

© 2018 Syarbaini Ahmad and Abdul Azim A. Ghani. This open access article is distributed under a Creative Commons

Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Original Research Paper

Effectiveness Analysis of Aspect-Oriented Dependence Flow

Graph as an Intermediate Representation Tool

1
Syarbaini Ahmad

and

2
Abdul Azim A. Ghani

1Faculty of Science and Information Technology,

International Islamic University College Selangor (KUIS), 43000 Kajang Selangor, Malaysia
2Faculty of Computer Science and Information,

 Technology, University Putra Malaysia (UPM), 43400, Serdang Selangor, Malaysia

Article history

Received: 29-10-2017

Revised: 08-01-2018

Accepted: 16-02-2018

Corresponding Author:

Syarbaini Ahmad

Faculty of Science and

Information Technology,

International Islamic University

College Selangor (KUIS),

43000 Kajang Selangor

Malaysia

Email: syarbaini@kuis.edu.my

Abstract: Graph-based representations of programs such as control flow
graph or dependence graph have been used to support program analysis
tasks such as program comprehension and software maintenance. However,
in the case of Aspect-Oriented Programming (AOP), such graph
representations individually is not enough to represent the features of
aspect-oriented programs because it could need to identify the flow of
control and the relationship of the data. AOP is a technique for improving
modularity by separating crosscutting concerns in software development. In
this article, a graph model known as Aspect-Oriented Dependence Flow
Graph (AODFG) is proposed to represent the structure of aspect-oriented
programs. The graph is formed by combining control flow graph and
dependence graph into a single graph representation. As a consequence,
more information about dependencies involving the features of AOP, such
as join point, advice, aspects, their related constructs and the flow of control
are able to be analysed. Effectiveness analysis of AODFG has been
conducted in an experiment involving twenty software experts applying the
graph on the AspectJ benchmark programs. The findings show that they
were very satisfied with AODFG as an effective tools for analysing code.

Keywords: Aspect-Oriented Program, Control Flow Graph, Dependence

Graph, Program Analysis, Du-Chains, Ud-Chains, Code Analysis

Introduction

Graph-based representations for programs are useful

in supporting program analysis tasks such as program

comprehension and software maintenance. Traditionally,

control flow graph and data dependence graph are used

to model the flow of control and flow of data in

programs respectively. With the advance of Aspect-

Oriented Programming (AOP) as a means for handling

modularization of software systems by reducing the

tangling and scattering of crosscutting concerns, the

traditional source code representations models are

inadequate to model features of AOP such as join

point, pointcut, advice, introduction and aspect. To

ameliorate this inadequacy, varieties of code

representations for AOP have been proposed in the

literature, such as Aspect-Oriented System Dependence

Graph (ASDG) (Zhao, 2002), Inter-procedural Aspect

Control Flow Graph (IACFG) (Bernardi and di Lucca,

2007) and Aspect-Oriented Control Flow Graph

(AOCFG) (Parizi and Ghani, 2008).

In this study, we propose an intermediate code
representation called Aspect-Oriented Dependence Flow
Graph (AODFG) to support program analysis of aspect-
oriented programs. This graph has been formed by
combining aspect-oriented control flow graph with
aspect-oriented dependence graph. In order to get the
benefit from this graph, we performed an effectiveness
analysis in using AODFG with its tool support. The
experts involved in the analysis show satisfactory results.

The rest of the paper is organized as follows. In
section 2, we describe the conceptual design of AODFG.
In section 3, we present the concept of dependence flow
graph. In section 4, we present the construction of
AODFG. In section 5, we present the validation and its
findings. In section 6, related work is discussed. Finally
in section 7, we present the conclusion.

Aspect-Oriented Dependence Flow Graph

Conceptual Design

Aspect-oriented Dependence Flow Graph (AODFG)

is a code representation tool to represent the graph of

Syarbaini Ahmad and Abdul Azim A. Ghani / Journal of Computer Science 2018, 14 (6): 727.739

DOI: 10.3844/jcssp.2018.727.739

728

control and dependency simultaneously. It is a technique

to show the relationship of control and data dependency in

a single graph (Ahmad et al., 2014). The initiatives of

AODFG are coming from literature of control flow graph

and data dependence graph of aspect-oriented programs.
The conceptual design of AODFG is shown in Fig. 1.

It shows that there are two different targets that can be
extracted from a programming code. One is the flow of
control and another one is the dependencies of the data.
The flow of control can be represented by using control
flow graph which is good to show the statements or
variables flow of event from one to another node in the
program. Another target is to know the dependencies
among the nodes in the program. This is good to show
the data dependencies relationship. The edge in the CFG
and DG are the transition of the data and flow of control.

