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Abstract: This paper delves into the capacity of enhanced Big Bang-
Big Crunch (EBB-BC) metaheuristic to handle data clustering problems. 
BB-BC is a product of an evolution theory of the universe in physics 
and astronomy. Two main phases of BB-BC are big bang and big 
crunch. The big bang phase involves a creation of a population of 
random initial solutions, while in the big crunch phase these solutions 
are shrunk into one elite solution exhibited by a mass center. This study 
looks into enhancing the BB-BC’s effectiveness in clustering data. 
Where, the inclusion of an elite pool alongside implicit solution 
recombination and local search method, contribute to such 
enhancement. Such strategies resulted in a balanced search of good 
quality population that is also diverse. The proposed elite pool-based 
BB-BC was compared with the original BB-BC and other identical 
metaheuristics. Fourteen different clustering datasets were used to test 
BB-BC and the elite pool-based BB-BC showed better performance 
compared to the original BB-BC. BB-BC was impacted more by the 
incorporated strategies. The experiments outcomes demonstrate the high 
quality solutions generated by elite pool-based BB-BC. Its performance 
in fact supersedes that of identical metaheuristics such as swarm 
intelligence and evolutionary algorithms. 
 
Keywords: Big Bang-Big Crunch Metaheuristic, Elite Pool, Implicit 
Recombination, Euclidean Distance, Data Clustering 

 
Introduction 

The data clustering problem is classed as NP-hard 
problem. Gonzalez (1982) mentioned the difficulty in 
achieving optimal solution for clusters of more than 
three in number. The last decade has seen the application 
of numerous metaheuristics in solving numerous data 
clustering problems (refer to sub-section 3.1). Two 
classes of metaheuristics as mentioned by Blum and Roli 
(2008) are: Population-based and local search 
metaheuristics. Genetic algorithm (Liu et al., 2012) and 
the ant colony optimization (Zhang and Cao, 2011) are 
among the generally utilised population-based methods 

in solving the problem. There have been comprehensive 
investigations on population-based metaheuristics. This 
type of metaheuristics is popular due to its ability to 
explore search space exploration, aside from being easily 
combined with local search methods for improving the 
process of solution exploitation (Talbi, 2009; Alsmadi, 
2016; Alsmadi et al., 2012; 2011; Alsmadi, 2017a; 
2017b; 2017c; Badawi and Alsmadi, 2014; 2013). 
Among the general methods of local search methods 
used on the problem include simulated annealing 
(Güngör and Ünler, 2007) and tabu search (Liu et al., 
2008). Their usage is factored by their ability in 
exploiting the solution space. 
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Literature Review 

Blum and Roli (2008) mentioned the strength of 
population-based methods being anchored by the ability 
of recombining solutions in acquiring new ones. Within 
population-based algorithms for instance the Big Bang-
Big Crunch (BB-BC), recombination of elite solutions is 
implicitly conducted. This entails moving and swapping 
of assignments within a solution that denote exchange of 
information between generations of a good quality 
solution (Blum and Roli, 2008). This refers to the 
generation of new solutions via a distribution over the 
search space which comprises a function of previous 
populations that signify the search experience (Blum and 
Roli, 2008). Meanwhile, ‘implicit’ means that a solution 
is indirectly signified by the assignments’ fitness values or 
their contribution’s values to search such as in solution 
creation. With implicit recombination, Blum and Roli 
(2008) stated that the process of search could conduct a 
guided sampling of the search space. Using this 
recombination technique, potential areas of the search 
space can be effectively located (Blum and Roli, 2008. 
The explicit recombination is one more recombination 
type. It is employed by genetic algorithm, memetic 
(hybrid genetic) algorithm as well as by scatter search. 
Here, a structured solution recombination of elite solutions 
is conducted in an explicit manner. This involves moving 
or swapping assignments within a solution which denotes 
exchange of information exchange between generations 
via one or more recombination operators including 
mutation and crossover (Blum and Roli, 2008). ‘Explicit’ 
means that a solution is directly signified by the actual 
assignment or the solutions’ allocation and fitness 
values. The selection of the solution recombination is 
influenced by the nature as well as the construction of 
the problem and also by the metaheuristic chosen. 

Nonetheless, in intensifying the search for solutions 
of higher quality, the population-based metaheuristic is 
regarded as weak. As such, specialized metaheuristics in 
the solution space exploitation (e.g., hill climbing) is 
generally hybridized with the population-based 
metaheuristics. This improves the process of 
intensification. In relation to this, hybridization between 
a population-based and other local search metaheuristics 
has been recommended in many studies (Blum and Roli, 
2008; Talbi, 2009; Brownlee, 2011). Local search 
metaheuristics could overcome the shortcoming (in the 
population-based) of solution space exploitation by 
improving the quality of solution more (Jaradat et al., 
2018). Also, to generate better performance of hybrid 
metaheuristics, the usage of an explicit memory such as 
the use of elite pool, control on search diversity and 
dynamically manipulating the population size are also 
recommended (Talbi, 2009). A good performance can be 
attained if diversification and intensification of the 
search stay balanced, which leads to the selection of BB-

BC in this study. BB-BC as mentioned by Erol and 
Eksin (2006) possesses a dynamic population size 
manipulation and diversity control strategies. The only 
thing it lacks is a memory usage (Erol and Eksin, 2006). 

Elite pool is generally referred as an adaptive 
memory structure containing a set of diverse and high-
quality solutions that keep valuable information about 
the global optima in the shape of a diverse and elite set 
of solutions. Using this structure, the process of search 
could recombine samples from the elite set and this 
allows the exploitation of valuable information 
pertaining to the global optima. 

Further, to achieve better performance of hybrid 
metaheuristics, the use of an elite pool of diverse solutions 
of high-quality for controlling the search in terms of 
diversity and a dynamic manipulation of the size of the 
population, are also recommended (Talbi, 2009). As 
mentioned by Glover et al. (2002), a good performance 
(w.r.t. consistency, efficiency, effectiveness and perhaps 
generality) can be seen via the maintenance of balance 
between the search’s diversification and intensification. 
This has led to the use of Big Bang Big Crunch (BB-BC) 
in this study. It comprises hybridization with some 
mechanisms of diversification and intensification for 
improving its solution space’s exploration and exploitation 
of the. As demonstrated in the work of Jaradat and Ayob 
(2013), an elite pool and a local search were used in 
combination for intensifying the search around elite 
solutions, with the diversity level maintained.  

Objectives 

The use of EBB-BC in this study is factored by its: 
Easy implementation, provision of a deterministic choice 
of pool of elite solutions both quality and diversity wise 
which conducts a systematic neighborhood search within 
the Euclidean space, performance of pseudo-random 
diversification strategies for the combinations of 
structured solution, evolution of a renewed strategy via 
the exploitation of an adaptive memory for the 
preservation of good quality and diversity, provision of 
valuable information of elite or diverse solutions even 
without initial elite pool, support on representation of 
direct solution within a Euclidean space which can be 
manipulated easily, capacity in distributing the search 
over several solutions rather than only one solution as 
well as the capacity of quick convergence even when 
multiple local minima is present (Genc and Hocaoglu, 
2008) which allows the search to quickly locate the elite 
solutions within diverse regions, elitism strategy with a 
pool of only diverse solutions which is enough for the 
solution space exploration, usage of Euclidean distances 
for similarities measurement between solutions which 
assists in pointing the elite solutions and less 
parameterized structure (Genc and Hocaoglu, 2008) 
which means freedom from issues of parameter tuning. 
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BB-BC is also chosen in this study to experiment the 
impact of using an elite pool together with its 
recombination of implicit solution. This means that 
comparison will also be made between this method and 
others that also employ an explicit recombination. As 
such, the aim of this study is to investigate the effect of 
elite pool on the performance of the BB-BC with respect 
to data clustering problems’ solution. With the use of an 
elite pool, the performance of the BB-BC metaheuristic, 
in terms of consistency, efficiency, effectiveness as well 
as generality, is examined by having the method tested 
on a data clustering problem.  

