

 © 2018 Vo Ngoc Phu and Vo Thi Ngoc Tran. This open access article is distributed under a Creative Commons Attribution

(CC-BY) 3.0 license.

Journal of Computer Science

Original Research Paper

A Reformed K-Nearest Neighbors Algorithm for Big Data

Sets

1
Vo Ngoc Phu and

2
Vo Thi Ngoc Tran

1Nguyen Tat Thanh University, 300A Nguyen Tat Thanh Street,

 Ward 13, District 4, Ho Chi Minh City, 702000, Vietnam
2School of Industrial Management (SIM), Ho Chi Minh City University of Technology - HCMUT,

 Vietnam National University, Ho Chi Minh City, Vietnam

Article history

Received: 01-02-2018
Revised: 25-02-2018
Accepted: 8-03-2018

Corresponding Author:
Vo Ngoc Phu
Nguyen Tat Thanh University,
300A Nguyen Tat Thanh Street,
Ward 13, District 4, Ho Chi
Minh City, 702000, Vietnam
Email:
vongocphu03hca@gmail.com
 vongocphu@ntt.edu.vn

Abstract: A Data Mining Has Already Had Many Algorithms Which A K-

Nearest Neighbors Algorithm, K-NN, Is A Famous Algorithm For

Researchers. K-NN Is Very Effective On Small Data Sets, However It

Takes A Lot Of Time To Run On Big Datasets. Today, Data Sets Often

Have Millions Of Data Records, Hence, It Is Difficult To Implement K-NN

On Big Data. In This Research, We Propose An Improvement To K-NN To

Process Big Datasets In A Shortened Execution Time. The Reformed K-

Nearest Neighbors Algorithm (R-K-NN) Can Be Implemented On Large

Datasets With Millions Or Even Billions Of Data Records. R-K-NN Is

Tested On A Data Set With 500,000 Records. The Execution Time Of R-K-

NN Is Much Shorter Than That Of K-NN. In Addition, R-K-NN Is

Implemented In A Parallel Network System With Hadoop Map (M) And

Hadoop Reduce (R).

Keywords: K-Nearest Neighbors Algorithm, K-NN, Parallel Network

Environment, Distributed System, Data Mining, Association Rules,

Cloudera, Hadoop Map, Hadoop Reduce

Introduction

The field of data mining has been studied for many

years. The K-Nearest Neighbors algorithm (K-NN) is a

popular algorithm in the data mining field. We use K-

NN to stores all available cases and classifies new cases

based on a similarity measure (e.g., distance functions)

and it is a simple algorithm. Besides, K-NN has been

used in statistical estimation and pattern recognition and

it is a non-parametric technique.

It is clear that social networks, information

technology and computer science are being developed at

a dramatic rate, generating vast amounts of data,

information and knowledge. The information in these big

data sets belonging to large corporations is very

valuable, particularly if this information can be exploited

in ways which are of benefit.

Hence, many algorithms have been proposed to run

on big datasets. K-NN is a well-known algorithm in data

mining and other fields, but K-NN takes a lot of time to

run on big data sets, yet it is efficient on small datasets.

Thus, we tested K-NN and other algorithms on big data

sets. There are many algorithms which can perform

efficiently on small data sets but they are not effective on

big datasets with millions of data records. To test this,

we studied K-NN on big data sets and examined the

existing research.

We want this survey to design an improved K-NN

algorthim (R-K-NN), with Hadoop Map (M) and

Hadoop Reduce (R) to implement on data sets containing

millions of records in parallel systems, the results

showing that R-K-NN is able to process big datasets in a

shortened time. R-K-NN is also tested in the Cloudera

distributed system.

According to the existing research related to the K-

Nearest Neighbors algorithm (Larose, 2005; Fukunaga and
Narendra, 2006; Keller et al., 2012; Kuncheva, 1995;
Pan et al., 2015; Franco-Lopez et al., 2001; Callahan and
Kosaraju, 1995; Horton and Nakai, 1997; Denoeux,
2002; Zhang and Zhou, 2005; Seidl and Kriegel, 1998;
Mouratidis et al., 2005; Song and Roussopoulos, 2001),

there is no work related to K-NN which is similar to this
work, nor is there any study related to the K-Nearest
Neighbors algorithm in the parallel network environment
(the distributed system).

In the research related to the distributed environment

reported in (Favuzza et al., 2006; Satyanarayanan et al.,

2002; Babaoğlu et al., 1992; Fujimoto, 2001; Phu et al.,

Vo Ngoc Phu and Vo Thi Ngoc Tran / Journal of Computer Science 2018, 14 (9): 1213.1225

DOI: 10.3844/jcssp.2018.1213.1225

1214

2016; Shirazi et al., 1995; Chen et al., 2011; Sulistio et al.,

2004; Borges et al., 2001), there are no studies related to

K-NN which is similar to this work.

The surveys in (Larose, 2005; Fukunaga and

Narendra, 2006; Keller et al., 2012; Kuncheva, 1995;

Pan et al., 2015; Franco-Lopez et al., 2001; Callahan and

Kosaraju, 1995; Horton and Nakai, 1997; Denoeux,

2002; Zhang and Zhou, 2005; Seidl and Kriegel, 1998;

Mouratidis et al., 2005; Song and Roussopoulos, 2001;

Favuzza et al., 2006; Satyanarayanan et al., 2002;

Babaoğlu et al., 1992; Fujimoto, 2001; Phu et al., 2016;

Shirazi et al., 1995; Chen et al., 2011; Sulistio et al.,

2004; Borges et al., 2001; Fujita et al., 1998; Dat et al.,

2016) are very different from our study in this paper.

As reported in the work on K-NN found in (Larose,

2005; Fukunaga and Narendra, 2006; Keller et al., 2012;

Kuncheva, 1995; Pan et al., 2015; Franco-Lopez et al.,

2001; Callahan and Kosaraju, 1995; Horton and Nakai,

1997; Denoeux, 2002; Zhang and Zhou, 2005; Seidl and

Kriegel, 1998; Mouratidis et al., 2005; Song and

Roussopoulos, 2001), we have already known many

benefits and drawbacks of K-NN. We present the

negatives of K-NN as follows: We knew many very

simple classifiers such as K-NN which works well on

basic recognition problems; and it can work with noisy

training data (if inverse square of weighted distance is

used as the 'distance'). The drawbacks of K-NN are

displayed as follows: The KNN algorithm will find the K

closest neighbors to the new instance from the training

data and the predicted class label will then be set as the

most common label among the K closest neighboring

points; the distance must be computed and all the

training data at each prediction are shorted, if there is a

large number of training examples, it can be slow.

