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Abstract: A Data Mining Has Already Had Many Algorithms Which A K-

Nearest Neighbors Algorithm, K-NN, Is A Famous Algorithm For 

Researchers. K-NN Is Very Effective On Small Data Sets, However It 

Takes A Lot Of Time To Run On Big Datasets. Today, Data Sets Often 

Have Millions Of Data Records, Hence, It Is Difficult To Implement K-NN 

On Big Data. In This Research, We Propose An Improvement To K-NN To 

Process Big Datasets In A Shortened Execution Time. The Reformed K-

Nearest Neighbors Algorithm (R-K-NN) Can Be Implemented On Large 

Datasets With Millions Or Even Billions Of Data Records. R-K-NN Is 

Tested On A Data Set With 500,000 Records. The Execution Time Of R-K-

NN Is Much Shorter Than That Of K-NN. In Addition, R-K-NN Is 

Implemented In A Parallel Network System With Hadoop Map (M) And 

Hadoop Reduce (R). 

 

Keywords: K-Nearest Neighbors Algorithm, K-NN, Parallel Network 
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Introduction  

The field of data mining has been studied for many 

years. The K-Nearest Neighbors algorithm (K-NN) is a 

popular algorithm in the data mining field. We use K-

NN to stores all available cases and classifies new cases 

based on a similarity measure (e.g., distance functions) 

and it is a simple algorithm. Besides, K-NN has been 

used in statistical estimation and pattern recognition and 

it is a non-parametric technique. 

It is clear that social networks, information 

technology and computer science are being developed at 

a dramatic rate, generating vast amounts of data, 

information and knowledge. The information in these big 

data sets belonging to large corporations is very 

valuable, particularly if this information can be exploited 

in ways which are of benefit.  

Hence, many algorithms have been proposed to run 

on big datasets. K-NN is a well-known algorithm in data 

mining and other fields, but K-NN takes a lot of time to 

run on big data sets, yet it is efficient on small datasets. 

Thus, we tested K-NN and other algorithms on big data 

sets. There are many algorithms which can perform 

efficiently on small data sets but they are not effective on 

big datasets with millions of data records. To test this, 

we studied K-NN on big data sets and examined the 

existing research. 

We want this survey to design an improved K-NN 

algorthim (R-K-NN), with Hadoop Map (M) and 

Hadoop Reduce (R) to implement on data sets containing 

millions of records in parallel systems, the results 

showing that R-K-NN is able to process big datasets in a 

shortened time. R-K-NN is also tested in the Cloudera 

distributed system. 

According to the existing research related to the K-

Nearest Neighbors algorithm (Larose, 2005; Fukunaga and 
Narendra, 2006; Keller et al., 2012; Kuncheva, 1995; 
Pan et al., 2015; Franco-Lopez et al., 2001; Callahan and 
Kosaraju, 1995; Horton and Nakai, 1997; Denoeux, 
2002; Zhang and Zhou, 2005; Seidl and Kriegel, 1998; 
Mouratidis et al., 2005; Song and Roussopoulos, 2001), 

there is no work related to K-NN which is similar to this 
work, nor is there any study related to the K-Nearest 
Neighbors algorithm in the parallel network environment 
(the distributed system). 

In the research related to the distributed environment 

reported in (Favuzza et al., 2006; Satyanarayanan et al., 

2002; Babaoğlu et al., 1992; Fujimoto, 2001; Phu et al., 
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2016; Shirazi et al., 1995; Chen et al., 2011; Sulistio et al., 

2004; Borges et al., 2001), there are no studies related to 

K-NN which is similar to this work. 

The surveys in (Larose, 2005; Fukunaga and 

Narendra, 2006; Keller et al., 2012; Kuncheva, 1995; 

Pan et al., 2015; Franco-Lopez et al., 2001; Callahan and 

Kosaraju, 1995; Horton and Nakai, 1997; Denoeux, 

2002; Zhang and Zhou, 2005; Seidl and Kriegel, 1998; 

Mouratidis et al., 2005; Song and Roussopoulos, 2001; 

Favuzza et al., 2006; Satyanarayanan et al., 2002; 

Babaoğlu et al., 1992; Fujimoto, 2001; Phu et al., 2016; 

Shirazi et al., 1995; Chen et al., 2011; Sulistio et al., 

2004; Borges et al., 2001; Fujita et al., 1998; Dat et al., 

2016) are very different from our study in this paper. 

As reported in the work on K-NN found in (Larose, 

2005; Fukunaga and Narendra, 2006; Keller et al., 2012; 

Kuncheva, 1995; Pan et al., 2015; Franco-Lopez et al., 

2001; Callahan and Kosaraju, 1995; Horton and Nakai, 

1997; Denoeux, 2002; Zhang and Zhou, 2005; Seidl and 

Kriegel, 1998; Mouratidis et al., 2005; Song and 

Roussopoulos, 2001), we have already known many 

benefits and drawbacks of K-NN. We present the 

negatives of K-NN as follows: We knew many very 

simple classifiers such as K-NN which works well on 

basic recognition problems; and it can work with noisy 

training data (if inverse square of weighted distance is 

used as the 'distance'). The drawbacks of K-NN are 

displayed as follows: The KNN algorithm will find the K 

closest neighbors to the new instance from the training 

data and the predicted class label will then be set as the 

most common label among the K closest neighboring 

points; the distance must be computed and all the 

training data at each prediction are shorted, if there is a 

large number of training examples, it can be slow. 