The size of the memory structures in our BB-BC 
metaheuristic was intentionally fixed in this study. As 
for the update strategy, it was maintained. 
Comparison was also made between this method and 
other similar metaheuristics and standalone methods, 
including the original BB-BC and particle swarm 
optimization. The effect of the elite pool in EBB-BC 
was thus explored in this study. 

Therefore, this study attempts to find answer to the 
research question below:  
 
• Does the usage of elite pool (a pool of diverse and 

high-quality solutions) combined with an implicit 
solution recombination improve the performance of 
BB-BC as opposed to the one that only employs the 
diverse pool? 

 
As such, this study aims to fulfil two main objectives 

as follows: 
 
1. To propose an enhanced version of BB-BC via the 

inclusion of a memory structure (e.g., elite pool) 
comprising a set of diverse and high-quality 
solutions in order to achieve balance between 
diversification and intensification -exploration and 
exploitation- inside the search space 

2. To test the performance of BB-BC in terms of 
generality and consistency, over a clustering 
domain with very contrasting characteristics as 
opposed to combinatorial optimization problems 
(e.g., course timetabling) and advanced population-
based metaheuristics 

 
The arrangement of this paper is as follows: Section 2 

highlights the study’s problems, section 3 discusses 
several works pertinent to the subject under study, 
section 4 illustrates the proposed BB-BC metaheuristic 
as well as its design, section 5 elaborates the outcomes 
of the experiment and section 6 concludes the study. 

Problem Statement 

The subject of data clustering problem has been 
widely researched and data clustering problem is in fact 

a very common problem in real life applications. As 
such, the domain of data clustering offers a very good 
platform for researcher to test the impact of an elite pool 
and of other strategies on the performance and generality 
(consistency and efficiency) of the proposed BB-BC. 

As one of the most essential and popular techniques 
of data analysis, data clustering refers to a process of 
assembling a set of data objects into clusters. Here, 
according to Barbakh et al. (2009) and Jain (2010), data 
that belong to the same cluster must be very similar to 
one another while those belonging to different clusters 
must be very different from one another. 

The evaluation of similarity between data objects 
usually requires the usage of distance measurement. In 
particular, the specification of the problem is as follows: 
Given N objects, each object is allotted to one of K 
clusters and the sum of squared Euclidean distances 
between each object and the cluster’s centre belonging to 
each assigned object is minimised: 
 

( ) ( )
2

1 1

,

N K

ij i j

i j

F O Z w O Z

= =

= −∑∑  (1) 

 
Here: ||Oi-Zj|| denotes the Euclidean distance between 

a data object Oi and the cluster center Zj. N and K 
comprise the number of data objects and number of the 
clusters, respectively. Meanwhile, wij represents the 
related weight of data object Oi with cluster j, which 
will be either 1 or 0 (if object i is allotted to cluster j; 
wij is 1, or else, 0). Fuzzy clustering enables wij to take 
values in the interval (0, 1).  

In this study, BB-BC metaheuristic will be 
investigated in order to manage a balance between the 
search’s diversification and intensification so that data 
clustering and analysis will be improved in terms of 
quality. This study will selectively compare the 
outcomes of this study with those of the state-of-the-art 
outcomes documented in the applicable literature. 

Related Works 

Diverse methodologies have been used for handling 
different categories of data clustering problems. Thus, 
the ensuing subsections will highlight some of the most 
commonly used ones as well as those interesting ones. In 
should be noted that there has been a wide and 
successful usage of diverse types of heuristics and 
metaheuristics for data clustering problems solution. 
Somehow, the usage of the original BB-BC was only 
identified once for this purpose. 

Data Clustering 

The literature has presented countless clustering 
algorithms. According to Jain (2010), in general, the 
classical clustering algorithms fall into two categories: 
Hierarchical algorithms and partitional algorithms. The 
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author further mentioned that within the domain of 
classical algorithms, K-means is the most recognised 
algorithm because it is simple and efficient. Somehow, 
there are two issues that are associated with K-means. 
First, the number of clusters is required prior to starting 
that is, the number of clusters must be known a priori. 
Secondly, as mentioned by Selim and Ismail (1984), the 
performance of K-means is highly reliant on the initial 
centroids, aside from its potential in getting stuck in 
local optima solutions. Thus, within the last 20 years, 
there have been applications of countless heuristic 
approaches as an attempt to overcome the problems 
associated with K-means. Among the approaches used 
include: Simulated annealing by Güngör and Ünler 
(2007), tabu search by Liu et al. (2008), genetic 
algorithm by Liu et al. (2012), neural gas algorithm by 
Qin and Suganthan (2004), honey bee mating optimization 
by Fathian et al. (2007), artificial bee colony by Karaboga 
and Ozturk (2011) and Alsmadi (2015), particle swarm 
optimization algorithm by Kuo et al. (2012), ant colony 
optimization by Zhang and Cao (2011), differential 
evolution algorithm by Das et al. (2009), gravitational 
search algorithm by Hatamlou et al. (2012), firefly 
algorithm by Senthilnath et al. (2011) and Alsmadi 
(2014), big bang-big crunch algorithm by Hatamlou et al. 
(2011) and black hole heuristic by Hatamlou (2013); all 
these approaches have been used for data clustering. 

Meanwhile, the use of the techniques of clustering 
can be seen in numerous domains including geophysics 
(Song et al., 2010), agriculture (Chinchuluun et al., 2009), 
image processing (Alsmadi, 2015; 2014; Mitra and Kundu, 
2011; Farag et al., 2017; Alsmadi, 2017d), document 
clustering (Cai and Li, 2011), prediction (Chen and 
Chang, 2010), security and detection of crime (Grubesic, 
2006), marketing and costumer analysis (Li et al., 2009), 
anomaly detection (Park et al., 2010), medicine 
(Halberstadt and Douglas, 2008; Abuhamdah, 2015). 

Elite Pool 

Based on the numerous methods highlighted 
previously, it can be said that there have been countless 
efforts of solving the data clustering problems especially 
via the use of different approaches in combination 
(hybridization). From all the methods highlighted above, 
two key properties are salient: (i) First, employ a 
heuristic method for attaining an initial candidate 
solution; (ii) second, hybridize the metaheuristic with 
another heuristic method for improving the solution 
during the process of iteration. The implementation of 
primarily population-based hybridization has yielded 
considerable improvements towards the optimality of the 
solutions. For instance, population-based methods 
combined with multiple phase neighborhood search, or 
greedy randomized adaptive search, or local search, 
appear to be fairly effective. As stated by Talbi (2009), 

such hybridization is to expand the strategy of 
neighborhood in the population-based method. 

Further, an adaptive memory structure makes up a 
key building block of an efficient and effective hybrid 
metaheuristic, for instance, tabu search algorithms and 
scatter search. The emphasis is on the notions of 
memory, intensification versus diversification and 
exploitation versus exploration. A memory refers to the 
information gathered by the algorithm on the objective 
function distribution and is representable as complex 
structures including trails of pheromone within the 
Elitist-AS. Meanwhile, intensification exploits the 
attained information so that the current solutions can be 
improved. Generally, this entails a local search routine. 
As for diversification, its aim is to gather fresh 
information via search space exploration. 