From an examination of the methods in the existing

studies reported in (Larose, 2005; Fukunaga and

Narendra, 2006; Keller et al., 2012; Kuncheva, 1995;

Pan et al., 2015; Franco-Lopez et al., 2001; Callahan and

Kosaraju, 1995; Horton and Nakai, 1997; Denoeux,

2002; Zhang and Zhou, 2005; Seidl and Kriegel, 1998;

Mouratidis et al., 2005; Song and Roussopoulos, 2001;

Favuzza et al., 2006; Satyanarayanan et al., 2002;

Babaoğlu et al., 1992; Fujimoto, 2001; Phu et al., 2016;

Shirazi et al., 1995; Chen et al., 2011; Sulistio et al.,

2004; Borges et al., 2001; Fujita et al., 1998; Dat et al.,

2016), it is clear that there is no work which is similar to

the work in this paper, hence the originality and novelty

of this work.

We show our work’s motivation as follows: K-NN of

the data mining field is a popular algorithm which is

being increasingly used and applied to many different

fields, hence it is very useful for researchers and

commercial applications. In today’s information age,

massive amounts of big datasets are being generated

which current algorithms and methods are not able to

successfully process. Many methods, applications and

systems in the current time are implemented correctly

with the current data sets, whereas, these cannot be

performed correctly. Therefore, we propose a new model

to address these limitations.

The novelty of the proposed approach is as follows:

KNN can be run in the parallel network environment and

can also handle big data sets. Many KNN used

models/methods, many KNN related applications and

many KNN used systems can be upgraded on the big

data sets and on the distributed systems. Thus, this

model is proposed.

We also display the crucial contributions of our

survey as follows:

a) This work implements K-NN in the parallel

environment

b) This work implements K-NN to process big data

with millions of records

c) This research implements K-NN in both sequential

systems and distributed environments

d) We propose the K-NN related algorithms which are

implemented in distributed systems

e) The results of this novel model can be used in many

other studies and commercial applications

f) Using the results of this work, other studies and

systems related to KNN can be successfully enhanced

In light of these contributions, the superiority of R-K-

NN over K-NN is demonstrated.
We present five sections of this work as follows: This

section is the Introduction section. We show Section 2 to
detail the related studies on the K-Nearest Neighbors
algorithm. The methodology for the implementation of
the K-Nearest Neighbors algorithm in the parallel
network environment is displayed in Section 4. We show
Section 4 which presents details of the experiments. We
present the conclusion of this work in Section 5.

Related Work

In this section, we detail the existing research related

to the K-Nearest Neighbors algorithm and the parallel

network system.
We show algorithms, applications and studies in the

distributed system in (Hadoop, 2016; Apache, 2016;
Cloudera, 2016). We use Hadoop, an Apache-based
framework, in (Hadoop, 2016; Apache, 2016) to handle
large data sets on clusters consisting of multiple
computers, using the Map and Reduce programming
model. There are two components of Hadoop: The
Hadoop Distributed File System (HDFS) and Hadoop
M/R (Hadoop Map/Reduce). Engineers use Hadoop Map
and Hadoop Reduce to program to write applications for
the parallel processing of large data sets on clusters
consisting of multiple computers. An M/R task has two
main components: (1) Map and (2) Reduce. The global

Vo Ngoc Phu and Vo Thi Ngoc Tran / Journal of Computer Science 2018, 14 (9): 1213.1225

DOI: 10.3844/jcssp.2018.1213.1225

1215

provider of the fastest, easiest and most secure data
management and analytics platform built on Apache™
Hadoop® and the latest open source technologies, called
Cloudera (2016); and it will submit proposals for Impala
and Kudu to join the Apache Software Foundation
(ASF). Cloudera delivers a modern data management
and analytics platform built on Apache Hadoop and the
latest open source technologies.

The surveys related to the K-Nearest Neighbors
algorithm are presented in (Larose, 2005; Fukunaga and
Narendra, 2006; Keller et al., 2012; Kuncheva, 1995;
Pan et al., 2015; Franco-Lopez et al., 2001; Callahan and
Kosaraju, 1995; Horton and Nakai, 1997; Denoeux,
2002; Zhang and Zhou, 2005; Seidl and Kriegel, 1998;
Mouratidis et al., 2005; Song and Roussopoulos, 2001).
A discussion of the differences between supervised and
unsupervised methods is shown in the work (Larose,
2005) and the k-nearest neighbor algorithm is
introduced, in the context of a patient-drug classification
problem. The authors (Fukunaga and Narendra, 2006)
detailed K-nearest neighbor methods for estimation and
prediction which are examined, along with methods for
choosing the best value for k. Computation of the k-
nearest neighbors generally requires a large number of
expensive distance computations.

Based on the best of our knowledge, we do not see
any researches related to the K-Nearest Neighbors
algorithm in the parallel system.

Comparisons of our novel model’s results with the
studies in (Larose, 2005; Fukunaga and Narendra, 2006;
Keller et al., 2012; Kuncheva, 1995; Pan et al., 2015;
Franco-Lopez et al., 2001; Callahan and Kosaraju, 1995;
Horton and Nakai, 1997; Denoeux, 2002; Zhang and
Zhou, 2005; Seidl and Kriegel, 1998; Mouratidis et al.,
2005; Song and Roussopoulos, 2001; Favuzza et al.,
2006; Satyanarayanan et al., 2002; Babaoğlu et al.,
1992; Fujimoto, 2001; Phu et al., 2016; Shirazi et al.,
1995; Chen et al., 2011; Sulistio et al., 2004; Borges et al.,
2001) and the comparative results are presented in Table 2.