From an examination of the methods in the existing 

studies reported in (Larose, 2005; Fukunaga and 

Narendra, 2006; Keller et al., 2012; Kuncheva, 1995; 

Pan et al., 2015; Franco-Lopez et al., 2001; Callahan and 

Kosaraju, 1995; Horton and Nakai, 1997; Denoeux, 

2002; Zhang and Zhou, 2005; Seidl and Kriegel, 1998; 

Mouratidis et al., 2005; Song and Roussopoulos, 2001; 

Favuzza et al., 2006; Satyanarayanan et al., 2002; 

Babaoğlu et al., 1992; Fujimoto, 2001; Phu et al., 2016; 

Shirazi et al., 1995; Chen et al., 2011; Sulistio et al., 

2004; Borges et al., 2001; Fujita et al., 1998; Dat et al., 

2016), it is clear that there is no work which is similar to 

the work in this paper, hence the originality and novelty 

of this work.  

We show our work’s motivation as follows: K-NN of 

the data mining field is a popular algorithm which is 

being increasingly used and applied to many different 

fields, hence it is very useful for researchers and 

commercial applications. In today’s information age, 

massive amounts of big datasets are being generated 

which current algorithms and methods are not able to 

successfully process. Many methods, applications and 

systems in the current time are implemented correctly 

with the current data sets, whereas, these cannot be 

performed correctly. Therefore, we propose a new model 

to address these limitations. 

The novelty of the proposed approach is as follows: 

KNN can be run in the parallel network environment and 

can also handle big data sets. Many KNN used 

models/methods, many KNN related applications and 

many KNN used systems can be upgraded on the big 

data sets and on the distributed systems. Thus, this 

model is proposed. 

We also display the crucial contributions of our 

survey as follows: 
 
a) This work implements K-NN in the parallel 

environment 

b) This work implements K-NN to process big data 

with millions of records 

c) This research implements K-NN in both sequential 

systems and distributed environments 

d) We propose the K-NN related algorithms which are 

implemented in distributed systems 

e) The results of this novel model can be used in many 

other studies and commercial applications 

f) Using the results of this work, other studies and 

systems related to KNN can be successfully enhanced 
 

In light of these contributions, the superiority of R-K-

NN over K-NN is demonstrated.  
We present five sections of this work as follows: This 

section is the Introduction section. We show Section 2 to 
detail the related studies on the K-Nearest Neighbors 
algorithm. The methodology for the implementation of 
the K-Nearest Neighbors algorithm in the parallel 
network environment is displayed in Section 4. We show 
Section 4 which presents details of the experiments. We 
present the conclusion of this work in Section 5. 

Related Work 

In this section, we detail the existing research related 

to the K-Nearest Neighbors algorithm and the parallel 

network system. 
We show algorithms, applications and studies in the 

distributed system in (Hadoop, 2016; Apache, 2016; 
Cloudera, 2016). We use Hadoop, an Apache-based 
framework, in (Hadoop, 2016; Apache, 2016) to handle 
large data sets on clusters consisting of multiple 
computers, using the Map and Reduce programming 
model. There are two components of Hadoop: The 
Hadoop Distributed File System (HDFS) and Hadoop 
M/R (Hadoop Map/Reduce). Engineers use Hadoop Map 
and Hadoop Reduce to program to write applications for 
the parallel processing of large data sets on clusters 
consisting of multiple computers. An M/R task has two 
main components: (1) Map and (2) Reduce. The global 
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provider of the fastest, easiest and most secure data 
management and analytics platform built on Apache™ 
Hadoop® and the latest open source technologies, called 
Cloudera (2016); and it will submit proposals for Impala 
and Kudu to join the Apache Software Foundation 
(ASF). Cloudera delivers a modern data management 
and analytics platform built on Apache Hadoop and the 
latest open source technologies. 

The surveys related to the K-Nearest Neighbors 
algorithm are presented in (Larose, 2005; Fukunaga and 
Narendra, 2006; Keller et al., 2012; Kuncheva, 1995; 
Pan et al., 2015; Franco-Lopez et al., 2001; Callahan and 
Kosaraju, 1995; Horton and Nakai, 1997; Denoeux, 
2002; Zhang and Zhou, 2005; Seidl and Kriegel, 1998; 
Mouratidis et al., 2005; Song and Roussopoulos, 2001). 
A discussion of the differences between supervised and 
unsupervised methods is shown in the work (Larose, 
2005) and the k-nearest neighbor algorithm is 
introduced, in the context of a patient-drug classification 
problem. The authors (Fukunaga and Narendra, 2006) 
detailed K-nearest neighbor methods for estimation and 
prediction which are examined, along with methods for 
choosing the best value for k. Computation of the k-
nearest neighbors generally requires a large number of 
expensive distance computations.  