These components (e.g., memory, intensification, 
diversification, elitism, population manipulation and 
solution recombination) are not always visibly 
distinctive. They are also very interdependent in an 
algorithm. As such, in this study, their advantages are 
used through a complex structure of data that updates the 
search information in a more effective manner, known as 
the elite pool. Here, the aim is to fully exploit the 
adaptive memory; in this study, it is used as an 
improvement method of the attained best solutions 
following the combinations. 

In the context of the relationships: A pool refers to a 
data structure employed for keeping several solutions 
found to be possibly of value all through the search 
(Greistorfer and Voß, 2005). A pool member is termed 
an elite solution and thus, elite pool is a notion 
presentable as an adaptive memory. In relation to this, 
Rochat and Taillard (1995) made use of the notion of 
genetic algorithms of combining solutions for the 
generation of new solutions using a tabu search as a 
procedure for improvement. Szeto et al. (2011) 
employed the tabu search and unified tabu search. Here, 
infeasible solutions are considered via the expansion of 
the objective function using a penalty function and 
continuous diversification. The approach taken by Mester 
and Braysy (2007) was similar to (Szeto et al., 2011). 
Also using the elite pool concept, particularly the Granular 
tabu search, they limited the size of neighbourhood 
through the removal of edges from the graph that are 
not likely to emerge in an optimal solution. 

All methods highlighted in sub-section 3.1 contain no 
elite pool of diverse and high quality solutions. 
Comparatively, the BB-BC proposed in this study contains 
an incorporated elite pool. Also, these other discussed 
methods do not employ an implicit solution recombination, 
unlike the proposed BB-BC. To begin with, the fascinating 
contributions of the studies mentioned previously, have 
linkage with the impact of assignment. One way or another, 
this might impact the performance or even the 
significance of an elite pool. Owing to their usage on the 
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same datasets, comparison will be made between some of 
the methods highlighted in sub-section 3.1 and the 
proposed BB-BC. The performance of EBB-BC in solving 
the data clustering problem should be assessed because it 
would be worthwhile to do so. 

The Big Bang-Big Crunch Metaheuristic 

Initially introduced by Erol and Eksin (2006), BB-
BC is essentially a search algorithm inspired by 
universe evolution theory which revolves around 
expansion and shrinking. As described by Genc and 
Hocaoglu (2008), this algorithm is primarily 
characterized by a fast search space exploration and 
aggressive exploitation of solution space. This is 
signified by shrinking of population in terms of size. 
The works presented by Erol and Eksin (2006) and 
Genc and Hocaoglu (2008) provide the details. 

This research comprises further investigation on the 
effect of an elite pool following the inclusion of the 
performance and generality of the Big Bang-Big Crunch 
(BB-BC) metaheuristic (from (Jaradat and Ayob, 2013)) 
by having it tested on datasets of data clustering. Figure 1 
which comprises a generic pseudo code of this study’s 
EBB-BC can be referred. 

There are many other methods inspired by nature that 
have been applied to data clustering problems, such as 
genetic algorithm, k-means, particle swarm optimization 
and gravitational search. The BB-BC has been applied to 
a limited number of combinatorial optimization 
problems. For example, Erol and Eksin (2006) applied 
the original BB-BC to truss optimization problem and 
compared it against genetic algorithm (GA) and an 
improved GA called combat-GA (CGA). They showed 
that the BB-BC had outperformed the CGA in most of 

the test functions instances in terms of quality and speed. 
In another work, Kaveh and Talatahari (2009) compared 
the BB-BC against particle swarm optimization (PSO), 
harmony search (HS) and ant colony optimization 
(ACO) over the size optimization of space trusses. They 
showed that the performance of the BB-BC demonstrates 
superiority over PSO, HS and ACO in computational 
time and quality of solutions. Lately, the BB-BC was 
applied to a number of optimization problems, such as: 
Target tracking for underwater vehicle detection and 
tracking (Genc and Hocaoglu, 2008); and engineering 
optimization (Kripka and Kripka, 2008; Prayogo et al., 
2018) and discrete design optimization (Hasançebi and 
Azad, 2012). Jaradat and Ayob (2013) applied the 
improved version of the BB-BC to solve course 
timetabling problems in order to outperform a number of 
similar methods which showed a consistent and fast 
convergence towards optimality. The BB-BC has been 
applied once for the data clustering problem by 
Hatamlou et al. (2011). It showed a good performance as 
well as generated good quality results. 

Numerous other nature inspired methods have been 
employed for the solution of data clustering problems. 
These methods include K-means, GA, particle swarm 
optimization as well as gravitational search. Meanwhile, 
there has been application of BB-BC to a restricted 
amount of combinatorial optimization problems. Erol 
and Eksin (2006) are among those who employed the 
original BB-BC to the problem of truss optimization and 
made comparison between this method and GA and an 
improved GA known as combat-GA (CGA). The 
outcomes demonstrate that the performance of BB-BC 
superseded that of CGA in nearly all instances of the test 
functions with respect to quality as well as speed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: A Generic Pseudo Code of EBB-BC 

Big Bang phase (solutions construction):     
    Step 1: Generate population Npop (construct solutions from scratch for  
                the 1st generation, or else generate new population Nnewpop from  
                elite pool) & measure Euclidean distances among solutions in  
                the population; 
Big Crunch phase (Local Search move):   

Repeat 

     Step 2: Generate some neighbours Ns for all solutions in the   
                  population and replace the parent with its best offspring Ci

new for  
                  each solution Ci in the population; 
    Step 3: Find the centre of mass Cc; 
    Step 4: Apply local search to the centre of mass; 
    Step 5: Update the elite pool and the best found solution Cbest; 
    Step 6: Eliminate some poor quality solutions; 
Until population size is reduced to a single solution;  
    Step 7: Return to Step 1 If stopping criterion is not met; 
    Step 8: Return the best found solution  
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Further, BB-BC was compared with particle swarm 
optimization (PSO), harmony search (HS) and ant 
colony optimization (ACO), in terms of the size 
optimization of space trusses, in the work by Kaveh 
and Talatahari (2009). As evidenced, the performance 
of BB-BC superseded that of PSO, HS and ACO in 
terms of computational time and solutions quality. 
BB-BC has also been recently employed in several 
problems of optimization including target tracking for 
the detection and tracking of underwater vehicle as 
can be seen in the work by Genc and Hocaoglu 
(2008), as well as engineering optimization as shown 
in the work of Kripka and Kripka (2008). Meanwhile, 
EBB-BC was used by (Jaradat and Ayob, 2013) in 
resolving the problems of course timetabling and the 
method showed better performance when compared 
with several other identical methods, particularly in 
terms of consistency and speed of convergence towards 
optimality. There is one application of BB-BC for the 
data clustering problem, which is in the work by 
Hatamlou et al. (2011). The authors reported a sound 
performance and good quality outcomes. 

As mentioned, BB-BC is grounded on a theory 
relating to universe evolution in the realms of physics 
and astronomy. The theory elucidates the creation, 
evolution and the ending of the universe. BB-BC theory 
comprises two phases, namely Big Bang (BB) and Big 
Crunch (BC). The BB phase comprises a set of 
procedures of energy dissipation in nature with regard to 
disordering and randomness while the BC phase involves 
a procedure that arbitrarily dispenses particles and draws 
these particles into an order.  

The phases of BB and BC both signify large 
exploration of search space and best exploitation of 
solution, respectively. The BB phase (energy dissipation) 
involves random creation of an initial population of 
feasible solutions and this is akin to GA in terms of the 
creation of a random initial population.  