Research related to the distributed environment is
reported in (Favuzza et al., 2006; Satyanarayanan et al.,
2002; Babaoğlu et al., 1992; Fujimoto, 2001; Phu et al.,
2016; Shirazi et al., 1995; Chen et al., 2011; Sulistio et al.,
2004; Borges et al., 2001). The authors (Favuzza et al.,
2006) displayed the metaheuristic technique of Ant
Colony Search which was revised to deal with dynamic
search optimization problems having a large search
space and mixed integer variables. The authors presented
Coda in (Satyanarayanan et al., 2002) which is a file
system for a large-scale distributed computing
environment composed of Unix workstations, etc.

Data Set

Our data set has 500,000 data records (The Data Set,

2016) as shown in the Fig. 1 below.

Fig. 1: The data in this research

Vo Ngoc Phu and Vo Thi Ngoc Tran / Journal of Computer Science 2018, 14 (9): 1213.1225

DOI: 10.3844/jcssp.2018.1213.1225

1216

As shown in Fig. 1, there are 21 columns, namely

Column CLASS, Column V1, Column V2, Column V3,

Column V4, Column V5, Column V6, Column V7,

Column V8, Column V9, Column V10, Column V11,

Column V12, Column V13, Column V14, Column V15,

Column V16, Column V17, Column V18, Column V19,

Column V20, Column V21, however we remove the

column CLASS and keep the remaining columns. For

each data record, we have one vector and therefore the

length of each vector is 20.

Methodology

The implementation of the K-Nearest Neighbors

algorithm in the sequential environment is firstly

detailed and we also present the implementation of the

reformed K-Nearest Neighbors algorithm in the

Cloudera environment secondly in this section.

K-Nearest Neighbors Algorithm in the Sequential

Environment

An overview of K-NN in the sequential system is

shown in Fig. 2

We use Algorithm 1 to transfer the 500,000 data

records of our data set (The Data Set, 2016) into the

500,000 vectors.

ALGORITHM 1: Transferring the 500,000 data records

of our data set [1] into the 500,000 vectors

Input:
 The 500,000 data records of the data set (The

Data Set, 2016): D.

Output: a vector group, including the 500,000 vectors.

Begin

1. Set VectorGroup := {};

2. For i := 0; i < 500,000; i++, do:

3. OneVector := new Vector();

4. For j := 1; j <= 21; j++; do:

5. OneVector[j-1] := D[i][“V” + j];

6. End For;

7. VectorGroup.AddVector (OneVector);

8. End For;

9. Return VectorGroup;

End;

According to the K-NN algorithm in (Larose, 2005;

Fukunaga and Narendra, 2006; Keller et al., 2012;

Kuncheva, 1995; Pan et al., 2015; Franco-Lopez et al.,

2001; Callahan and Kosaraju, 1995; Horton and Nakai,

1997; Denoeux, 2002; Zhang and Zhou, 2005; Seidl and

Kriegel, 1998; Mouratidis et al., 2005; Song and

Roussopoulos, 2001), we perform K-NN in the

sequential environment as follows:

ALGORITHM 2: K-Nearest Neighbor algorithm (K-

NN) in the sequential environment.

Input:
 A vector group, including the 500,000 vectors.

Output: the results of clustering of K-NN.

Begin

1. Identify the K parameter (K - Nearest Neighbors): in

this survey, we choose K = 5;

2. Calculate the distance between the vectors (which

need to be clustered) with the vectors in the

training data by Euclidean distance;

3. Arrange the distances in ascending order; and identify

the K - nearest neighbors with the vectors

which need to be clustered;

4. Get all clusters of K-nearest neighbors which are

identified;

5. Identify the cluster of the vector according to all the

clusters of K-NN; 6. Return the results of

clustering;

End;

Euclidean distance is used by K-NN to identify the

distance between two vectors as follows: Vector

V1(column x1, column x2, column x3, column x4,

column x5, column x6, column x7, column x8, column

x9, column x10, column x11, column x12, column x13,

column x14, column x15, column x16, column x17,

column x18, column x19, column x20) and vector

V2(column y1, column y2, column y3, column y4,

column y5, column y6, column y7, column y8, column

y9, column y10, column y11, column y12, column y13,

column y14, column y15, column y16, column y17,

column y18, column y19, column y20):

() () ()

() ()

2 2 2

2 2

1 1 2 2 18 18

 19 19 20 20

x y x y x y
d

x y x y

− + − +…+ −

=

+ − + −

K-Nearest Neighbors algorithm in the Parallel

Network Environment (R-K-NN)

We improve K-NN, called R-K-NN, to utilize in

the Cloudera based on the basis of the K-NN

algorithm in (Larose, 2005; Fukunaga and Narendra,

2006; Keller et al., 2012; Kuncheva, 1995; Pan et al.,

2015; Franco-Lopez et al., 2001; Callahan and

Kosaraju, 1995; Horton and Nakai, 1997; Denoeux,

2002; Zhang and Zhou, 2005; Seidl and Kriegel, 1998;

Mouratidis et al., 2005; Song and Roussopoulos, 2001).

We also present R-K-NN by using Hadoop Map (M)

and Hadoop Reduce (R) in the Cloudera in Fig. 3.

Transferring of the data records comprises two phases

as follows: Hadoop Map of the Cloudera in the first phase

and Hadoop Reduce of the Cloudera in the second phase.

Vo Ngoc Phu and Vo Thi Ngoc Tran / Journal of Computer Science 2018, 14 (9): 1213.1225

DOI: 10.3844/jcssp.2018.1213.1225

1217

Fig. 2: Overview of K-NN in the sequential system

Fig. 3: Overview of the K-Nearest Neighbors algorithm in the Cloudera, called R-K-NN

The Fig. 4 shows the first phase of transferring the

500,000 data records into the 500,000 vectors in

Cloudera.

The Fig. 5 illustrates the second phase.

After transferring the 500,000 data records into the

500,000 vectors in Cloudera, we reform K-NN in the

distributed system which involves two phases as shown

in the Fig. 6.

The Fig. 7 illustrates the first phase of K-NN in

Hadoop Map in the parallel system.

The Fig. 8 illustrates the second phase of K-NN in

Hadoop Reduce of the Cloudera distributed system.