Based on the best of our knowledge, we do not see 
any researches related to the K-Nearest Neighbors 
algorithm in the parallel system. 

Comparisons of our novel model’s results with the 
studies in (Larose, 2005; Fukunaga and Narendra, 2006; 
Keller et al., 2012; Kuncheva, 1995; Pan et al., 2015; 
Franco-Lopez et al., 2001; Callahan and Kosaraju, 1995; 
Horton and Nakai, 1997; Denoeux, 2002; Zhang and 
Zhou, 2005; Seidl and Kriegel, 1998; Mouratidis et al., 
2005; Song and Roussopoulos, 2001; Favuzza et al., 
2006; Satyanarayanan et al., 2002; Babaoğlu et al., 
1992; Fujimoto, 2001; Phu et al., 2016; Shirazi et al., 
1995; Chen et al., 2011; Sulistio et al., 2004; Borges et al., 
2001) and the comparative results are presented in Table 2. 

Research related to the distributed environment is 
reported in (Favuzza et al., 2006; Satyanarayanan et al., 
2002; Babaoğlu et al., 1992; Fujimoto, 2001; Phu et al., 
2016; Shirazi et al., 1995; Chen et al., 2011; Sulistio et al., 
2004; Borges et al., 2001). The authors (Favuzza et al., 
2006) displayed the metaheuristic technique of Ant 
Colony Search which was revised to deal with dynamic 
search optimization problems having a large search 
space and mixed integer variables. The authors presented 
Coda in (Satyanarayanan et al., 2002) which is a file 
system for a large-scale distributed computing 
environment composed of Unix workstations, etc. 

Data Set 

Our data set has 500,000 data records (The Data Set, 

2016) as shown in the Fig. 1 below. 
 

 
 

Fig. 1: The data in this research 
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As shown in Fig. 1, there are 21 columns, namely 

Column CLASS, Column V1, Column V2, Column V3, 

Column V4, Column V5, Column V6, Column V7, 

Column V8, Column V9, Column V10, Column V11, 

Column V12, Column V13, Column V14, Column V15, 

Column V16, Column V17, Column V18, Column V19, 

Column V20, Column V21, however we remove the 

column CLASS and keep the remaining columns. For 

each data record, we have one vector and therefore the 

length of each vector is 20. 

Methodology 

The implementation of the K-Nearest Neighbors 

algorithm in the sequential environment is firstly 

detailed and we also present the implementation of the 

reformed K-Nearest Neighbors algorithm in the 

Cloudera environment secondly in this section. 

K-Nearest Neighbors Algorithm in the Sequential 

Environment 

An overview of K-NN in the sequential system is 

shown in Fig. 2 

We use Algorithm 1 to transfer the 500,000 data 

records of our data set (The Data Set, 2016) into the 

500,000 vectors. 

 

ALGORITHM 1: Transferring the 500,000 data records 

of our data set [1] into the 500,000 vectors 

Input:  
 The 500,000 data records of the data set (The 

Data Set, 2016): D. 

Output: a vector group, including the 500,000 vectors. 

Begin  

1. Set VectorGroup := {}; 

2. For i := 0; i < 500,000; i++, do: 

3.  OneVector := new Vector(); 

4. For j := 1; j <= 21; j++; do: 

5.   OneVector[j-1] := D[i][“V” + j]; 

6.  End For; 

7.  VectorGroup.AddVector (OneVector); 

8. End For; 

9. Return VectorGroup;  

End; 

 

According to the K-NN algorithm in (Larose, 2005; 

Fukunaga and Narendra, 2006; Keller et al., 2012; 

Kuncheva, 1995; Pan et al., 2015; Franco-Lopez et al., 

2001; Callahan and Kosaraju, 1995; Horton and Nakai, 

1997; Denoeux, 2002; Zhang and Zhou, 2005; Seidl and 

Kriegel, 1998; Mouratidis et al., 2005; Song and 

Roussopoulos, 2001), we perform K-NN in the 

sequential environment as follows: 

ALGORITHM 2: K-Nearest Neighbor algorithm (K-

NN) in the sequential environment. 

Input: 
 A vector group, including the 500,000 vectors. 

Output: the results of clustering of K-NN. 

Begin 

1. Identify the K parameter (K - Nearest Neighbors): in 

this survey, we choose K = 5; 

2. Calculate the distance between the vectors (which 

need to be clustered) with the vectors in the 

training data by Euclidean distance; 

3. Arrange the distances in ascending order; and identify 

the K - nearest neighbors with the vectors 

which need to be clustered; 

4. Get all clusters of K-nearest neighbors which are 

identified; 

5. Identify the cluster of the vector according to all the 

clusters of K-NN; 6. Return the results of 

clustering; 

End; 

 

Euclidean distance is used by K-NN to identify the 

distance between two vectors as follows: Vector 

V1(column x1, column x2, column x3, column x4, 

column x5, column x6, column x7, column x8, column 

x9, column x10, column x11, column x12, column x13, 

column x14, column x15, column x16, column x17, 

column x18, column x19, column x20) and vector 

V2(column y1, column y2, column y3, column y4, 

column y5, column y6, column y7, column y8, column 

y9, column y10, column y11, column y12, column y13, 

column y14, column y15, column y16, column y17, 

column y18, column y19, column y20): 
 