Gradually, the populations generated in the BB 
phase will be reduced in the BC phase. Such reduction 
is for decreasing the computational time and attaining 
fast convergence, while the solutions’ diversity 
remains the same. The cost function value of a 
solution within the population signifies a mass and as 
remarked by Erol and Eksin (2006), the best solution 
is signified as the center of mass which will attract 
other solutions. Such state is attributable to the notion 
that solutions with bigger mass (in our context, 
smaller sum of intra-cluster distances) are possibly 
much closer to the centre of the search space (the 
universe), or to the point in which the convergence of 
the big crunch will occur. 

According to Genc and Hocaoglu (2008), BB-BC 
specifically works with a variable population size for 
instance, stellar objects. BB-BC can maintain the 

search diversity. Thus, the problem of being trapped 
in a local optimum can be prevented while 
convergence within a reasonable speed can be 
obtained (Kripka and Kripka, 2008). BB-BC is akin to 
memetic algorithms but there is no combination of 
solutions (e.g., crossover) in BB-BC, while the 
mutation is denoted by perturbations of solution. The 
summarised comparisons between memetic and BB-
BC algorithms are highlighted in Table 1. 

In essence, the finalized BB-BC algorithm presented 
in this study is distinct from the original BB-BC 
algorithm that (Erol and Eksin, 2006) had introduced, 
particularly with respect to its representation of 
exploration and exploitation phases (solution 
construction and improvement). In particular, an 
assembly of elite solutions for the creation of new 
promising population in successive BB phases is 
exploited in this study. Here, the elite collection 
comprises solutions of good quality. On the other hand, 
the original BB-BC reconstructs new solutions from 
scratch in the creation of new generation. Also, 
variable neighborhood structures and simple descent 
heuristic (as a local search) are used in this study, On 
the other hand, Erol and Eksin (2006) scrutinised 
solution neighbors employing either greedy descent or 
steepest descent. Additionally, in determining the 
boundaries (allowable space) of the successive 
population, this study employs the quality of the 
produced solutions and the minimum Euclidean 
distance in representing the center of mass, that is, the 
best quality solution and maximum, minimum cost 
values of solutions within the elite pool which 
contains solutions of local optima. Comparatively, in 
the original BB-BC, the positions of solutions which 
are denoted by the Euclidean distances and the 
population distribution’s standard deviation are 
computed relatively to the center of mass within the 
search space and the magnitude of gravitational 
attraction that impacts the population to converge 
toward the center of mass within the Euclidean space 
(Erol and Eksin, 2006). The boundary of the search 
space was initially ascertained using the summation of 
the Euclidean distances of all solutions within the 
population. Somehow, to efficiently control new 
solutions’ production within a desirable quality limits 
for the convergence toward good quality solutions, the 
measurement of the Euclidean distance of the entire 
population is also taken into account. 

The Euclidean distance assists in the determination 
of the search space’s boundaries and distribution. 
Actually, in BB-BC, the Euclidean distance is 
irreplaceable. In other words, no other distance 
measurements for instance, the Manhattan distance, 
can be used in this context. 
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Table 1: A comparison between memetic algorithm and BB-BC 

Features Memetic BB-BC 

Population Chromosomes, large size Stellar objects, large size 

Reproduction Probabilistic selection in hamming space Probabilistic selection in Euclidean space 

Combination Crossover and mutation rely on randomization No combinations, mutation is a perturbation 

Evolution Survival of the fittest Strongest gravitational pole 

Local Search Significant intensification Significant intensification 

Search update Randomized selection Pseudo- random selection 

Memory use Memory less Memory less 

Search experience Limited information about solution’s components Limited information about solution’s components 

Diversification Mutation Euclidean distances 

Intensification Selection, Crossover, Replacement Centre of mass 

 
Normally, the distribution of the new off-springs for 

the successive iteration BB phase as well as in BC phase, 
is around the center of mass (Cc) (as in (Erol and Eksin, 
2006)) (refer to Equation 2): 
 

new

i c
C C σ= +  (2) 

 
Here, Ci

new denotes the new produced solution i; 
while σ signifies a standard deviation of a normal 
distribution. The standard deviation decreases following 
the elapse of iterations based on the formula below 
(Equation 3) (Erol and Eksin, 2006):  
 

max min
( )

,0 1
r C C

k k

α α

σ

−

= < <  (3) 

 
Here, r represents a random number between [0,1], α 

denotes a rate of reduction of the search space size, Cmax 
and Cmin represent the elite pool’s upper and lower 
boundaries while k represents the number of BB phase 
iterations. As such, the production of the new offspring is 
according to Equation 2 within the upper and lower limits. 
The production of off-springs is via the performance of 
some perturbations to the solutions in the elite pool. It is 
necessary to have lower and upper boundaries to enable 
control to the distribution of solutions. In this study, r 
showed no significant impact on the process of 
population reduction in our initial experiments. Thus, it 
is taken out by having its value fixed to 1. 

At the last part of the BC phase signified by the 
reduction of the population size to one solution, a new 
generation is created from the earlier generations’ elite 
pool with similar population size (as in the first 
generation), beginning with the earlier center of mass. 
Here, through shakings performed to the solution, a new 
population from the elite pool is recreated by the 
algorithm where the maximum and minimum of the 
earlier generation’s solutions’ cost values become the 
limits (e.g., bounded with Equation 2). 

The inclusion of potential good quality solutions is 
assured through the allowance of an extended lower 
bound, meaning that, the enhanced solutions are all 
allowed even those outside the bound, while the upper 

limit is limited so that the obtainment of worse solution 
can be limited.  

In this study, the proposed BB-BC starts with the 
construction phase known as the BB phase or the 
diversification phase. This phase comprises the 
construction of a population of Npop preliminary 
candidate solutions Ci from scratch (Step 1) for the first 
generation. For the succeeding BC phase, new 
population is created from the elite pool, but the elite 
solutions themselves are not included in the new 
population. During this step, shaking is performed to 
solutions in the pool confined by the upper and lower 
cost values of solutions within the elite pool.  

Also during this step (Step 1), measurement is made 
to the Euclidean distances among solutions within the 
population. This is for establishing a diversity control 
over the search and also for estimating an elite solution 
in terms of its attractiveness. Here, it is possible that the 
diversity of search is bounded to a certain degree based 
on the differences between solutions’ quality values. As 
an example, a difference between two solutions namely 
Ci and Ci+1 is denoted by the difference of (distance d) 
between the values of fitness those solutions (d (Ci, Ci+1) 
= f (Ci)-f (Ci+1)). Worded simply, larger difference 
between Ci and Ci+1 denotes higher probability of 
solutions to encircle each other (assembled within one 
cluster) in the following iteration. Such occurrence is 
taken into account so that the search is not diversified too 
much and thus, the convergence is toward solution(s) of 
good quality effectively as well as efficiently. Solution 
with the best quality with the minimum Euclidean 
distance, as the center of mass is chosen in this study. The 
most diverse solution comprises a solution with the larger 
maximum distance. Such solution may contain structure 
and fitness cost that are totally different from the elite 
solutions. The computation of Euclidean distances among 
solutions in the population as shown in Equation 4, as well 
as the distances between solutions in the population and 
solutions in the elite pool as demonstrated in Equation 5 
are as follows (Brownlee, 2011; Erol and Eksin, 2006): 
 

( ) ( )
2

min 1 1

1

,

N

i i i i

i

d C C C C
+ +

=
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where, i∈Npop {C1, C2,…,CN}: 
 

( ) ( )
2

min

1

,

n

i i

i

d p q p q
=

= −∑  (5) 

 
Here: dmin(p, q) denotes the distance between each 

solution (p) in the population and every solution (q) 
presently in the elite pool (best quality solutions Cbest, one 
or more center of mass Cc also included). For instance, a 
distance between two solutions is stated as (f(p1)-f(p2)), 
where a solution’s fitness value (quality) is subtracted 
from the other, while the distance between a solution and 
a center of mass is computed as (f(pi)-f(qi)) (Brownlee, 
2011). The Euclidean distance basically looks into the 
square root of differences between solutions. Brownlee 
(2011) mentioned that in the nature inspired algorithms, 
the population diversity or the solution space’s density 
estimator is assessable with the sum of the Euclidean 
distances between a solution and with the rest of other 
solutions in the population as an assessment of how 
much that candidate solution contributes to the diversity. 
The attractiveness of a solution containing a minimum 
distance from the elite solution is greater toward that elite 
solution (center of mass). 