It is more about ‘du and ud chain’ as a relationship
among the nodes and edge in the program structure. The
‘du and ud chain’ will be useful for analysis control flow
graph and data dependence graph.

It is often convenient to directly link labels of statements
that produce values to the labels of statements that use
them. For each use of variable, associate all assignments
that reach that use are called use-definition chains or ud-
chains. For each assignment, associate all uses are called
Definition-use chains or du-chains (Pingali et al., 2003).
The standard definition of du-chains and ud-chains are as in
definition 1 and 2.

Definition 1

A definition of node x is said to reach a ‘use’ of x if
there is a control flow path from the defines to the uses
that does not pass through any other definition of x.

A du- chain for variable x is a node pair (n1, n2) such

that n1 defines x, n2 uses x and the defines of x at n1

reaches the uses of x at n2.

Definition 2

A definition of variable x is said to reach a ‘define’ of

x if there is a control flow path from the uses to the

defines that does not pass through any other defines of x.

A ud-chain for variable x is a node pair(n1, n2) such

that n1 uses x, n2 define x and the uses of x at n1 reaches

the defines of x at n2.

Figure 2 shows the examples of implementation the

two definitions. Figure 2a is example of C code. Beside

the program is the defined def-use in Fig. 2b for

representation of control flow graph and (c) is

representation for dependence graph. Figure 2c is

combination of the CFG and DG that produces DFG. In

Fig. 2b, nodes are representing either assignment

statements or conditional expressions that affect flow of

control and edges represent possible transfer of control

between nodes. An assignment node has a single

successor, while a conditional node has two successors

representing the possible branching of control.
Def-use chains for dependence graph are graphs that

have the same nodes as control flow graphs (Pingali et
al., 2003), but the edges connect each definition of a
variable to all uses reached by that definition. In Fig. 2c,
edges in the graph represent dependencies that are
classified as flow (def-use), anti (use-def), or output (def-
def) dependences. Note that the data dependence graph is
not an executable representation and does not
incorporate information about flow of control.

Fig. 1: Overview of AODFG original concept study

Data

Dependency

+

Control Flow

Dependence

Flow Graph

Control Flow

Data

Dependency

Syarbaini Ahmad and Abdul Azim A. Ghani / Journal of Computer Science 2018, 14 (6): 727.739

DOI: 10.3844/jcssp.2018.727.739

729

Fig. 2: Example program and its representation

DFG and AODFG Construct

This section presents the conceptual study of DFG as

a whole. It depicts the construction of DFG as it is

coming from the bringing of CFG and DG into one

single graph. This means that DFG is a consecutive of

hybrid relations that consist of flow of control and data

dependencies between class, method or statement into a

single graph representation.

A control flow graph is a directed graph where a

node represents a basic block and edge is a flow of

control between one to another block. Control flow is the

sequential of instructions that are executed in a program

(Ahmad et al., 2014). The structure reflects the iterative

and looping data in the nature of programs (Bernardi and

di Lucca, 2007). It is a sequence of consecutive of

statements starting from the early stage of statement

definition until it completes the process. In CFG, if there

is an edge between the node x and y, y is defined as a

successor of x and x is the predecessor of y.

Data dependencies are program statements that have

a dependency with other program statements. The DG

graph is the statements and predicate expressions that

can be characterized by the nodes (Arora et al., 2012). A

flow of dependences are representing in graph called

dependence graph contains nodes and edges. Nodes

represent either, method, or statements in the program.

Edges represent data dependencies among method and

statements. The relational between one to another nodes

are using two types either using du or ud chains.

Most researchers (Parizi, 2008; Weiser, 1979; Jia et al.,

2008; Lallchandani and Mall, 2009) generate a control

flow graph as a first step towards computing dependence

graph. In software maintenance, both control flow and

dependence of the data are useful and recommended.

This is the idea of the development of hybrid algorithm

that uses the data structures together. The flows of

control and data are not independent. They are following

and relating sequentially from one to another Line of

Code (LOC). But, there are few analyses needed to

(a) Source code

(c) Data dependence

graph

x =1 //flow (def-use)

y = 2 //flow (def-use)

if (x==1) // output (def-use)

 then y=3 //output (def-def)

 ... y … // flow (def-use)

 x=2; //anti-flow (use-def)

y = 2

if(x==1))1

 y

= 3

.. y

…

x = 2;

x = 2

... y

…

y = 3

x = 1

x = 1

x = 1
y = 2

START

(b) Control flow graph

Syarbaini Ahmad and Abdul Azim A. Ghani / Journal of Computer Science 2018, 14 (6): 727.739

DOI: 10.3844/jcssp.2018.727.739

730

understand the flow in def-use and use-def definition as

discussed previously.