( ) ( ) ( )

( ) ( )

2 2 2

2 2

1 1 2 2  18 18

 19 19  20 20

x y x y x y
d

x y x y

− + − +…+ −

=

+ − + −

 

 

K-Nearest Neighbors algorithm in the Parallel 

Network Environment (R-K-NN) 

We improve K-NN, called R-K-NN, to utilize in 

the Cloudera based on the basis of the K-NN 

algorithm in (Larose, 2005; Fukunaga and Narendra, 

2006; Keller et al., 2012; Kuncheva, 1995; Pan et al., 

2015; Franco-Lopez et al., 2001; Callahan and 

Kosaraju, 1995; Horton and Nakai, 1997; Denoeux, 

2002; Zhang and Zhou, 2005; Seidl and Kriegel, 1998; 

Mouratidis et al., 2005; Song and Roussopoulos, 2001). 

We also present R-K-NN by using Hadoop Map (M) 

and Hadoop Reduce (R) in the Cloudera in Fig. 3. 

Transferring of the data records comprises two phases 

as follows: Hadoop Map of the Cloudera in the first phase 

and Hadoop Reduce of the Cloudera in the second phase. 
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Fig. 2: Overview of K-NN in the sequential system 

 

 

 

Fig. 3: Overview of the K-Nearest Neighbors algorithm in the Cloudera, called R-K-NN 

 

The Fig. 4 shows the first phase of transferring the 

500,000 data records into the 500,000 vectors in 

Cloudera. 

The Fig. 5 illustrates the second phase. 

After transferring the 500,000 data records into the 

500,000 vectors in Cloudera, we reform K-NN in the 

distributed system which involves two phases as shown 

in the Fig. 6. 

The Fig. 7 illustrates the first phase of K-NN in 

Hadoop Map in the parallel system. 

The Fig. 8 illustrates the second phase of K-NN in 

Hadoop Reduce of the Cloudera distributed system.
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Fig. 4: The first phase of transferring the 500,000 data records into the 500,000 vectors in Cloudera 
 

 
 

Fig. 5: The second phase of transferring the 500,000 data records into the 500,000 vectors in Cloudera 

 

 
 

Fig. 6: Overview of the K-Nearest Neighbors algorithm in the parallel network environment – Cloudera (R-K-NN) 
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The 500,000 vectors

K-Nearest Neighbors algorithm in Hadoop Map 

(M) of the parallel network environment –

Cloudera:

Identify the K parameter (K - Nearest Neighbors): in 

this survey, we choose K = 5;

The cluster of the vector

Output of Hadoop Map

Input of Hadoop Reduce

Calculate the distance between the vectors (which 

need to be clustered) with the vectors in the training 

data by Euclidean distance;

Arrange the distances in acending order; and 

Identify K - nearest neighbors with the vectors 

which need to be clustered;

Get all clusters of K - nearest neighbors which are 

identified;

Based on all the clusters of the nearest neighbors, 

identify the cluster of the vector;

 

 

Fig. 7: Overview of the K-Nearest Neighbors algorithm in Hadoop Map (M) in Cloudera 
 

 
 

Fig. 8: Overview of the K-Nearest Neighbors algorithm in Hadoop Reduce (R) in Cloudera 
 

Experiment 

We used a Java programming language to implement 

the novel model on a dataset with 500,000 observations 

(The Data Set, 2016). 

We used one node (one server) to perform our survey 

in the sequential environment. We also used the Java 

programming language to program R-K-NN. 
The server in the sequential system had the 

configuration which was Intel® Server Board 
S1200V3RPS, Intel® Pentium® Processor G3220 (3M 
Cache, 3.00 GHz), 2GB PC3-10600 ECC 1333 MHz LP 
Unbuffered DIMMs. Cloudera system was used as the 
operating system of the server. 

We implemented R-K-NN in the Cloudera parallel 
network environment. The Java language was used in 
programming the application of R-K-NN in Cloudera. 
The Cloudera system comprised five nodes (five 
servers). The operating system of each server in the five 
nodes was Cloudera. The configuration of each server in 
the Cloudera system was Intel® Server Board 
S1200V3RPS, Intel® Pentium® Processor G3220 (3M 
Cache, 3.00 GHz), 2GB PC3-10600 ECC 1333 MHz LP 
Unbuffered DIMMs. All five nodes had the same 
configuration information. 

The results of K-NN and R-K-NN are similar and due 
to space limitations, we do not present the detailed 
results in this study. The results of K-NN in the 
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sequential environment are similar to that of R-K-NN in 
the Cloudera parallel environment. In addition, the 
execution time of K-NN in the sequential system is 
much shorter than that of R-K-NN in the Cloudera 
distributed system. 

The execution times of K-NN in the sequential 

system and R-K-NN in the distributed system are shown 

in the Table 1. 