Over time, the study’s proposed BB-BC documents 
the diversity of the population. The calculation (in 
terms of Equation 4) comprises the minimum average 
distance of a solution from all other solutions within 
the population, which is also termed by Bui et al. 
(2008) as the average distance from all candidate 
solutions. In terms of Equation 5, the computation 
comprises the minimum distance between a solution in 
the population and the center of mass which is also 
termed by Bui et al. (2008) as the distance from the 
best candidate solution of the population. Bui et al. 
(2008) further mentioned that the problem of getting 
trapped in local optima can also be prevented. 

Step 2 involves the BC phase (improvement) which 
is also known as the intensification phase or a local 
search move. First, several neighbours of all solutions 
in the population plus the center of mass are produced 
through simple perturbations. The best offspring will 
replace each solution. This results in better quality 
solutions in the following population, while diversity 
of the search remains the same. Such is done so that 
premature convergence of the search can be 
prevented, that is, the search diversity is conserved by 
the retaining some of the poor quality solutions, 
considering that some of these are taken out from the 
population that went beyond the upper boundary. The 
entire BB-BC cycle denotes the balance between 
diversity and quality of the search. Here, the BC phase 
(solution space exploitation) gradually shrinks the 
population into a single elite solution. On the other 
hand, the big bang (search space exploration) 

produces an entirely new population of diverse 
solutions from among those within the elite pool. 

Step 3 of this study’s proposed BB-BC comprises 
the determination of the center of mass Cc according to 
the discovered best solution cost value (Cbest) and the 
minimum average distance from the remainder of the 
population. The use of a simple descent heuristic for a 
predefined number of non-improvement iterations (Step 
4) further improves the center of mass. Meanwhile, 
Step 5 involves creating and updating an elite pool 
(collection). Here, the best solutions (center of mass) of 
the earlier generations are kept within the elite pool and 
used as reference solutions for the BB phase in 
succeeding iterations. Fixed size of elite pool is used in 
this study; during the first iteration, several good 
solutions were chosen to be added into the pool. At 
each iteration the elite pool is updated and this is done 
through the replacement of the worst solution cost in 
the present center of mass and solutions. As can be 
seen (Equation 2), reduction of the population size 
(Step 6) leads to a gradual convergence of the search 
into a single solution. Here, poor quality solutions 
around the center of mass are taken out. The BC phase 
is done over and over until singularity is achieved (i.e., 
the population size is shrunk to a single solution). 

A new BB phase starts after the reduction of the 
population size into a single solution in BC phase (Step 
7). Here, the first step is repeated; a new population is 
produced from the elite pool via the addition of elite 
solutions into the new population and the creation of 
several neighbors from them for the establishment of 
the new population, instead of creating new solutions 
from nothing as was laid down by Erol and Eksin 
(2006). All center of mass solutions (in the elite pool) 
are included in the new population if the elite pool is 
completely occupied. The purpose of conducting this 
step is to sustain a higher diversity level so that 
premature convergence can be avoided. However, in 
the initial big bangs where the elite pool is yet to be 
center of mass solutions obtained from earlier big 
bangs, centres of mass in the elite pool were all 
excluded from the new population. The processes of 
search in the proposed BB-BC algorithm are done over 
and over until the stopping criterion is satisfied. In 
other words, the processes will stop when either the 
maximum number of iterations is achieved, or when the 
best quality solution is located. Lastly, BB-BC returns 
the best discovered solution (Step 8). 

In this study, three neighborhood structures are 
randomly employed to the entire population center of 
mass Cc included (i.e., in Step 1 and Step 3). Five 
neighbors are created for every solution in Npop at each 
iteration. Here, the best neighbor is selected as 
replacement to its parent solution for the ensuing 
generation Nnewpop. The structures of the neighborhood 
comprise relocating a randomly chosen data object 
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around one cluster center; swapping two randomly 
chosen data objects from two randomly chosen cluster 
centers; and swapping all data objects around two 
randomly chosen cluster centers. 

As substantial mechanism intensification, a simple 
descent heuristic local search is used. This improves the 
quality of solutions as their neighborhoods are explored 
without foregoing the diversity of the search. In the BC 
phase, a simple exploration of several neighborhoods of 
a solution is used. For instance, simple shaking is 
performed, such as moving a data object into a randomly 
chosen cluster center. This may be sufficient in escaping 
the local optima. 

Results 

This paper includes the testing of EBB-BC on six 
benchmark datasets of various complexities. The 
performance of BB-BC is hence ascertained. The 
datasets comprise Iris, Wine, Glass, Wisconsin Breast 
Cancer, Vowel, Contraceptive Method Choice (CMC), 
Crude Oil (CO), MG Telescope (MGT), EGG eye, 
WDBC, Ionosphere (INS), Sonar, Thyroid and Artset1. 
All these datasets are accessible from the repository of 
the machine learning databases (C.J. Merz, C.L. Blake, 
UCI Repository of Machine Learning Databases: 
http://www.ics.uci.edu/-mlearn/MLRepository.html). 
The key characteristics of the employed datasets are 
summarised in Table 2. 

Experimental Setup 

Some researchers including Christofides et al. (1979) 
recommended running every version of BB-BC 25 times 
on every dataset for 100,000 iterations as a stopping 
requirement which is a relaxed running time. Intel Core 
i7 2.30 GHz processor, 8 GB RAM and Java NetBeans 
IDE v8.1 were employed for the experiments. 
Parameters are experimentally established (e.g., elite 
pool size) and is grounded by the literature as well (e.g., 
Elitism). For instance, in terms of GAs, BB-BC adheres 
to the classic population size. Table 3 can be referred. 

Comparison is made between the proposed BB-BC 
and the renowned algorithms recently documented in the 
literature. These include comparison with K-means (Jain, 
2010), Particle Swarm Optimization (PSO) (Tsai and 
Kao, 2011), Gravitational Search Algorithm (GSA) 
(Hatamlou et al., 2012), black hole heuristic (BH) 
(Hatamlou, 2013), Flower Pollination Algorithm (FPA) 
(Jensi and Jiji, 2015), simplified swarm optimization 
(SSO) (Yeh and Lai, 2015) as well as big bang–big 
crunch algorithm (BB-BC) (Hatamlou et al., 2011). For 
this purpose, the Sum of Intra-Cluster Distances (SICD) 
criteria is used as a measure of internal quality measure: 
Calculation and summation of the distance between each 
data object and the center of the corresponding cluster are 
performed. This is expressed in Equation (1). It is evident 
that smaller SICD denotes higher quality clustering. In 
this study, SICD is also the evaluation fitness. 