The def-use chain can identify which nodes may
execute the control statement in CFG. From the chain in
Fig. 2, there are two work list keep track on this
execution as flow work list and def work list. The flow

work list is used to propagate the executable flag through
the control flow graph. If a non-conditional node N may
be executed, then its successors may be executed. Once
the predicate of a conditional has been assigned a value,
the executable flag can be propagated down one or both
sides as appropriate. The def work list is used to

propagate values along def-use edges.
The problem of maintaining two data structures to

represent the program’s execution semantics and its

dependencies is addressed in part by the program

dependence graph. This graph consists of the data

dependence graph augmented with control dependence

arcs. A more elegant algorithm can be developed using the

program dependence graph. However, program

dependence graphs inherit another problem to the data

dependence graph such as constant propagation which

needs an execution to perform the program

transformation. This problem will counter by Dependence

Flow Graph (DFG). DFG has a capability to represent an

execution of semantic and its dependencies. It also can

view the data structure and easy to verify the dependence

arc. Another point is DFG is executable and the semantic

is generalization of the data driven execution.

To understand dependence flow graphs, it is useful to

execute the graph depicted in Fig. 3 as a simple example

of execution process. Execution begins by pushing token

when the START operator sends a token to the store

operations x = 1 and y = 2. Depending on whether the

token received on arc b is true or false, the switch

operator outputs the token it receives on d4 onto either

arc d5 or d6. In the example, the switch routes the token

to d6 and the definition strictly merge is executed. The

merge operator receives a token on either one (but not

both) of its inputs and simply outputs this token. The

reader can verify that a token carrying the value 3 will be

generated on arc v1.

From Fig. 3, it can be seen that DFG simplifies the

two different kind of graph representations and

compresses them into one single graph representation

without dropping the information gathered by the graphs

(CFG and DG). Hence, it is a hybrid process that carries

two different graphs into a single graph representation.

Creating a Control Flow for Aspect-Oriented

Control flow analysis is one of the phases to
represent the AODFG graph for aspect-oriented
program. Control flow is the sequential of instructions
that are executed in a program. AOCFG is a standard
CFG that model the control flow within Java classes
(including AspectJ), within aspects and across

boundaries between aspects and classes through non-
advice method calls and iterative data flow that model
the interactions between methods and advices at join
points (Xu and Rountev, 2007). Iterative data flow is a
key point to work with AOCFG. Iterative data flow
analysis has a capability to discover the loop process in
the code structure. Then, control flow analysis can
characterize the flow of programs. So that, any unused
generality can be removed and the related and important
code will be classified into related group. The rules of
classification are reffered to the following definitions.

Definition 3

 A du-chain for variable x is an edge pair (e1, e2)

such that:

• The source of e1 defines x

• The destination of e2 uses x

• There is a control flow path from e1 to e2 with no

Assignment to x

Furthermore, edges (na’, nout) were added for each

node na’ that is associated to a statement a’, after which

the control flow leaves the function because of a return-

statement or the right brace that terminates the function.

The control flow graph of an empty function, i.e., a

function without any statements consists of N = {nin,nout}

and E = {(nin,nout)}.The node nin is the only entry node

and the node nout is the only exit node of the control flow

graph. Note that the control flow graph Gf is a graph

where each node (except nin and nout) corresponds to one

statement in the function f.

Fig. 3: Example of DFG for a small program m

d10

Start

y = 2 x = 1

Load x

x = 1

y = 3

If. else

Merge

Load y x = 2

d3

d1

d2

d9 v1

d7

d6

d5

b

d4

v

d8

Syarbaini Ahmad and Abdul Azim A. Ghani / Journal of Computer Science 2018, 14 (6): 727.739

DOI: 10.3844/jcssp.2018.727.739

731

When analysing the source code statically, the

technique used in getting AOCFG starts by discovering

its data structure such as if, else and if-then-else with a

loop in the intermediate code. Then, the code is extracted

line by line and represents it visually in flowchart to

make it clearer to the eye. Next, basic block is identified

to show a straight line sequence of code which has an

entry and exit point. The characteristics of producing

basic block are as in Definition 4.