Vo Ngoc Phu and Vo Thi Ngoc Tran / Journal of Computer Science 2018, 14 (9): 1213.1225

DOI: 10.3844/jcssp.2018.1213.1225

1218

Fig. 4: The first phase of transferring the 500,000 data records into the 500,000 vectors in Cloudera

Fig. 5: The second phase of transferring the 500,000 data records into the 500,000 vectors in Cloudera

Fig. 6: Overview of the K-Nearest Neighbors algorithm in the parallel network environment – Cloudera (R-K-NN)

Vo Ngoc Phu and Vo Thi Ngoc Tran / Journal of Computer Science 2018, 14 (9): 1213.1225

DOI: 10.3844/jcssp.2018.1213.1225

1219

The 500,000 vectors

K-Nearest Neighbors algorithm in Hadoop Map

(M) of the parallel network environment –

Cloudera:

Identify the K parameter (K - Nearest Neighbors): in

this survey, we choose K = 5;

The cluster of the vector

Output of Hadoop Map

Input of Hadoop Reduce

Calculate the distance between the vectors (which

need to be clustered) with the vectors in the training

data by Euclidean distance;

Arrange the distances in acending order; and

Identify K - nearest neighbors with the vectors

which need to be clustered;

Get all clusters of K - nearest neighbors which are

identified;

Based on all the clusters of the nearest neighbors,

identify the cluster of the vector;

Fig. 7: Overview of the K-Nearest Neighbors algorithm in Hadoop Map (M) in Cloudera

Fig. 8: Overview of the K-Nearest Neighbors algorithm in Hadoop Reduce (R) in Cloudera

Experiment

We used a Java programming language to implement

the novel model on a dataset with 500,000 observations

(The Data Set, 2016).

We used one node (one server) to perform our survey

in the sequential environment. We also used the Java

programming language to program R-K-NN.
The server in the sequential system had the

configuration which was Intel® Server Board
S1200V3RPS, Intel® Pentium® Processor G3220 (3M
Cache, 3.00 GHz), 2GB PC3-10600 ECC 1333 MHz LP
Unbuffered DIMMs. Cloudera system was used as the
operating system of the server.

We implemented R-K-NN in the Cloudera parallel
network environment. The Java language was used in
programming the application of R-K-NN in Cloudera.
The Cloudera system comprised five nodes (five
servers). The operating system of each server in the five
nodes was Cloudera. The configuration of each server in
the Cloudera system was Intel® Server Board
S1200V3RPS, Intel® Pentium® Processor G3220 (3M
Cache, 3.00 GHz), 2GB PC3-10600 ECC 1333 MHz LP
Unbuffered DIMMs. All five nodes had the same
configuration information.

The results of K-NN and R-K-NN are similar and due
to space limitations, we do not present the detailed
results in this study. The results of K-NN in the

Vo Ngoc Phu and Vo Thi Ngoc Tran / Journal of Computer Science 2018, 14 (9): 1213.1225

DOI: 10.3844/jcssp.2018.1213.1225

1220

sequential environment are similar to that of R-K-NN in
the Cloudera parallel environment. In addition, the
execution time of K-NN in the sequential system is
much shorter than that of R-K-NN in the Cloudera
distributed system.

The execution times of K-NN in the sequential

system and R-K-NN in the distributed system are shown

in the Table 1.

To better understand the advantages of this study, we

compare this work with other work related to the K-

Nearest Neighbors algorithm in (Larose, 2005; Fukunaga

and Narendra, 2006; Keller et al., 2012; Kuncheva,

1995; Pan et al., 2015; Franco-Lopez et al., 2001;

Callahan and Kosaraju, 1995; Horton and Nakai, 1997;

Denoeux, 2002; Zhang and Zhou, 2005; Seidl and

Kriegel, 1998; Mouratidis et al., 2005; Song and

Roussopoulos, 2001), as shown in Table 2. As indicated

in the Tables 2 and 3, no other studies used K-NN in the

parallel network environment nor was there any research

which was similar to the model developed in this work.

Next, we compare our study with those related to the

distributed system reported in (Favuzza et al., 2006;

Satyanarayanan et al., 2002; Babaoğlu et al., 1992;

Fujimoto, 2001; Phu et al., 2016; Shirazi et al., 1995;

Chen et al., 2011; Sulistio et al., 2004; Borges et al.,

2001; Fujita et al., 1998) in the Table 4 and 5.

Table 1: The execution times of K-NN in the sequential

environment and R-K-NN in the Cloudera parallel
network

Our proposed model Time

K-NN in the sequential environment 4,603 sec
R-K-NN in the Cloudera 1,233 sec
parallel system – 4 nodes
R-K-NN in the Cloudera 890 sec
distributed system – 5 nodes

Table 2: Comparison of our work with the studies related to K-NN in [(Larose, 2005; Fukunaga and Narendra, 2006; Keller et al.,

2012; Kuncheva, 1995; Pan et al., 2015; Franco-Lopez et al., 2001; Callahan and Kosaraju, 1995; Horton and Nakai, 1997;
Denoeux, 2002; Zhang and Zhou, 2005; Seidl and Kriegel, 1998; Mouratidis et al., 2005; Song and Roussopoulos, 2001)].
Parallel network environment: PNE (or distributed system, parallel system)

Studies K-NN PNE Model/method

Larose (2005) Yes No k-Nearest Neighbor Algorithm
Fukunaga and Narendra (2006) Yes No A branch and bound algorithm for computing k-Nearest Neighbors
Keller et al. (2012) Yes No A fuzzy k-Nearest Neighbor algorithm
Kuncheva (1995) Yes No Editing for the k-Nearest Neighbors rule by a genetic algorithm
Ruilin Pan et al. (2015) Yes No Missing data imputation by k-Nearest Neighbours based on grey
 relational structure and mutual information
Franco-Lopez et al. (2001) Yes No Estimation and mapping of forest stand density, volume and cover type
 using the k-Nearest Neighbors method
Callahan and Kosaraju (1995) Yes No A decomposition of multi-dimensional point sets with applications to
 k-nearest neighbors and n-body potential fields
Horton and Nakai (1997) Yes No Better prediction of protein cellular localization sites with the
 k-Nearest Neighbors classifier
Denoeux (2002) Yes No A k-nearest neighbor classification rule based on Dempster-Shafer theory
Zhang and Zhou (2005) Yes No A k-nearest neighbor based algorithm for multi-label classification
Seidl and Kriegel (1998) Yes No Optimal multi-step k-nearest neighbor search
Mouratidis et al. (2005) Yes No A threshold-based algorithm for the continuous monitoring
 of k-nearest neighbors
Song and Roussopoulos (2001) Yes No K-Nearest Neighbor search for moving query point
Our work Yes Yes An improved K-Nearest Neighbors algorithm in the Cloudera
 parallel network system