 
Table 2: Main characteristics of the test datasets 

Dataset Number of clusters Number of features Number of data objects 

Iris 3 4 150 (50, 50, 50) 

Wine 3 13 178 (59, 71, 48) 

Glass 6 9 214 (70, 76, 17, 13, 9, 29) 

Cancer 2 9 683 (444, 239) 

Vowel 6 3 871 (72, 89, 172, 151, 207, 180) 

CMC 3 9 1473 (629, 334, 510) 

Crude oil 3 5 56 

MGT 2 10 19020 

EGG eye 2 15 14980 

WDBC 2 30 569 

Ionosphere 2 34 351 

Sonar 2 60 208 

Thyroid 3 5 215 

Artset1 5 3 250 

 
Table 3: Parameters settings used by our BB-BC algorithm 

Parameter Description 

Population size  100  

Iterations  100,000 

Non-improvement iteration  30 

Reduction rate  0.8 

Elite pool size  10 

Local search routine Simple descent heuristic 

Neighbors created for each generation  5 

Search update Last population solution is forced to be always the best (elitism) 
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Table 4: The SICD obtained by different algorithms on different datasets compared to our BB-BC 

Dataset Criteria K-means PSO GSA BB-BC BH SSO FPA Our BB-BC 

Iris Best 97.325 96.68 96.679 96.676 96.655 96.66 96.664 96.653 
 Avg. 105.729 98.98 96.689 96.765 96.656 96.66 96.673 96.653 
 Worst 128.404 127.67 96.705 97.428 96.663 96.66 96.682 96.653 
 Std. 12.387 6.96 0.0076 0.2045 0.00173 0.00 0.005 0.00 
 T - 0.75 1.85 - 0.61 0.61 - 0.61 
Wine Best 16555.67 16292.22 16294.25 16298.67 16293.41 16292.18 16292.86 16292.04 
 Avg. 16963.04 16292.78 16294.31 16303.41 16294.31 16292.76 16293.62 16292.09 
 Worst 23755.04 16294.47 16294.64 16310.11 16300.22 16294.17 16294.95 16292.11 
 Std. 1180.6942 0.67 0.0406 2.66198 1.65127 0.82 0.636 0.03605 
 T - 18.33 141.91 - 17.64 18.08 - 19.12 
Glass Best 215.677 210.36 211.47 223.894 210.515 210.43 211.482 210.365 
 Avg. 227.977 217.87 214.22 231.230 211.498 211.31 211.923 211.028 
 Worst 260.838 245.32 216.08 243.208 213.956 214.81 214.354 213.861 
 Std. 14.13889 7.91 1.1371 4.65013 1.18230 1.78 0.866 1.85685 
 T - 36.94 508.16 - 38.66 39.26 - 34.68 
Cancer Best 2986.961 2964.86 2965.14 2964.387 2964.388 2964.39 2964.648 2964.374 
 Avg. 3032.247 2966.32 2965.21 2964.387 2964.395 2964.39 2964.994 2964.374 
 Worst 5216.089 2969.62 2965.30 2964.389 2964.450 2964.39 2965.445 2964.374 
 Std. 315.14560 1.24 0.0670 0.00048 0.00921 0.00 0.235 0.00 
 T - 5.90 11.28 - 5.16 5.39 - 5.84 
Vowel Best 149394.803 149089.96 149076.71 149038.516 148985.613 148967.24 - 148076.72 
 Avg. 153660.807 151758.39 152289.92 151010.033 149848.181 149148.08 - 149189.49 
 Worst 168474.265 17043.64 158612.03 153090.440 153058.986 150139.66 - 150204.63 
 Std. 4123.042 4205.04 2947.95 1859.32353 1306.95375 336.16 - 1064.328 
 T - 6.65 13.38 - 6.13 6.44 - 6.07 
CMC Best 5542.182 5532.36 5697.03 5534.094 5532.883 5532.18 5534.763 5532.03 
 Avg. 5543.423 5532.87 5697.36 5574.751 5533.631 5532.18 5535.529 5532.03 
 Worst 5545.333 5533.59 5697.87 5644.702 5534.777 5532.18 5536.020 5532.03 
 Std. 1.52384 0.32 0.2717 39.43494 0.59940 0.00 0.363 0.00 
 T - 27.45 54.62 - 26.10 27.12 - 25.51 
CO Best - 277.22 - - 277.21 277.21 277.251 277.211 
 Avg. - 277.35 - - 277.27 277.26 277.281 277.211 
 Worst - 277.86 - - 277.30 277.36 277.313 277.211 
 Std. - 0.13 - - 0.04 0.05 0.019 0.00 
 T - 1.02 - - 0.83 0.83 - 0.71 
MGT Best - 1,623322.11 - - 1,623042.28 1,623042.28 - 1,623042.27 
 Avg. - 1,627770.46 - - 1,623042.31 1,623045.45 - 1,623042.27 
 Worst - 1,635781.99 - - 1,623042.38 1,623072.86 - 1,623042.27 
 Std. - 4191.48 - - 0.03 9.63 - 0.00 
 T - 1211.86 - - 988.84 1084.09 - 1008.16 
EGG eye Best - 3,010467.48 - - 2,354713.85 2,354756.19 - 2,354710.15 
 Avg. - 3,210719.24 - - 2,586299.09 2,354849.12 - 2,354794.64 
 Worst - 3,456696.67 - - 3,214000.36 2,355129.21 - 2,355036.31 
 Std. - 114894.72 - - 271990.85 129.73 - 169.2746 
 T - 880.40 - - 850.98 849.99 - 786.22 
WDBC Best - 149,473.89 - - 149,473.86 149,473.86 - 149,473.86 
 Avg. - 149,474.13 - - 149,473.86 149,473.86 - 149,473.86 
 Worst - 149,473.62 - - 149,473.87 149,473.86 - 149,473.86 
 Std. - 0.20 - - 0.00 0.00 - 0.00 
 T - 90.58 - - 90.91 90.76 - 88.13 
INS Best - 793.78 - - 793.92 793.71 - 793.71 
 Avg. - 793.87 - - 794.30 793.71 - 793.71 
 Worst - 794.02 - - 795.34 793.72 - 793.72 
 Std. - 0.07 - - 0.42 0.00 - 0.00 
 T - 95.97 - - 105.38 96.35 - 98.48 
Sonar Best - 233.77 - - 234.22 233.76 - 233.76 
 Avg. - 233.86 - - 245.02 233.76 - 233.77 
 Worst - 234.08 - - 266.59 233.77 - 233.78 
 Std. - 0.09 - - 14.97 0.00 - 0.01 
 T - 301.61 - - 347.83 328.31 - 323.87 
Thyroid Best - - - - - - 1867.862 1867.861 
 Avg. - - - - - - 1868.967 1867.861 
 Worst - - - - - - 1870.684 1867.861 
 Std. - - - - - - 0.926 0.00 
 T - - - - - - - 93.81 
Artset1 Best - - - - - - 1747.725 1747.18 
 Avg. - - - - - - 1747.943 1747.24 
 Worst - - - - - - 1748.175 1747.99 
 Std. - - - - - - 0.162 0.4513 
 T - - - - - - - 77.23 
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Experimental Results 

Too many instances have been offered for data 
clustering. Hence, this study decided to test the 
proposed BB-BC on some customary datasets tested 
across the literature. 

Table 4 presents the summary of the intra-cluster 
distances attained by clustering algorithms. The 
documented values include: best, average (Avg.), worst, 
the standard deviation (Std.) and CPU time (T) - in 
seconds - of solutions over 25 independent simulations. 
Comparison is made between this study’s results and 
those of the best known algorithms. As can be viewed, 
best found results are in bold while unfound results are 
denoted by dashed line. 