Definition 4

The characters of analysis policy:

Char1: The entry point of the routine x

Char2: A target branch y, or

Char3: Instruction following a branch y or a return to x

Such instructions are defined as a leader. Each leader

is flowing to another until exit in the sequence. The flow

will become clear to analyze backward dataflow by add

entry block as a successor and exit block at the end of

the branches.

AODFGs model use AOCFG as a part of the analysis

phase. Specifically, for selections, guards,

synchronisations and input event nodes, the path where

the condition is unsatisfied is not explicitly represented in

AODFG. In AOCFG, all such paths would be represented

as a false branch from the node. For selections, when the

condition is unsatisfied, the thread terminates, so an end

node must be introduced and the false branch must link to

it. For guards, synchronisations and input event nodes, the

control flow waits until the condition becomes satisfied,

so the false branch must revert back to the node itself.

A control flow graph consists of a sequence of

nodes of method < m0, m1... mk >, where, for every mi,

such that 0 ≤i < k, (mi, mi+1) ∈ E. The statement s

consists of condition in the method, where m(s1, s2, …

sn). But, not all methods have its statement. Due to

these differences, instead of using an AOCFG as a

part of AODFG, it must be transformed into a new

structure since there are some features in aspects are

included into the analysis. The features are join point,

pointcut, aspect, advice (before, after and around)

and introduction. All the features above should be

defined as aspect node (Ahmad et al., 2014).

Figure 4 is an example of AOCFGc(na, na’) to get

more understanding on the architecture. If the statement a’

is executed immediately after the statement a. For the first

statement a1 in the function, AOCFGe (nin, na1) is

introduced. Furthermore, AOCFGs (na’, nout) were added

for each node na’ that is associated to a statement a’, after

which the control flow leaves the function because of a

return-statement or the right brace that terminates the

function. The AOCFG of an empty function, i.e., a

function without any statements consists of N = {nin, nout}

and E = {(nin, nout)}.

The node nin is the only entry node and the node nout

is the only exit node of the control flow graph. Note that

the control flow graph Gf is a graph where each node

(except nin and nout) corresponds to one statement in the

function f (Gold, 2015).

Each node in AODFG is represented by a node in the

corresponding to the original control flow graph. Control

flow graphs additionally have end nodes which do not

correspond to AODFG or DFG nodes. A part from end

nodes, the nodes in control flow graphs retain all the

information of the corresponding AODFG nodes, such as

their component names and types. The term node will be

used to refer to AOCFG, AODG and AODFG. The

following steps are used to construct an AOCFG:

• Create a node in the control flow graph to represent

the root node of the AODFG

• For each node n in the AODFG which has a

corresponding node m in the control flow graph, locate

each of the children of n in the AODFG. For each

child, place a node c into the control flow graph, with

an AOCFG from m to c. In this manner, a control flow

graph node will be created for every AODFG node,

with edge representing the arrows in the AODFG

• For a single sequential node n in the AODFG,

locate its corresponding node in the control flow

graph m. Then, label all of the outgoing AOCFG

of m as true. Insert an additional outgoing

AOCFG from m to a new end node. The AOCFG

represents the semantics of selection nodes. If the

condition of the selection is satisfied, the control

flow may proceed to all subsequent nodes;

otherwise the control flow for this thread

terminates. Figure 5 is an example of sequence

representation of nodes in the program structure

• For each guard, synchronisation node or input event

node (both external and internal event types) in the

AOCFG, locate its corresponding node in the

control flow graph m. Label all of the outgoing

AOCFG of m is true. Insert an additional outgoing

AOCFG from m back to itself, labelled false. See

the following diagram as an example (Fig. 6). If a

synchronisation node is also a conditional node, it

will have two false of AOCFG in the control flow

graph: one representing the false case of the

condition and one for when the synchronising

partners have not yet been reached

Syarbaini Ahmad and Abdul Azim A. Ghani / Journal of Computer Science 2018, 14 (6): 727.739

DOI: 10.3844/jcssp.2018.727.739

732

Fig. 4: Example of CFG definition node

Fig. 5: Example of representing a selection node

Fig. 6: Example of representing a guard node

Void search(int arr[], int key,

 int *found, int *index)

{

 int i = 0;

 int b;

 *found = 0;

while (i < N)

 {

 if (b = isabsequl (arr[i], key))

 {

 *found = b;

 * index = i;

 Return;

 }

 i++;

 }
}

in

while

out

++

if

Return

 =

=

=

Syarbaini Ahmad and Abdul Azim A. Ghani / Journal of Computer Science 2018, 14 (6): 727.739

DOI: 10.3844/jcssp.2018.727.739

733

Dependence Graph in Aspect-Oriented

The dependence graph for aspect-oriented is a

digraph that consists of a number of aspect code

dependency such as advice, an introduction, or a

method in the aspect and some special kinds of

dependence arcs to represent direct or indirect

dependencies between a call and the called advice,

introduction, or method and transitive interprocedural

data dependencies in the aspect (Zhao, 2002).