Table 3: Comparison of the advantages and disadvantages of our work with the studies related to K-NN in [(Larose, 2005; Fukunaga and Narendra,

2006; Keller et al., 2012; Kuncheva, 1995; Pan et al., 2015; Franco-Lopez et al., 2001; Callahan and Kosaraju, 1995; Horton and Nakai,
1997; Denoeux, 2002; Zhang and Zhou, 2005; Seidl and Kriegel, 1998; Mouratidis et al., 2005; Song and Roussopoulos, 2001)]

Studies Advantages Disadvantages

Larose (2005) The k-nearest neighbor algorithm is introduced in the context of a patient-drug No mention
 classification problem. Voting for different values of k are shown to sometimes

 lead to differentresults. The distance function, or distance metric, is defined, with

 Euclidean distance being typically chosen for thisalgorithm. The combination
 Function is defined, for both simple unweighted voting and weighted voting.

 Stretching the axesis shown as a method for quantifying the relevance of various

 attributes. Database considerations, such as balancing,are discussed. Finally,
 k-nearest neighbor methods for estimationand prediction are examined, along

 with methods for choosing the best value for k

Fukunaga and Experimental results demonstrate the efficiency of the algorithm. Typically, an No mention
Narendra (2006) average of only 61 distance computations were made to find the nearest neighbor

 of a test sample among 1000 design samples

Vo Ngoc Phu and Vo Thi Ngoc Tran / Journal of Computer Science 2018, 14 (9): 1213.1225

DOI: 10.3844/jcssp.2018.1213.1225

1221

Table 3: Continue

Keller et al. (2012) The theory of fuzzy sets is introduced into the K-nearest neighbor technique to No mention

 develop a fuzzy version of the algorithm. Three methods of assigning fuzzy
 memberships to the labeled samples are proposed and experimental results and

 comparisons to the crisp version are presented

Kuncheva (1995) The performance has been evaluated on a medical data set by the rotation method. No mention
 The results are reported together with those obtained with the standard k-NN,

 random selection, Wilson's technique and the MULTIEDIT algorithm

Pan et al. (2015) The authors propose a novel method to impute missing data, named the feature No mention
 weighted grey KNN (FWGKNN) imputation algorithm. This approach employs

 mutual information (MI) to measure feature relevance. The authors present an

 experimental evaluation for five UCI datasets in three missingness mechanisms
 with various missing rates. Experimental results show that feature relevance has a

 non-ignorable influence on missing data estimation based on grey theory and this

 method is considered superior to the other four estimation strategies. Moreover,
 the classification bias can be significantly reduced by using this approach in

 classification tasks

Franco-Lopez et al. The authors describe the k-nearest neighbors (kNN) method for improving No mention

(2001) estimation and to produce wall-to-wall basal area, volume and cover type maps,

 in the context of the USDA Forest Service's Forest Inventory and Analysis (FIA)

 monitoring system. Several variations within the kNN were tested, including:
 Distance metric, weighting function, feature weighting parameters and number

 Of neighbors. Specific procedures to incorporate ancillary information and image

 enhancement techniques were also tested. Using the nearest neighbor (k=1),
 Euclidean distance, a three date 18-band composite image and feature weighting

 parameters, maps were constructed for basal area, volume and cover type

Callahan and The authors define the notion of a well-separated pair decomposition of points in No mention
Kosaraju (1995) d-dimensional space. They then develop efficient sequential and parallel

 algorithms for computing such a decomposition. They apply the resulting

 decomposition to the efficient computation of k-nearest neighbors and n-body
 potential fields

Horton and The result of tests using stratified cross validation shows the k-nearest neighbors The authors consider a relatively

Nakai (1997) classifier performs better than the other methods. In the case of yeast, this minor error for two reasons. First,
 difference was statistically significant using a cross-validated paired t test. The for some uses, the distinction

 result is an accuracy of approximately 60°/o for 10 yeast classes and 86% for between different types of inner

 8 E.coli classes. The best previously reported accuracies for these data sets membrane proteins may be
 were 55% and 81% respectively immaterial. Second, the definition

 of the presence or absence of an
 uncleavable signal sequence is

 somewhat arbitrary and thus the

 labels for some training examples
 include some uncertainty. If the

 authors collapse the two classes to

 form a class "inner membrane
 protein without a cleavable signal

 sequence" a surprisingly high

 accuracy of 94% is attained
Denoeux (2002) This approach provides a global treatment of such issues as ambiguity and No mention

 distance rejection and imperfect knowledge regarding the class membership

 of training patterns. The effectiveness of this classification scheme as
 compared to the voting and distance-weighted k-NN procedures is demonstrated

 using several sets of simulated and real-world data

Zhang and A multi-label lazy learning approach named ML-kNN is presented, which is No mention
Zhou (2005) derived from the traditional k-nearest neighbor (kNN) algorithm. In detail, for

 each new instance, its k-nearest neighbors are firstly identified. After that,

 according to the label sets of these neighboring instances, the maximum a
 posteriori (MAP) principle is utilized to determine the label set for the new

 instance. Experiments on a real-world multi-label bioinformatic data show

 that ML-kNN is highly comparable to existing multi-label learning algorithms.
Seidl and The authors present a novel multi-step algorithm which is guaranteed to produce No mention

Kriegel (1998) the minimum number of candidates. Experimental evaluations demonstrate the

 significant performance gain over the previous solution and the authors
 observed average improvement factors of up to 120 for the number of

 candidates and up to 48 for the total runtime

Mouratidis et al. The authors present a threshold-based algorithm for the continuous monitoring of No mention
(2005) nearest neighbors that minimizes the communication overhead between the server

 and the data objects. The proposed method can be used with multiple, static, or

 moving queries, for any distance definition and does not require additional

 knowledge (e.g., velocity vectors) besides object locations

Vo Ngoc Phu and Vo Thi Ngoc Tran / Journal of Computer Science 2018, 14 (9): 1213.1225

DOI: 10.3844/jcssp.2018.1213.1225

1222

Table 3: Continue

Song and Four different methods are proposed for solving the problem. Discussion about No mention

Roussopoulos the parameters affecting the performance of the algorithms is also presented.