To better understand the advantages of this study, we 

compare this work with other work related to the K-

Nearest Neighbors algorithm in (Larose, 2005; Fukunaga 

and Narendra, 2006; Keller et al., 2012; Kuncheva, 

1995; Pan et al., 2015; Franco-Lopez et al., 2001; 

Callahan and Kosaraju, 1995; Horton and Nakai, 1997; 

Denoeux, 2002; Zhang and Zhou, 2005; Seidl and 

Kriegel, 1998; Mouratidis et al., 2005; Song and 

Roussopoulos, 2001), as shown in Table 2. As indicated 

in the Tables 2 and 3, no other studies used K-NN in the 

parallel network environment nor was there any research 

which was similar to the model developed in this work. 

Next, we compare our study with those related to the 

distributed system reported in (Favuzza et al., 2006; 

Satyanarayanan et al., 2002; Babaoğlu et al., 1992; 

Fujimoto, 2001; Phu et al., 2016; Shirazi et al., 1995; 

Chen et al., 2011; Sulistio et al., 2004; Borges et al., 

2001; Fujita et al., 1998) in the Table 4 and 5. 

 
Table 1: The execution times of K-NN in the sequential 

environment and R-K-NN in the Cloudera parallel 
network 

Our proposed model Time 

K-NN in the sequential environment 4,603 sec 
R-K-NN in the Cloudera 1,233 sec 
parallel system – 4 nodes 
R-K-NN in the Cloudera 890 sec 
distributed system – 5 nodes 

 
Table 2: Comparison of our work with the studies related to K-NN in [(Larose, 2005; Fukunaga and Narendra, 2006; Keller et al., 

2012; Kuncheva, 1995; Pan et al., 2015; Franco-Lopez et al., 2001; Callahan and Kosaraju, 1995; Horton and Nakai, 1997; 
Denoeux, 2002; Zhang and Zhou, 2005; Seidl and Kriegel, 1998; Mouratidis et al., 2005; Song and Roussopoulos, 2001)]. 
Parallel network environment: PNE (or distributed system, parallel system) 

Studies K-NN PNE Model/method 

Larose (2005) Yes No k-Nearest Neighbor Algorithm 
Fukunaga and Narendra (2006) Yes No A branch and bound algorithm for computing k-Nearest Neighbors 
Keller et al. (2012) Yes No A fuzzy k-Nearest Neighbor algorithm 
Kuncheva (1995) Yes No Editing for the k-Nearest Neighbors rule by a genetic algorithm 
Ruilin Pan et al. (2015) Yes No Missing data imputation by k-Nearest Neighbours based on grey 
   relational structure and mutual information 
Franco-Lopez et al. (2001) Yes No Estimation and mapping of forest stand density, volume and cover type 
   using the k-Nearest Neighbors method 
Callahan and Kosaraju (1995) Yes No A decomposition of multi-dimensional point sets with applications to 
   k-nearest neighbors and n-body potential fields 
Horton and Nakai (1997) Yes No Better prediction of protein cellular localization sites with the  
   k-Nearest Neighbors classifier 
Denoeux (2002) Yes No A k-nearest neighbor classification rule based on Dempster-Shafer theory 
Zhang and Zhou (2005) Yes No A k-nearest neighbor based algorithm for multi-label classification 
Seidl and Kriegel (1998) Yes No Optimal multi-step k-nearest neighbor search 
Mouratidis et al. (2005) Yes No A threshold-based algorithm for the continuous monitoring 
   of k-nearest neighbors 
Song and Roussopoulos (2001) Yes No K-Nearest Neighbor search for moving query point 
Our work Yes Yes An improved K-Nearest Neighbors algorithm in the Cloudera 
   parallel network system 
 

Table 3: Comparison of the advantages and disadvantages of our work with the studies related to K-NN in [(Larose, 2005; Fukunaga and Narendra, 

2006; Keller et al., 2012; Kuncheva, 1995; Pan et al., 2015; Franco-Lopez et al., 2001; Callahan and Kosaraju, 1995; Horton and Nakai, 
1997; Denoeux, 2002; Zhang and Zhou, 2005; Seidl and Kriegel, 1998; Mouratidis et al., 2005; Song and Roussopoulos, 2001)] 

Studies Advantages Disadvantages 

Larose (2005) The k-nearest neighbor algorithm is introduced in the context of a patient-drug No mention 
 classification problem. Voting for different values of k are shown to sometimes 

 lead to differentresults. The distance function, or distance metric, is defined, with 

 Euclidean distance being typically chosen for thisalgorithm. The combination 
 Function is defined, for both simple unweighted voting and weighted voting.  