Dependence analysis in AODFG is a construct of

dependence graph that represents the dependences in

AODFG for aspect-oriented programs. The difference

with common dependence graph does not present the

dependencies on itself but the information from the

dependence analysis of another perspective which is

AODFG. The purpose of dependence analysis is to

determine the ordering relationships between

instructions that must be satisfied for the code to

execute correctly.

A dependence graph is a directed graph between

statements S1 and S2 where S1 is definition of variable v

and S2 is the uses of variable v. There is a path from S1 to

S2 and v is not redefined. The definition of v in S1 reaches

the use of v in S2. If statement S2 is flow dependent on

statement S1, then S1, S2 is known as def-use.

Compared to the control flow analysis, dependence

analysis can be applied at any level in the program.

This is because the source of dependence analysis will

perform based on S execution. If S1 precedes S2 (S1 �

S2) in their execution order, means S2 is dependence of

S1. There are 4 types of data dependences (Yatapanage

et al., 2010).

 (a) (b)

Fig. 7: Example of dependence graph

Definition 5

The character type of dependencies:

Type1: Flow dependence/true dependence; If S1 � S2

and the former sets of value that the later uses

Type2: Anti dependence; If S1 � S2, S1 uses some

variable’s value and S2 sets it

Type3: Output dependence; If S1 � S2 and both

statements set the value of some variable

Type4: Input dependence; If S1 � S2 and both statements

read the value of some variable

Figure 7 is an example consists of the four types of

dependence as explained. Figure 7 a is simplified of the

analysed code and Fig. 7b is dependence graph of Fig. 7a.

The flow dependence between S3 and S4 is Type1 when the

former sets a value that the latter uses. In the reverse

order, S3 uses some variable’s value (e) and S4 sets it as

Type2. S3 and S5 are set the value of some variable which

is mentioned in Type 3. Type 4 are dependence between S3

and S5 since both read the value of e.

Data Dependence

Data dependence is defined as a node that represents
the program statements and edges that represent data
dependencies between statements. A node is data
dependent on another one if it refers to the state of a
variable (component or attribute) that the other node
defines or updates. For example, a selection node button
pushed would be data-dependent on a state realisation
node Button (pushed) or even a node Button (released).

Syarbaini Ahmad and Abdul Azim A. Ghani / Journal of Computer Science 2018, 14 (6): 727.739

DOI: 10.3844/jcssp.2018.727.739

734

Definition 6. Data Dependence

For two nodes p and q in a control flow graph, node q
is data-dependent on node p, (p → q), if:

• ∃ c ∈ DEF(p) such that c ∈ REF(q)

• ∃ π = trace(p, q), where ∀ k ∈ π, c ∉ DEF(k) and •

!(conc(p, q))

• ¬(conc(p,q))

Implementation of AODFG

This section enhances the extension of the construction
of both control flow and data dependency to come up with
AODFG. Our approach, in the case of aspect-oriented,
shares the same viewpoint with procedural (Pigoski, 1997)
and Object-Oriented (OO) approach in the sense that it is
also a collection of information about the dependencies of
the data and the flow of control represent in a hierarchical
manner. But the different between AO and others is only
the AO features that exist in aspect code. As a concept,
AO survival is depending on base code which is OO. Base
code which normally includes classes, interfaces and
standard Java features or constructs and aspect code which
put into practice the crosscutting concerns in the program
by using aspect, advice, etc (Capilla et al., 2010).

The construction of AODFG is the arrangement from
the original study of DFG as explain in previous section
It was applied on traditional programming using du and
ud chain. In order to tailor it with aspect-oriented
programming, some additional features need to be
injected to the steps of construction. The followings are
the steps for the creation of AODFG:

• Analyze the control flow structure of the program as

the technique used in CFG. The control flow graph Gf

= (N, E) of a function f has one node na ∈ N for each

statement a in f and two additional nodes nin, nout.