(2001) A sequence of experiments with both synthetic and real point data sets are studied.

 In the experiments, the authors’ algorithms always outperform the existing ones by

 fetching 70% less disk pages. In some settings, the saving can be as much as one

 order of magnitude

Our work The execution time is shorter; the improved algorithm can process It takes a lot of time and cost to

 big datasets with millions of records in the shortest time. implement this model; sometimes

 it causes confusion to implement

 true; in the process of making this

 model we must meet many errors

Table 4: Comparison of our work with the studies related to the parallel environment in (Favuzza et al., 2006; Satyanarayanan et al., 2002; Babaoğlu et al.,

1992; Fujimoto, 2001; Phu et al., 2016; Shirazi et al., 1995; Chen et al., 2011; Sulistio et al., 2004; Borges et al., 2001; Fujita et al., 1998)

Studies K-NN PNE Model/Method

Favuzza et al. (2006) No Yes Adaptive and dynamic ant colony search algorithm for optimal

 distribution systems reinforcement strategy

Satyanarayanan et al. (2002) No Yes A highly available file system for a distributed workstation environment

Babaoğlu et al. (1992) No Yes An environment for parallel programming in distributed systems

Fujimoto (2001) No Yes Parallel simulation: Parallel and distributed simulation systems

Phu et al. (2016) No Yes Fuzzy C-means for english sentiment classification in a distributed system

Shirazi et al. (1995) No Yes Scheduling and Load Balancing in Parallel and Distributed Systems

Chen et al. (2011) No Yes Parallel Spectral Clustering in Distributed Systems

Sulistio et al. (2004) No Yes A taxonomy of computer-based simulations and its mapping to parallel

 and distributed systems simulation tools

Borges et al. (2001) No Yes Composite reliability evaluation of sequential Monte Carlo simulation on

 parallel and distributed processing environments

Fujita et al. (1998) No Yes Agent-based design model of adaptive distributed systems

Our research Yes Yes An improved K-Nearest Neighbors algorithm in the Cloudera parallel

 network system

Table 5: Comparison of the advantages and disadvantages of our work with the studies related to the parallel environment in (Favuzza et al., 2006;

Satyanarayanan et al., 2002; Babaoğlu et al., 1992; Fujimoto, 2001; Phu et al., 2016; Shirazi et al., 1995; Chen et al., 2011; Sulistio et al.,

2004; Borges et al., 2001; Fujita et al., 1998)

Studies Advantages Disadvantages

Favuzza et al. Distributed Generation (DG) technology considered in compound solutions No mention

(2006) with the installation of feeder and substations is viewed as a new option for

 solving distribution systems capacity problems, along several years. The objective

 to be minimized is therefore the overall cost of distribution systemsreinforcement

 strategy in a given time-frame. An application on a medium size network is carried

 out using the proposed technique that allows the identification of optimal paths in

 extremely large or non-finite spaces. The proposed algorithm uses an adaptive

 parameter in order to push exploration or exploitation as the search procedure stops

 in a local minimum. The algorithm allows the easy investigation of these kinds of

 complex problems and allows useful comparisons to be made as the intervention

 strategy and type of DG sources vary

Satyanarayanan et al. The authors’ goal in building Coda is to develop a distributed file system that retains Although Coda is far from

(2002) the positive characteristics of AFS while providing substantially better availability. maturity, the initial experience with

 In this survey, the authors have shown how these goals have been achieved through it reflects favorably on its design.

 the use of two complementary mechanisms, server replication and disconnected Performance measurements from the

 operation. The authors also show how disconnected operation can be used to support Coda prototype are promising,

 portable workstations. although they also reveal areas

 where further improvement is

 possible. The authors believe that

 a well-tuned version of Coda will

 indeed meet its goal of providing

 high availability without serious

 loss of performance, scalability, or

 security. A general question about

 optimistic replication schemes that

 remains open is whether users will

 indeed be willing to tolerate

 occasional conflicts in return for

 higher availability

Vo Ngoc Phu and Vo Thi Ngoc Tran / Journal of Computer Science 2018, 14 (9): 1213.1225

DOI: 10.3844/jcssp.2018.1213.1225

1223

Table 5: Continue

Babaoğlu et al. The Paralex system aims to explore the extent to which the parallel application No mention

(1992) programmer can be liberated from the complexities of distributed systems. Paralex

 is a complete programming environment and makes extensive use of graphics to

 define, edit, execute and debug parallel scientific applications. All of the necessary

 code for distributing the computation across a network and replicating it to achieve

 fault tolerance and dynamic load balancing is automatically generated by the

 system. In this work, the authors give an overview of Paralex and present their

 experiences with a prototype implementation

Fujimoto (2001) PADS expert Richard M. Fujimoto provides software developers with cutting-edge No mention

 techniques for speeding up the execution of simulations across multiple processors

 and dealing with data distribution over wide area networks, including the Internet.

 With an emphasis on parallel and distributed discrete event simulation technologies,

 Dr. Fujimoto compiles and consolidates research results in the field spanning the

 last twenty years, discussing the use of parallel and distributed computers in both

 the modeling and analysis of system behavior and the creation of distributed virtual

 environments. While other works on PADS concentrate on applications, Parallel and

 Distributed Simulation Systems clearly show how to implement the technology.

 This work explains in detail the synchronization algorithms needed to properly

 realize the simulations, including an in-depth discussion of time warp and advanced

 optimistic techniques. Finally, the study is richly supplemented with references,

 tables and illustrations and examples of contemporary systems such as the

 Department of Defense's High Level Architecture (HLA), which has become

 the standard architecture for defense programs in the United States

Phu et al. (2016) It processes big data involving millions of English documents. The execution It takes a long time to implement

 time of this model to conduct sentiment analysis on big data is short and it is costly to build the

 algorithms of the model in the

 distributed system

Chen et al. (2011) To perform clustering on large data sets, the authors investigate two representative No mention

 ways of approximating the dense similarity matrix. The authors compare one

 approach by sparsifying the matrix with another by the Nyström method. The

 authors then pick the strategy of sparsifying the matrix via retaining nearest neighbors

 and investigate its parallelization. The authors parallelize both memory use and

 computation on distributed computers. Through an empirical study on a document

 data set of 193; 844instances and a photo data set of 2; 121; 863, the authors show

 that the authors’ parallel algorithm can effectively handle large problems.