Table 4 further demonstrate that the results generated 
by the EBB-BC supersede those of other compared 
algorithms. Specifically, for the datasets of Iris, Wine, 
Cancer, Vowel, CMC, CO, MGT, EGG eye, Thyroid and 
Artset1, solutions attained by the EBB-BC are 96.653, 
16292.04, 2964.374, 148076.72, 5532.03, 277.211, 
1,623042.27, 2,354710.15, 1867.861 and 1747.18, 
respectively, demonstrating that these solutions are 
considerably better than those generated by others. For 
the datasets of Glass, WDBC, INS and Sonar, the 
solutions generated by the EBB-BC are 210.365, 
149,473.86, 793.71 and 233.76, respectively; these 
outcomes are similar to those generated by PSO, BH 
and SSO. Further, the averages by the EBB-BC are 
better than those of other algorithms in 12 out of 14 
datasets. Also, the values of standard deviation 
obtained by the EBB-BC are smaller than those of other 
algorithms in 9 out of 14 datasets. Additionally, worse 
solutions were obtained by BB-BC for 10 out of 14 
datasets; better than the best solutions obtained by the 
other algorithms. With respect to the time spent in 
locating the best solution; the EBB-BC is far better 
than other algorithms in 9 datasets. 

In general, as opposed to other best known solutions, 
the proposed EBB-BC generates high quality solutions 
and a small standard deviation for every dataset. As 
opposed to the best known results, the results obtained in 
this study are either better, or the same, which means 
that the EBB-BC converges to global optimum in every 
run, whereas the problem of getting trapped in local 
optimum solutions may be faced by other algorithms. 
The EBB-BC did not obtain better average and worst 
solutions in only the Vowel and Sonar datasets as 
opposed to the SSO. 

Based on the outcomes obtained, it can thus be said 
that this study is using a very efficient and competitive 
methodology in solving the problem of data clustering 
particularly with respect to solution quality and 
consistency. As such, the fulfilment of those criteria 
leads to the generality of this study’s proposed BB-BC 
over diverse sizes of datasets. 

Essentially, the EBB-BC proposed in this study has 
the capacity to employ the ability the heuristic 
information regarding diverse and high-quality solutions 
in instance solving, which is through the elite pool, to 
allow the diversification of the search while intensifying 
the enhancement of a high-quality solution. As 
evidenced by the results, the proposed EBB-BC provides 
a general mechanism irrespective of the nature and 
complexity of the instances. It is also applicable to other 
domains with no significant amount of changes to be 
made prior to the usage. In fact, only the constructive 
heuristics and neighborhood structures need to be 
changed. It should be noted that in general, the application 
of a methodology to other problem areas or even different 
instances of the same problem necessitate a significant 
amount of modification, for instance, the modification on 
algorithm parameters or structures. Comparatively, the 
EBB-BC can be simply used across different datasets of 
the clustering problem. It is also hoped that BB-BC would 
is generalizable to other areas as well. 

The performance of the EBB-BC is evaluated using 
three criteria: generality, consistency and efficiency. 
Generality refers to the ability the proposed EBB-BC in 
working soundly across different datasets of the same 
problem. Meanwhile, consistency refers to the capacity 
of this algorithm in generating results that are stable 
when executed a number of times for each dataset. 
Consistency is generally among the most essential 
criteria in the evaluation of any algorithm because many 
search algorithms contains a stochastic component which 
requires different solutions over multiple runs albeit the 
same initial solution. The consistency of this study’s 
proposed BB-BC is grounded on the average and the 
standard deviation over 25 independent runs. Efficiency 
refers to this algorithm’s capacity in generating good 
results that is almost similar to or superior than the best 
known value documented in the literature. This study’s 
proposed EBB-BC is measured by reporting, for every 
dataset, the Best and Avg. from the best known results 
documented in the literature. 

For each dataset tested, comparison was made between 
the proposed BB-BC's results with those of identical 
methods with respect to solution quality instead of 
computational time. This is because different computer 
resources employed has made comparison very challenging. 
As such, the number of iterations being the termination 
criteria from the usage of the adaptive memory in the 
proposed EBB-BC was established, resulting in the 
execution time of this study’s proposed algorithm to be 
within the range of those documented in the literature. 

Discussion 

This section elaborates the performance 
assessment of the EBB-BC against other conventional 
and hybrid algorithms reported in the literature. In 
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specific, this section will elaborate on: (i) The 
evaluation of the benefit of integrating an elite pool 
within the EBB-BC and (ii) the testing on the 
generality and consistency of the EBB-BC over a 
problem of data clustering and comparing between the 
EBB-BC and other well-known algorithms. 

For supporting this study’s hypothesis on the impact of 
the elite pool, implicit recombination and Euclidean 
distance on the performance of BB-BC, this study’s EBB-
BC is compared with several conventional and hybrid 
metaheuristics containing no elite pool. As example, a GA 
usually has a pool (an explicit memory specifically) of 
diverse solutions, but it has no pool of elite solutions 
(diverse and high-quality) (Blum and Roli, 2008; Talbi, 
2009). This explains why this algorithm possesses a great 
mechanism of search diversification while lacking efficient 
intensification mechanism (Blum and Roli, 2008). For 
certain algorithms including memetic algorithms, honey bee 
mating and gravitational search algorithms, the usage of 
elite pool can improve the performance of metaheuristic 
algorithms in the resolution of various problems of 
optimization (Resende et al., 2010). 

A lot of methodologies used in the clustering problem 
did not include the use of an explicit or implicit memory, 
which may lead to the lack of sustaining a balance 
between the search’s diversity and quality. A systematic 
selection strategy is also lacking, making the current 
study’s outcomes outstanding. 

The elite pool is structured in a manner that it 
effectively interacts with the strategy of implicit solution 
recombination while the Euclidean distance 
measurement makes available an adaptive search update. 
Hence, a fairly quick convergence towards high-quality 
solutions may be certain without having the search 
diversity sacrificed. As indicated, the EBB-BC has an 
implicit memory to enable the storage of solutions of 
high-quality and diverse. Nonetheless, having to directly 
apply assignments and perturbations can be exhaustive, 
e.g., apply neighborhood structures that are problem 
dependent, to good quality or diverse solutions for more 
quality improvements could be time-consuming. 

The effect of the quality of using an elite pool has 
been determined. Specifically, the conventional BB-BC 
was applied (Hatamlou et al., 2011) with no elite pool. 
Then, comparison was made to the EBB-BC with an 
elite pool. Some statistically significant conclusions on 
the performance of the EBB-BC are worth discussing. 
Thus, t-test was performed out with 24 degree of 
freedom at a 0.05% significance level. The p-value of the 
EBB-BC as opposed to that of the BB-BC is shown in 
every criterion particularly the outcomes of Best or the 
Avg., as illustrated in Table 4. As shown, the EBB-BC is 
statistically better in performance as opposed to the BB-
BC in each dataset, with the p-value <0.05. The t-test 
values can be viewed in Table 5. The values show the 
EBB-BC’s effectiveness and consistency. 

Table 5: t-test of the EBB-BC for all datasets 

Dataset t-test p-value 

Iris a - 

Wine 3.803 0.002 

Glass 1.711 0.043 

Cancer a - 

Vowel 2.239 0.039 

CMC a - 

Crude oil a - 

MGT a - 

EGG eye 4.092 0.001 

WDBC a - 

Ionosphere a - 

Sonar 5.145 0.000 

Thyroid a - 

Artset1 1.925 0.041 

a. t cannot be computed because the standard deviation is 0. 