Adding an edge (na, na’) if the statement a’ is executed

immediately after the statement a. For the first

statement a1 in the function, an edge (nin, na1) is

introduced. Furthermore, adding edges (na’, nout) for

each node na’ that is associated to a statement a’, after

which the control flow leaves the function because of a

return-statement or the right brace that terminates the

function. The control flow graph of an empty function,

i.e., a function without any statements consists of N =

{nin,nout} and E = {(nin,nout)}.The node nin is the only

entry node and the node nout is the only exit node of the

control flow graph. Note that the control flow graph Gf

is a graph where each node (except nin and nout)

corresponds to one statement in the function f
• Analyze the dependencies among the statements in

the program as a technique used in dependence
graph. The character type of dependencies such as
flow dependence/true dependence; If S1 � S2 and the
former sets of value that the later uses. Anti-
dependence; If S1 � S2 , S1 uses some variable’s

value and S2 sets it. Output dependence; If S1 � S2
and both statements set the value of some variables.
Input dependence; If S1 � S2 and both statements
read the value of some variables

• Using AspectJ as a target language and advice
execution as a method call. The features of AOP
introduced are the followings:

Join point: AspectJ provides join point object in order to

access context information. The method join
point is prepared for accessing parameters.
Since the parameter of the method call is
determined in runtime, the caller of the
method call is handled as references to all
parameters of the method of the join point

Pointcut: An advice depends on a pointcut definition.
Since a pointcut determines an advice
execution, a dependency edge has been
connected from an advice to pointcut

Advice call: Consists of an advice type (before, after and
around). A vertex corresponding to a join
point shadow is regarded as a caller vertex
of the advice

• Construct a graph that contains information about the

control flow and data dependencies in the program.

Findings and Validation

This section presents an experiment for validating the

proposed theory for aspect oriented programs using

dependence flow graph (Gallagher and Lyle, 1991). We

used an improvement-oriented software maintenance

model that was used by Gallagher to validate his

approach using program slicing in software maintenance.

The reasons were that his model has a capability to

illustrates a comprehensive approach attempting to

integrate the software maintenance process in a single

software life cycle framework.

The validation process is started by stating the

improvement goals of the representation process. In this

case, the goal is AODFG effectively useful for

representation of the aspect-oriented programs.

Validation goal is specified with the object, to propose

an AODFG implementable as a representation technique.

The purpose is to learn if the representation of AODFG

can be implemented in the aspect-oriented programs.

To identify whether this research has achieved the

goal or not, the issues were focused on the effectiveness

of making changes to aspect-oriented given program.

The subjects for the experiment were twenty software

developers. All of them had wide experiences as

practitioners in the software development. We wanted to

look at the change occurs after the treatment. Thus, the

subjects were randomly given one sample of the AO

program with average 100 to 500 LOC with less than ten

Syarbaini Ahmad and Abdul Azim A. Ghani / Journal of Computer Science 2018, 14 (6): 727.739

DOI: 10.3844/jcssp.2018.727.739

735

classes or aspects. They had to describe or represent the

relationship among the code in the program with some

limited time, based on their own experiences and their

own maintenance tool.
The subject were given a short description on the

aspect-orientation methodology. They also could view the
related graph and perform a tutored practice to become
familiar with our analysis technique and aspect-oriented
nature. During the observation, the subjects represented the
aspectJ program by using their own technique. Then, we
were given the treatment by consult about OADFG and
demonstrate the proposed technique as an alternative of
code representation. When the subjects passed through the
experiment’s treatments, the subjects were repeat the first
observed by AODFG representation. The AODFG graph
presented some information about the code dependencies
and region. Since it is difficult for editing and writing
activities, merely report was generated from the beginning

until compilation. This can be loosely constructed as the
time to design and implement the change.

Our study used ten benchmarks ((eclipse.org//) of
AspectJ examples as shown in Table 1-3 from the
collections of AspectJ Development Tools (AJDT) plug-
in with some modification code to suite with our analysis
technique. Our concern is to look at the consistency of
output between CFG, DG and DFG. We also looking at
the extraction from AODFG compare to CFG and DG.
For each program, table gives the numbers of aspect,
LOC, methods, statement and AO denotes as aspect
modules separately. LOC represents the value of lines of
code included class and aspect files. We define pointcut as
AO module even it did not contain any body code since
the style of structure is same with module. We verified
those AODFGs generated by the tool against a manual
inspection of the graph and the associated analysed source
code for each of aforementioned programs.