Sulistio et al. (2004) This work presents a taxonomy for computer simulations and applies the No mention

 taxonomy on simulation tools for PDSs. The taxonomy comprises PDS, usage,

 simulation and design taxonomies. The design taxonomy emphasizes respective

 components and features of a simulation tool, including the simulation engine,

 modeling framework, programming framework, design environment, user interface

 and system support. A number of selected simulation tools have been surveyed

 using the taxonomy. This study thus helps to identify some approaches for

 designing simulation tools for PDSs and possible future research directions

Borges et al. (2001) This work describes two parallel methodologies for composite reliability evaluation No mention

 using sequential Monte Carlo simulation. The methodologies are based on coarse

 grain asynchronous implementations. In the first methodology, a complete simulation

 year is analyzed on a single processor and the many simulated years necessary for

 convergence are analyzed in parallel. In the second methodology, the adequacy

 analysis of the system operating states within the simulated years is performed in

 parallel and the convergence is checked on one processor at the end of each

 simulated year. The methodologies are implemented on a 10-node IBM RS/6000 SP

 scalable distributed memory parallel computer and on a network of 8 IBM RS/6000

 43P workstations.The results obtained in tests with actual power system models

 showed high speed-up and efficiency on both parallel platforms.

Fujita et al. (1998) The aim of the authors’ research is to establish a new design model of an adaptive No mention

 distributed system (ADS) to deal with various changes occurred in the system

 environment. In this research, the authors propose an agent-based architecture of

 ADS, based on the agent-based computing paradigm. Then, the authors implement

 a prototype of the ADS with respect to video conferencing applications and also

 evaluate the adaptive functions of the ADS realized on the basis of the

 proposed architecture

Our research The execution time is shortened; it can process big datasets with millions of records It takes a lot of time and cost to

 in a shortened time implement this model; sometimes it

 causes confusion to implement true;

 in the process of making this model

 we must meet many errors

Vo Ngoc Phu and Vo Thi Ngoc Tran / Journal of Computer Science 2018, 14 (9): 1213.1225

DOI: 10.3844/jcssp.2018.1213.1225

1224

Results and Discussion

As shown in Table 1, the execution time of K-NN in

the sequential system is 14,603 sec whereas that of R-K-

NN in the Cloudera distributed environment (four nodes)

is 1233 sec; and that of R-K-NN in the Cloudera parallel

system (five nodes) is 890 sec.

The results of the sequential environment are similar

to those in the Cloudera distributed system. The

execution time in the sequential system is longer than

that in the Cloudera parallel system.

The execution time of R-K-NN in the distributed

environment is up to the performance similar to the

performance of the parallel system. If the performance of

the distributed system is higher, R-K-NN is faster.

Conclusion

In this research, we developed an improved K-

Nearest Neighbors algorithm to implement in the

Cloudera parallel network environment for processing

big datasets containing millions of records. The data set

used in our work comprises 500,000 data records (The

Data Set, 2016).

Based on K-NN in (Larose, 2005; Fukunaga and

Narendra, 2006; Keller et al., 2012; Kuncheva, 1995;

Pan et al., 2015; Franco-Lopez et al., 2001; Callahan and

Kosaraju, 1995; Horton and Nakai, 1997; Denoeux,

2002; Zhang and Zhou, 2005; Seidl and Kriegel, 1998;

Mouratidis et al., 2005; Song and Roussopoulos, 2001),

we build algorithms related to K-NN to implement this

model in the Cloudera environment.

Our model has many advantages and disadvantages.

The advantages are: The execution time is shorter and it can

process big datasets with millions of records in a shortened

time. However, its disadvantages are: It takes a lot of time

and cost to perform construct and implement this model;

sometimes it causes confusion to implement true; in the

process of making this model we must meet many errors.

As shown in the Table 3, the studies related to the

distributed network environment did not use K-NN

hence, they are not similar to this work. It is well known

that K-NN is not efficient for big data sets. Our proposed

model solved the problems very effectively and R-K-NN

was able to be implemented on very large data sets. As

shown in Table 1, the experiment results proved that the

execution time of R-K-NN is much shorter than that of

K-NN for the same data set.

In the near future, we will use the results of the

proposed model to classify the semantics (positive,

negative, neutral) of millions of English documents.

Author’s Contributions and Ethics

“Dr.Vo Ngoc Phu”is a main author and “Dr.VoThi

Ngoc Tran” is the second co-author of our manuscript.

“Dr.VoThi Ngoc Tran” built our data sets and “Vo

Ngoc Phu” checked them finally.

“Dr.Vo Ngoc Phu” implemented this survey and

"Dr.VoThi Ngoc Tran" helps “Dr.Vo Ngoc Phu” a lot to

perform this study.

“Dr.VoThi Ngoc Tran” wrote the draft document of

our manuscript; and “Dr.Vo Ngoc Phu” checked, fixed,

and wrote it finally.

Conflict of Interest

The authors declare that they have no conflict of

interest.

Future Work

Based on the results of this proposed model, many

future projects can be proposed, such as creating full

emotional lexicons in a parallel network environment to

shorten execution times, creating many search engines,

creating many translation engines, creating many

applications that can check grammar correctly. This

model can be applied to many different languages, creating

applications that can analyze the emotions of texts and

speeches and machines that can analyze sentiments.

References

Apache, 2016. http://apache.org

Babaoğlu, O., L. Alvisi, A. Amoroso, R. Davoli and

L.A. Giachini, 1992. Paralex: An environment for

parallel programming in distributed systems.

Proceedings of the 6th International Conference on

Supercomputing, Jul. 19-24, ACM, Washington, D. C.,

USA, pp: 178-187. DOI: 10.1145/143369.143406

Borges, C.L.T., D.M. Falcao, J.C.O. Mello and A.C.G.