 Stretching the axesis shown as a method for quantifying the relevance of various 

 attributes. Database considerations, such as balancing,are discussed. Finally,  
 k-nearest neighbor methods for estimationand prediction are examined, along 

 with methods for choosing the best value for k 

Fukunaga and Experimental results demonstrate the efficiency of the algorithm. Typically, an No mention 
Narendra (2006) average of only 61 distance computations were made to find the nearest neighbor 

 of a test sample among 1000 design samples 
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Table 3: Continue 

Keller et al. (2012) The theory of fuzzy sets is introduced into the K-nearest neighbor technique to No mention 

 develop a fuzzy version of the algorithm. Three methods of assigning fuzzy 
 memberships to the labeled samples are proposed and experimental results and 

 comparisons to the crisp version are presented 

Kuncheva (1995) The performance has been evaluated on a medical data set by the rotation method. No mention 
 The results are reported together with those obtained with the standard k-NN, 

 random selection, Wilson's technique and the MULTIEDIT algorithm 

Pan et al. (2015) The authors propose a novel method to impute missing data, named the feature No mention 
 weighted grey KNN (FWGKNN) imputation algorithm. This approach employs 

 mutual information (MI) to measure feature relevance. The authors present an 

 experimental evaluation for five UCI datasets in three missingness mechanisms 
 with various missing rates. Experimental results show that feature relevance has a  

 non-ignorable influence on missing data estimation based on grey theory and this 

 method is considered superior to the other four estimation strategies. Moreover, 
 the classification bias can be significantly reduced by using this approach in 

 classification tasks 

Franco-Lopez et al. The authors describe the k-nearest neighbors (kNN) method for improving No mention 

(2001) estimation and to produce wall-to-wall basal area, volume and cover type maps, 

 in the context of the USDA Forest Service's Forest Inventory and Analysis (FIA) 

 monitoring system. Several variations within the kNN were tested, including: 
 Distance metric, weighting function, feature weighting parameters and number 

 Of neighbors. Specific procedures to incorporate ancillary information and image 

 enhancement techniques were also tested. Using the nearest neighbor (k=1), 
 Euclidean distance, a three date 18-band composite image and feature weighting 

 parameters, maps were constructed for basal area, volume and cover type 

Callahan and The authors define the notion of a well-separated pair decomposition of points in No mention 
Kosaraju (1995) d-dimensional space. They then develop efficient sequential and parallel 

 algorithms for computing such a decomposition. They apply the resulting 

 decomposition to the efficient computation of k-nearest neighbors and n-body 
 potential fields 

Horton and The result of tests using stratified cross validation shows the k-nearest neighbors The authors consider a relatively 

Nakai (1997) classifier performs better than the other methods. In the case of yeast, this minor error for two reasons. First, 
 difference was statistically significant using a cross-validated paired t test. The for some uses, the distinction 

 result is an accuracy of approximately 60°/o for 10 yeast classes and 86% for between different types of inner 

 8 E.coli classes. The best previously reported accuracies for these data sets membrane proteins may be 
 were 55% and 81% respectively immaterial. Second, the definition 

  of the presence or absence of an 
  uncleavable signal sequence is  

  somewhat  arbitrary and thus the 

  labels for some training examples  
  include some uncertainty. If the  

  authors collapse the two classes to 

  form a class "inner membrane  
  protein without a cleavable signal 

  sequence" a surprisingly high  

  accuracy of 94% is attained 
Denoeux (2002) This approach provides a global treatment of such issues as ambiguity and No mention 

 distance rejection and imperfect knowledge regarding the class membership 

 of training patterns. The effectiveness of this classification scheme as 
 compared to the voting and distance-weighted k-NN procedures is demonstrated  

 using several sets of simulated and real-world data 

Zhang and A multi-label lazy learning approach named ML-kNN is presented, which is No mention 
Zhou (2005) derived from the traditional k-nearest neighbor (kNN) algorithm. In detail, for 

 each new instance, its k-nearest neighbors are firstly identified. After that, 

 according to the label sets of these neighboring instances, the maximum a 
 posteriori (MAP) principle is utilized to determine the label set for the new 

 instance. Experiments on a real-world multi-label bioinformatic data show 

 that ML-kNN is highly comparable to existing multi-label learning algorithms. 
Seidl and The authors present a novel multi-step algorithm which is guaranteed to produce No mention 

Kriegel (1998) the minimum number of candidates. Experimental evaluations demonstrate the 

 significant performance gain over the previous solution and the authors 
 observed average improvement factors of up to 120 for the number of 

 candidates and up to 48 for the total runtime 

Mouratidis et al. The authors present a threshold-based algorithm for the continuous monitoring of No mention 
(2005) nearest neighbors that minimizes the communication overhead between the server 

 and the data objects. The proposed method can be used with multiple, static, or 

 moving queries, for any distance definition and does not require additional 

 knowledge (e.g., velocity vectors) besides object locations 
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Table 3: Continue 

Song and Four different methods are proposed for solving the problem. Discussion about No mention 

Roussopoulos the parameters affecting the performance of the algorithms is also presented. 

(2001) A sequence of experiments with both synthetic and real point data sets are studied. 