Table 1: CFG analysis data

Package/program Aspect Ctr node Ctrl edge

Event pooling 1 16 14

Bean example 1 15 13

Introduction 3 19 22

Aspect.GUI 2 40 36

Hashable point 1 16 13

Coordination 1 12 9

Spacewar 4 197 183

Observer 2 16 27

Telecom 3 30 22

DCM 1 8 8

Table 2: DG analysis

Package/program Aspect Dep. node Dep. edge

Event pooling 1 91 88

Bean example 1 15 14

Introduction 3 19 25

Aspect.GUI 2 42 41

Hashable point 1 15 14

Coordination 1 9 8

Spacewar 4 261 251

Observer 2 16 53

Telecom 3 42 39

DCM 1 18 18

Table 3: DFG analysis

 Method

Package/program Aspect LOC OO AO DFG Edge DFG Node Formula Spread

Event pooling 1 108 3 1 102 99 Edge > Node 3

Bean example 1 159 14 1 27 15 12

Introduction 3 234 18 1 47 19 28

Aspect.GUI 2 101 0 8 77 72 5

Hashable point 1 48 2 3 27 21 6

Coordination 1 448 3 3 17 13 4

Spacewar 4 636 0 40 438 377 61

Observer 2 243 16 2 35 40 Edge < Node 64

Telecom 3 119 7 8 61 63 2

DCM 1 211 0 3 26 42 16

Syarbaini Ahmad and Abdul Azim A. Ghani / Journal of Computer Science 2018, 14 (6): 727.739

DOI: 10.3844/jcssp.2018.727.739

736

First, we extract the output data from CFG. CFG
shows the relationship between the nodes represent
either an assignment statement or a conditional
expression that affect the control flow and the edges

represent the possibility to transfer the control between
statements. So the output that we need from execution is
to identify any possibility transition between the edges
and the flows of control. Table 1 show the output of
AODFG execution and Fig. 8 is graph represent the
output of analysis.

Then, the same program were used to extract the
output from DG. DG will show the relationship among
the statements in the program. So the output that we
need from the execution of DG is relationship among
data in the program. Table 2 showed the representation
of the same program in a DG representation view.

Figure 9 represent the output from DG that were getting
from Table 2.

We repeatedly modify the source code with a minimal
customization to help AODFG representation tool in their
debugging process. For example, if we found any incorrect
value of a variable that related with AO, we try to change to
any suitable by assuming the more LOC in the program the
more complexity to the relationship will be work on. From
Table 3, The quantity of AO is not related with the value of
neither methods nor statement. AODFG identify the AO
features in the program, based on existing AO source code
in the program. For example, Introduction with 234 LOC
and 18 methods have one AO features in the program
compare to Coordination with 448 LOC and three methods
and three AO features. Figure 10 is the output represented
in graph to look in the statistical view.

Fig. 8: CFG output graph

Fig. 9: DG output graph

CFG analysis

E
v

en
t

p
o
o

li
n

g

B
ea

n
 e

x
am

p
le

In

tr
o
d

u
ct

io
n

A
sp

ec
t.

 G
U

I

H
as

h
ab

le
 p

o
in

t

C
o

o
rd

in
at

io
n

S
p

ac
ew

ar

O
b

se
rv

er

T
el

ec
o

m

D
C

M

Dep. Node Dep. Edge

Ctr node Ctrl edge

400

350

300

250

200

150

100

50

0

600

500

400

300

200

100

0

E
v

en
t

p
o
o

li
n

g

B
ea

n
 e

x
am

p
le

In

tr
o
d

u
ct

io
n

A
sp

ec
t.

 G
U

I
H

as
h

ab
le

 p
o

in
t

C

o
o

rd
in

at
io

n

S
p

ac
ew

ar

O
b

se
rv

er

T
el

ec
o

m

D
C

M

DG analysis

Syarbaini Ahmad and Abdul Azim A. Ghani / Journal of Computer Science 2018, 14 (6): 727.739

DOI: 10.3844/jcssp.2018.727.739

737

Fig. 10: Output of DFG analysis

From the experiment, we can see that program

generated by the tool were correct and consistently show

the same output as CFG and DG. The advantage is

AODFG are proposed all together DG and CFG in a

single graph representation. In other words, we can get

information about flow work list that can help us to get the

executable flag and we also understand the dependencies

among the object and aspect methods in the program.

It shows that, representing AO software by using

AODFG provides a useful support for gaining a better

knowledge of the internal structure even in the

complicated programs, by reducing the effort needed to

understrand the detail structure of the program. It just

another way to represent the code structure that obtain

more useful information which are dependencies among

the program and its flow of control.