Melo, 2001. Composite reliability evaluation by

sequential Monte Carlo simulation on parallel and

distributed processing environments. IEEE Trans.

Power Syst., 16: 2003-209. DOI: 10.1109/59.918287

Callahan, P.B. and S.R. Kosaraju, 1995. A decomposition

of multidimensional point sets with applications to k-

nearest-neighbors and n-body potential fields. J. ACM,

42: 67-90. DOI: 10.1145/200836.200853

Chen, W.Y., Y. Song, H. Bai, C.J. Lin and E.Y. Chang,

2011. Parallel spectral clustering in distributed

systems. IEEE Trans. Pattern Analysis Machine

Intelligence, 33: 568-586.

 DOI: 10.1109/TPAMI.2010.88

Cloudera, 2016. http://www.cloudera.com

Vo Ngoc Phu and Vo Thi Ngoc Tran / Journal of Computer Science 2018, 14 (9): 1213.1225

DOI: 10.3844/jcssp.2018.1213.1225

1225

Dat, N.D., V.N. Phu, V.T.N. Tran, V.T.N. Chau and

T.A. Nguyen, 2016. STING algorithm used English

semantic classification in parallel environment. Int.

J. Pattern Recognition Artificial Intelligence.

Denoeux, T., 2002. A k-nearest neighbor classification

rule based on Dempster-Shafer theory. IEEE Trans.

Syst. Man Cybernet.
Favuzza, S., G. Graditi and E.R. Sanseverino, 2006.

Adaptive and dynamic ant colony search algorithm
for optimal distribution systems reinforcement
strategy. Applied Intelligence, 24: 31-42.

 DOI: 10.1007/s10489-006-6927-y
Franco-Lopez, H., A.R. Ek and M.E. Bauer, 2001.

Estimation and mapping of forest stand density,
volume and cover type using the k-nearest neighbors
method. Remote Sens. Environ., 77: 251-274.

 DOI: 10.1016/S0034-4257(01)00209-7
Fujimoto, R.M., 2001. Parallel simulation: parallel and

distributed simulation systems. Proceedings of the
33nd Conference on Winter Simulation, Dec. 09-12,
IEEE Computer Society Washington, DC, USA,
Arlington, Virginia, pp: 147-157.

Fujita, S., H. Hara, K. Sugawara, T. Kinoshita and N.
Shiratori, 1998. Agent-based design model of
adaptive distributed systems. Applied Intelligence,
9: 57-70. DOI: 10.1023/A:1008299131268

Fukunaga, K. and P.M. Narendra, 2006. A branch and

bound algorithm for computing k-nearest neighbors.

IEEE Trans. Comput., 24: 750-753.

 DOI: 10.1109/T-C.1975.224297
Hadoop, 2016. http://hadoop.apache.org
Horton, P. and K. Nakai, 1997. Better prediction of

protein cellular localization sites with the it k nearest
neighbors classifier. Proceedings of the 5th
International Conference on Intelligent Systems for
Molecular Biology, Jun. 21-26, pp: 147-152.

Keller, J.M., M.R. Gray and J.A. Givens, 2012. A fuzzy

K-nearest neighbor algorithm. IEEE Trans. Syst.

Man Cybernet.

Kuncheva, L.I., 1995. Editing for the k-nearest neighbors

rule by a genetic algorithm. Pattern Recognition Lett.,

16: 809-814. DOI: 10.1016/0167-8655(95)00047-K

Larose, D.T., 2005. k-Nearest Neighbor Algorithm. In:

Discovering Knowledge in Data: An Introduction to

Data Mining, Larose, D.T. (Ed.), John Wiley &

Sons, ISBN-10: 0471687537.

Mouratidis, K., D. Papadias, S. Bakiras and Y. Tao,
2005. A threshold-based algorithm for continuous
monitoring of k nearest neighbors. IEEE Trans.
Knowledge Data Eng., 17: 1451-1464.

 DOI: 10.1109/TKDE.2005.172
Pan, R., T. Yang, J. Cao, K. Lu and Z. Zhang, 2015.

Missing data imputation by K nearest neighbours
based on grey relational structure and mutual
information. Applied Intelligence, 43: 614-632.
DOI: 10.1007/s10489-015-0666-x

Phu, V.N., N.D. Dat, V.T.N. Tran, V.T.N. Chau and
T.A. Nguyen, 2016. Fuzzy C-means for english
sentiment classification in a distributed system.
Applied Intelligence, 46: 717-738.

 DOI: 10.1007/s10489-016-0858-z
Satyanarayanan, M., J.J. Kistler, P. Kumar, M.E.

Okasaki and E.H. Siegel et al., 2002. Coda: A
highly available file system for a distributed
workstation environment. IEEE Trans. Comput.

Seidl, T. and H.P. Kriegel, 1998. Optimal multi-step k-
nearest neighbor search. Proceedings of the
International Conference on Management of Data,
Jun. 01-04, ACM, Seattle, Washington, pp: 154-165.
DOI: 10.1145/276304.276319

Shirazi, B.A. K.M. Kavi and A.R. Hurson, 1995.
Scheduling and Load Balancing in Parallel and
Distributed Systems. 1st Edn., Wiley-IEEE
Computer Society Press, Los Alamitos, CA, USA,
ISBN-10: 0818665874, pp: 448.

Song, Z. and N. Roussopoulos, 2001. K-nearest neighbor
search for moving query point. Proceedings of the
7th International Symposium on Spatial and
Temporal Databases, Springer, Berlin, Heidelberg,
Redondo Beach, CA., pp: 79-96.

 DOI: 10.1007/3-540-47724-1_5
Sulistio, A., C.S. Yeo and R. Buyya, 2004. A taxonomy

of computer-based simulations and its mapping to
parallel and distributed systems simulation tools.
Softw. Pract. Exper., 34: 653-673.

 DOI: 10.1002/spe.585
The Data Set, 2016. http://data-mining-

tutorials.blogspot.com/2008/11/decision-tree-and-
large-dataset.html

Zhang, M.L. and Z.H. Zhou, 2005. A k-nearest neighbor
based algorithm for multi-label classification.
Proceedings of the International Conference on
Granular Computing, Jul. 25-27, IEEE Xplore Press,
Beijing, China. DOI: 10.1109/GRC.2005.1547385