 In the experiments, the authors’ algorithms always outperform the existing ones by 

 fetching 70% less disk pages. In some settings, the saving can be as much as one 

 order of magnitude 

Our work The execution time is shorter; the improved algorithm can process It takes a lot of time and cost to 

 big datasets with millions of records in the shortest time. implement this model; sometimes 

  it causes confusion to implement 

  true; in the process of making this 

  model we must meet many errors 

 
Table 4: Comparison of our work with the studies related to the parallel environment in (Favuzza et al., 2006; Satyanarayanan et al., 2002; Babaoğlu et al., 

1992; Fujimoto, 2001; Phu et al., 2016; Shirazi et al., 1995; Chen et al., 2011; Sulistio et al., 2004; Borges et al., 2001; Fujita et al., 1998)  

Studies K-NN PNE Model/Method 

Favuzza et al. (2006) No Yes Adaptive and dynamic ant colony search algorithm for optimal  

   distribution systems reinforcement strategy 

Satyanarayanan et al. (2002) No Yes A highly available file system for a distributed workstation environment 

Babaoğlu et al. (1992) No Yes An environment for parallel programming in distributed systems 

Fujimoto (2001) No Yes Parallel simulation: Parallel and distributed simulation systems 

Phu et al. (2016) No Yes Fuzzy C-means for english sentiment classification in a distributed system 

Shirazi et al. (1995) No Yes Scheduling and Load Balancing in Parallel and Distributed Systems 

Chen et al. (2011) No Yes Parallel Spectral Clustering in Distributed Systems 

Sulistio et al. (2004) No Yes A taxonomy of computer-based simulations and its mapping to parallel  

   and distributed systems simulation tools 

Borges et al. (2001) No Yes Composite reliability evaluation of sequential Monte Carlo simulation on 

   parallel and distributed processing environments 

Fujita et al. (1998) No Yes Agent-based design model of adaptive distributed systems 

Our research Yes Yes An improved K-Nearest Neighbors algorithm in the Cloudera parallel  

   network system 

 
Table 5: Comparison of the advantages and disadvantages of our work with the studies related to the parallel environment in (Favuzza et al., 2006; 

Satyanarayanan et al., 2002; Babaoğlu et al., 1992; Fujimoto, 2001; Phu et al., 2016; Shirazi et al., 1995; Chen et al., 2011; Sulistio et al., 

2004; Borges et al., 2001; Fujita et al., 1998)  

Studies Advantages Disadvantages 

Favuzza et al. Distributed Generation (DG) technology considered in compound solutions No mention 

(2006) with the installation of feeder and substations is viewed as a new option for 

 solving distribution systems capacity problems, along several years. The objective 

 to be minimized is therefore the overall cost of distribution systemsreinforcement 

 strategy in a given time-frame. An application on a medium size network is carried 

 out using the proposed technique that allows the identification of optimal paths in 

 extremely large or non-finite spaces. The proposed algorithm uses an adaptive 

 parameter in order to push exploration or exploitation as the search procedure stops  

 in a local minimum. The algorithm allows the easy investigation of these kinds of 

 complex problems and allows useful comparisons to be made as the intervention 

 strategy and type of DG sources vary 

Satyanarayanan et al. The authors’ goal in building Coda is to develop a distributed file system that retains Although Coda is far from  

(2002) the positive characteristics of AFS while providing substantially better availability. maturity, the initial experience with 

 In this survey, the authors have shown how these goals have been achieved through it reflects favorably on its design. 

 the use of two complementary mechanisms, server replication and disconnected Performance measurements from the 

 operation. The authors also show how disconnected operation can be used to support Coda prototype are promising, 

 portable workstations. although they also reveal areas 

  where further improvement is  

  possible. The authors believe that 

  a well-tuned version of Coda will  

  indeed meet its goal of providing  

  high availability without serious  

  loss of performance, scalability, or 

  security. A general question about 

  optimistic replication schemes that 

  remains open is whether users will 

  indeed be willing to tolerate 

  occasional conflicts in return for 

  higher availability 
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Table 5: Continue 

Babaoğlu et al. The Paralex system aims to explore the extent to which the parallel application No mention 

(1992) programmer can be liberated from the complexities of distributed systems. Paralex 

 is a complete programming environment and makes extensive use of graphics to 

 define, edit, execute and debug parallel scientific applications. All of the necessary 

 code for distributing the computation across a network and replicating it to achieve 

 fault tolerance and dynamic load balancing is automatically generated by the 

 system. In this work, the authors give an overview of Paralex and present their 

 experiences with a prototype implementation 

Fujimoto (2001) PADS expert Richard M. Fujimoto provides software developers with cutting-edge No mention 

 techniques for speeding up the execution of simulations across multiple processors 

 and dealing with data distribution over wide area networks, including the Internet. 

 With an emphasis on parallel and distributed discrete event simulation technologies, 

 Dr. Fujimoto compiles and consolidates research results in the field spanning the 

 last twenty years, discussing the use of parallel and distributed computers in both 

 the modeling and analysis of system behavior and the creation of distributed virtual 

 environments. While other works on PADS concentrate on applications, Parallel and 

 Distributed Simulation Systems clearly show how to implement the technology. 

 This work explains in detail the synchronization algorithms needed to properly  

 realize the simulations, including an in-depth discussion of time warp and advanced  

 optimistic techniques. Finally, the study is richly supplemented with references,  

 tables and illustrations and examples of contemporary systems such as the  

 Department of Defense's High Level Architecture (HLA), which has become  

 the standard architecture for defense programs in the United States 

Phu et al. (2016) It processes big data involving millions of English documents. The execution It takes a long time to implement 

 time of this model to conduct sentiment analysis on big data is short and it is costly to build the 

  algorithms of the model in the 

  distributed system 

Chen et al. (2011) To perform clustering on large data sets, the authors investigate two representative No mention 

 ways of approximating the dense similarity matrix. The authors compare one 

 approach by sparsifying the matrix with another by the Nyström method. The  

 authors then pick the strategy of sparsifying the matrix via retaining nearest neighbors  

 and investigate its parallelization. The authors parallelize both memory use and  

 computation on distributed computers. Through an empirical study on a document  

 data set of 193; 844instances and a photo data set of 2; 121; 863, the authors show  

 that the authors’ parallel algorithm can effectively handle large problems. 

