2017.199.210

210

Lui, K.M. and K.C.C. Chan, 2006. Pair programming

productivity: Novice-novice Vs. expert-expert. Int.

J. Human-Comput. Stud., 64: 127-136.

 DOI: 10.1016/j.ijhcs.2006.04.010

Nawahdah, M., D. Taji and T. Inoue, 2015.

Collaboration leads to success: A study of the

effects of using pair-programming teaching

technique on student performance in a Middle

Eastern society. Proceedings of the IEEE

International Conference on Teaching, Assessment

and Learning for Engineering, Dec. 10-12, IEEE

Xplore Press, pp: 16-22.

 DOI: 10.1109/TALE.2015.7386009

Plonka, L., H. Sharp, J. van der Linden and Y. Dittrich,

2015. Knowledge transfer in pair programming: An

in-depth analysis. Int. J. Human-Comput. Stud., 73:

66-78. DOI: 10.1016/j.ijhcs.2014.09.001

Sajeev, A.S.M. and S. Datta, 2013. Introducing

Programmers to Pair Programming: A Controlled

Experiment. 1st Edn., Springer Berlin Heidelberg.

Sato, D., A. Goldman and F. Kon, 2007. Tracking the

evolution of object-oriented quality metrics on agile

projects. Proceedings of the 8th International

Conference on Agile Processes in Software

Engineering and Extreme Programming, Jun. 18-22,

Springer Berlin Heidelberg, pp: 84-92.

 DOI: 10.1007/978-3-540-73101-6_12

Stapel, K., E. Knauss, K. Schneider and M. Becker,

2010. Towards understanding communication

structure in pair programming. Proceedings of the

International Conference on Agile Software

Development, (ASD’ 10), Springer, Berlin

Heidelberg, pp: 117-131.

 DOI: 10.1007/978-3-642-13054-0_9

Tomas, P., M.J. Escalona and M. Mejias, 2013. Open

source tools for measuring the internal quality of

Java software products. A survey. Comput.

Standards Interfaces, 36: 244-255.

 DOI: 10.1016/j.csi.2013.08.006

Turk, D., R. France and B. Rumpe, 2014. Assumptions

underlying agile software development processes.

arXiv preprint arXiv: 1409.

Vanhanen, J. and C. Lassenius, 2005. Effects of pair

programming at the development team level: An

experiment. International Symposium on Empirical

Software Engineering, Nov. 17-18, IEEE Xplore Press,

pp: 10-10. DOI: 10.1109/ISESE.2005.1541842

Williams, L., 2000. The collaborative software process.

PhD Thesis, University of Utah, USA.

Williams, L., E. Wiebe, K. Yang, M. Ferzli and

C. Miller, 2002. In support of pair programming in

the introductory computer science course. Comput.

Sci. Educ., 12: 197-212.

 DOI: 10.1076/csed.12.3.197.8618