 
Briefly stated, the obtained outcomes demonstrate the 

superiority of the EBB-BC with respect to consistency, 
efficiency and generality, particularly in terms of the 
tested datasets. This is primarily factored by the usage of 
elite pool within EBB-BC which imparts a positive 
impact on the capacity of the EBB-BC in generating 
outcomes of good quality that are also consistent as 
opposed to the conventional BB-BC. In all datasets, the 
Std. and the Avg. of the EBB-BC shows stable and better 
outcomes or outcomes that are very close to those 
generated by other population-based metaheuristic 
methods. These observations are proofs of the capacity 
of the EBB-BC in generating good quality outcomes 
over all datasets, rather than just a few ones. 

From the experiments, it is clear that the 
outstanding performance of the EBB-BC is primarily 
factored by the hybridization of BB-BC with: An 
explicit memory structure such as elite pool, an implicit 
solution recombination and the measurement of 
Euclidean distance. The purpose is to diversify the 
search through the exploration of diverse regions of the 
search space, or rather, by avoiding local optima, while 
the high-quality solutions are maintained. The result 
generally shows the significant impact of the 
hybridization of the elite pool with the BB-BC on its 
performance in solving the problem of data clustering. 

As such, it is clear that the EBB-BC proposed in this 
study and the conventional BB-BC (Erol and Eksin, 
2006; Genc and Hocaoglu, 2008) applied in the work by 
Hatamlou et al. (2011), differ from one another. Firstly, 
there is no elite pool in the original BB-BC and thus, it is 
not effective when exchanging search experiences 
between BB and BC phases. Additionally, having a rate 
of reduction of 10% in the population size is not enough 
to attain better convergence; while speed is incredible, 
there would still be no considerable enhancement. 
Reduction is conducted by taking out the worst solution 
from the population at each iteration. Lastly, the original 
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BB-BC contains Euclidean distances measurement and 
an iterated local search. 

Comparatively, the EBB-BC has both an elite pool 
and Euclidean distances measurement. With respect to 
the rate of reduction of the size of population, it is 
performed by taking out the solutions of poor quality 
around the center of mass from the population at every 
iteration. The EBB-BC is also a simple descent heuristic. 

As can be viewed in Table 4, the EBB-BC shows the 
best performance and consistency when it comes to 
acquiring solutions of good quality in nearly all of the 
runs. Such is evidenced by the maintenance of a balance 
between the search’s diversity and quality via the 
interaction between solutions in the elite pool, the 
Euclidean distance, implicit solution recombination, the 
rate of reduction of the variable population, the restart of 
a new population as well as the local search routine. It is 
thus deducible that the inclusion of an elite pool into the 
BB-BC has majorly contributed to the improvement of 
the search particularly in terms of intensification and the 
diversification. Also, the Euclidean distance 
measurement affects the process of intensification. 

As evidenced, the EBB-BC can reliably generate good 
quality results (see Std. and Avg.). The results of the EBB-
BC are fairly comparable to some of those attained using 
other metaheuristics documented in the literature (denoted 
by a small difference between Best and Avg. and Worst, 
where smaller difference denotes more consistent 
algorithm). For instance, the results of the proposed EBB-
BC are superior as opposed to those from other state-of-
the-art metaheuristics for 12 out of 14 datasets.  

The superiority of the EBB-BC in terms of the results 
generated could be linked to some factors. Firstly, 
reduction on the population size may assist the 
convergence of the search to local minima or center of 
mass in the phase of BC. Meanwhile, the recreation of 
new population in a new BB phase may assist in the 
diversification of the search. The search of certain 
neighbors inside the boundaries of the search space in 
the BC phase may likely to assure a considerable 
improvement to the solution. The EBB-BC includes the 
exploitation of an elite pool in creating new promising 
population in succeeding BB phases. Here, good 
information about elite solutions is transferred to next 
generations so that a recombination of good quality 
solutions can be performed. 

Nonetheless, the usage of elite solutions is for 
producing new potential solutions (instead of doing it 
from zero) for restarting the search with new diversified 
population but with quality almost identical to that of the 
present center of mass. Valuable information is provided 
by the elite pool particularly in terms of the location of 
the global solution (the sought after center of mass) that 
is shown by the Euclidean distances between solutions in 
the population and the center of mass(s). 

The experiments conducted in this study show the 
effectiveness of adding the elite pool, a local search and the 
Euclidean distances, as an attempt to improve the original 
BB-BC. Here, the elite pool is exploited so that a balance 
between diversity and quality of the search can be 
preserved. At the same time, the Euclidean distance and 
implicit solution recombination provide assistance in the 
process of search update. With local search, the process of 
enhancing the solutions’ quality becomes more significant. 

Conclusion 

This study attempted to illustrate the effectiveness of 
using an elite pool, Euclidean distance and implicit 
recombination in the BB-BC, in order to improve its 
ability in keeping a balance between diversification and 
intensification of the search. 

Thus, the effect of an elite pool on the general 
performance of a population-based metaheuristic was 
tested. The EBB-BC employs an elite pool containing an 
assembly of diverse and high-quality solutions. The 
presence of memory structure assists in preserving a 
balance between diversity and quality of the search. For 
instance, escaping local optima, that is, the minima or 
maxima based on the formulation of a problem; this is 
doable via the use of new solutions’ generation from 
those diverse ones in the elite pool. The search may be 
diversified for tapping into new budding domains. 
Also, it can be converged toward superior quality 
solutions by having the search focused around good 
quality solutions from the elite pool. 

Testing was conducted on the EBB-BC using a data 
clustering problem. This was to support the hypothesis of 
employing an explicit memory and strategies of diversity 
control. As demonstrated by the results, the EBB-BC 
generates solutions of high-quality, if not optimal. Also, 
this algorithm’s performance is well generalizable across 
different datasets or problems. The deduction made by this 
study is that the hybridization of an elite pool within a 
population-based metaheuristic can improve its 
performance that is generalized well across different 
problems while generating solutions of high-quality that 
are either competitive or optimal in certain instances. 

This study contributes to the reservoir of the 
applicable domain as highlighted below:  
 
• The creation of the EBB-BC containing an elite pool 

alongside this algorithm’s capacity in conducting 
heuristic perturbations is a proof that strengths of 
different search algorithms are combinable into one 
hybrid methodology. This can be exemplified by 
constructive heuristics and metaheuristics, as well as 
population-based and local search methods 

• The hybridization of a mechanism of an adaptive 
memory such as an elite pool containing an assembly 
of high-quality and diverse solutions, with a 
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population-based metaheuristic such as BB-BC could 
yield consistent outcomes that are generalizable 
across different problem domains or datasets. Also, 
the proposed algorithm generates high-quality 
solutions that are just as good as or better than those 
produced by other comparable methods 

• The created hybrid metaheuristic is easily applied to 
other problem domains with minimal effort. Here, 
only the constructive heuristics and neighborhood 
structures require modification 

• The usage of an elite pool offers various high-
quality solutions from which the proposed EBB-BC 
initiates the search for obtaining superior solutions. 
The use of elite pool also offers a way to implement 
cooperation and attain quicker convergence 

 
The shortcomings of the original BB-BC are generally 

overcome through the use of: The Euclidean distance 
measurement, a variable population reduction rate, simple 
descent heuristic and memory of elite solutions.  

This study proposes that the future work investigates 
the effectiveness of this EBB-BC metaheuristic on other 
problems, such as big data analytics. 
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