Sulistio et al. (2004) This work presents a taxonomy for computer simulations and applies the No mention 

 taxonomy on simulation tools for PDSs. The taxonomy comprises PDS, usage, 

 simulation and design taxonomies. The design taxonomy emphasizes respective 

 components and features of a simulation tool, including the simulation engine, 

 modeling framework, programming framework, design environment, user interface 

 and system support. A number of selected simulation tools have been surveyed 

 using the taxonomy. This study thus helps to identify some approaches for  

 designing simulation tools for PDSs and possible future research directions 

Borges et al. (2001) This work describes two parallel methodologies for composite reliability evaluation No mention 

 using sequential Monte Carlo simulation. The methodologies are based on coarse 

 grain asynchronous implementations. In the first methodology, a complete simulation 

 year is analyzed on a single processor and the many simulated years necessary for 

 convergence are analyzed in parallel. In the second methodology, the adequacy 

 analysis of the system operating states within the simulated years is performed in 

 parallel and the convergence is checked on one processor at the end of each 

 simulated year. The methodologies are implemented on a 10-node IBM RS/6000 SP  

 scalable distributed memory parallel computer and on a network of 8 IBM RS/6000  

 43P workstations.The results obtained in tests with actual power system models  

 showed high speed-up and efficiency on both parallel platforms. 

Fujita et al. (1998) The aim of the authors’ research is to establish a new design model of an adaptive No mention 

 distributed system (ADS) to deal with various changes occurred in the system 

 environment. In this research, the authors propose an agent-based architecture of 

 ADS, based on the agent-based computing paradigm. Then, the authors implement  

 a prototype of the ADS with respect to video conferencing applications and also 

 evaluate the adaptive functions of the ADS realized on the basis of the 

 proposed architecture 

Our research The execution time is shortened; it can process big datasets with millions of records It takes a lot of time and cost to 

 in a shortened time implement this model; sometimes it  

  causes confusion to implement true; 

  in the process of making this model 

  we must meet many errors 
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Results and Discussion 

As shown in Table 1, the execution time of K-NN in 

the sequential system is 14,603 sec whereas that of R-K-

NN in the Cloudera distributed environment (four nodes) 

is 1233 sec; and that of R-K-NN in the Cloudera parallel 

system (five nodes) is 890 sec. 

The results of the sequential environment are similar 

to those in the Cloudera distributed system. The 

execution time in the sequential system is longer than 

that in the Cloudera parallel system.  

The execution time of R-K-NN in the distributed 

environment is up to the performance similar to the 

performance of the parallel system. If the performance of 

the distributed system is higher, R-K-NN is faster. 

Conclusion 

In this research, we developed an improved K-

Nearest Neighbors algorithm to implement in the 

Cloudera parallel network environment for processing 

big datasets containing millions of records. The data set 

used in our work comprises 500,000 data records (The 

Data Set, 2016). 

Based on K-NN in (Larose, 2005; Fukunaga and 

Narendra, 2006; Keller et al., 2012; Kuncheva, 1995; 

Pan et al., 2015; Franco-Lopez et al., 2001; Callahan and 

Kosaraju, 1995; Horton and Nakai, 1997; Denoeux, 

2002; Zhang and Zhou, 2005; Seidl and Kriegel, 1998; 

Mouratidis et al., 2005; Song and Roussopoulos, 2001), 

we build algorithms related to K-NN to implement this 

model in the Cloudera environment. 

Our model has many advantages and disadvantages. 

The advantages are: The execution time is shorter and it can 

process big datasets with millions of records in a shortened 

time. However, its disadvantages are: It takes a lot of time 

and cost to perform construct and implement this model; 

sometimes it causes confusion to implement true; in the 

process of making this model we must meet many errors. 

As shown in the Table 3, the studies related to the 

distributed network environment did not use K-NN 

hence, they are not similar to this work. It is well known 

that K-NN is not efficient for big data sets. Our proposed 

model solved the problems very effectively and R-K-NN 

was able to be implemented on very large data sets. As 

shown in Table 1, the experiment results proved that the 

execution time of R-K-NN is much shorter than that of 

K-NN for the same data set. 

In the near future, we will use the results of the 

proposed model to classify the semantics (positive, 

negative, neutral) of millions of English documents. 
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Future Work 

Based on the results of this proposed model, many 

future projects can be proposed, such as creating full 

emotional lexicons in a parallel network environment to 

shorten execution times, creating many search engines, 

creating many translation engines, creating many 

applications that can check grammar correctly. This 

model can be applied to many different languages, creating 

applications that can analyze the emotions of texts and 

speeches and machines that can analyze sentiments. 
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