The subjects were given a questionnaire as a proven

of the goal of this study. Twenty five questions were

asked to the same sample regarding the effectiveness of

AODFG. The set of questions related to effectiveness

were: Does AOST effectively in representing the code?

Does AOST help you in slicing the code? Does AOST

help you in maintaining the software? Does AOST help

you save your time in modifying the program? and Do

you think that AOST can help software maintainer to

solve complexity problem in software maintenance?

Descriptive statistical analysis was used to

summarize and describe our collected data. Descriptive

statistics are very important to this research because it

can enable us to present the data in a more meaningful

way, which allows a very simple interpretation of the

data but very easy to understand. The survey was given to

twenty respondents among the experienced practitioners

as mentioned before. They were given the questionnaire

after they had completely followed the training on aspect-

oriented and felt the usability of AOST. The results from

the questionnaire are given in Table 4.

Table 4 shows a set of questions to survey the

effectiveness of AODFG as a presentation of aspect-

oriented programs. Since effectiveness is related to the

functionality of the system, question 1 until 5 is to know

the respond from our subjects. The outputs are 80%

agree that AODFG effectively represent the code

architecture and 85% agree that AODFG can help

software maintainer slice the code safely. 85% agree that

AODFG help them to maintain the software and 90%

said AODFG help them save their time in modifying the

program. Lastly, as the end of the effectiveness point,

question 5 asks either AOST can help software maintainer

to solve complexity problem in software maintenance or

not, where 85% agreed that it was helpful.

The twenty subjects agreed that they were very

satisfied with AODFG in order to use it as one of the

software development support tools. It is effective in

aspect of information provider, time saving and

complexity problem solving in tracking the relations of

the code, especially in a big and medium size of LOC.

The AODFG can help software maintainer not only for

identifing the program in graph, but also can help them

effectively analyse the aspect-oriented program with a

very minimum effort.

E
v

en
t

p
o
o

li
n

g

B
ea

n
 e

x
am

p
le

In

tr
o
d

u
ct

io
n

A
sp

ec
t.

 G
U

I
H

as
h

ab
le

 p
o

in
t

C
o

o
rd

in
at

io
n

S
p

ac
ew

ar

O
b

se
rv

er

T
el

ec
o

m

D
C

M

900

800

700

600

500

400

300

200

100

0

DFG analysis

DFG edge DFG node

Syarbaini Ahmad and Abdul Azim A. Ghani / Journal of Computer Science 2018, 14 (6): 727.739

DOI: 10.3844/jcssp.2018.727.739

738

Related Work

Gold (2015) redefined the control flow graph by

giving a uniform definition by subsumes the reduction of

abstraction of segment graph, directed graph and program

graph. It is used to define statement coverage and branch

coverage such that coverage notions correspond to node

coverage and edge coverage. It can help software engineers

to analyse the control flow of the program analysis in the

design of test cases in software engineering. It then

improves representation by focusing to the paths of control

flow since executions of programs are represented by paths

(Gold, 2014). The composition of reductions makes a

stepwise analysis approach to the program. It is possibly not

restricted to control flow graphs.

Bernardi and di Lucca (2007) introduced an inter-

procedural aspect control basic system which focusing on

non-weaving aspect code. It can make the maintenance of

a software flow graph representing the flow and

relationship of the program. The proposed research

discussed on representing an AOP system by using Inter-

procedural Aspect Control Flow Graph (IACFG),

reporting the way aspects interact among the components

of the program. They are referring to Zhao (2002) as their

anchor study. The idea proposed was to allow an easier

identification of the impact between aspects and the base

code structure. They showed their findings with a tested

code and figured out the customization of the CFG graph

known as IACFG. Nevertheless, there still have to

improve the accuracy of the graph with respect to both

polymorphic calls and interceptions.

Singh et al. (2016) proposed a parallel dynamic

slicing algorithm for distributed aspect-oriented

programs by introducing parallelism into a slicing

algorithm to make the slice computation process much

faster. DDG generator is a tool that used to generate the

required intermediate graphs for distributed of aspect-

oriented programs. This proposed slicing technique is

compared with one related existing technique using three

case studies. The experiment is to look at the time

consuming on generates precise slices compared to other

three existing algorithm.

Ohmann and Liblit (2013) provided an extended

core-dump information for debugging by minimizing

overhead effort in analysis debugged program. The goal

is to aid during post-deployment debugging by giving

programmers additional information about program

activity shortly before failure. Latent information in

post-failure memory dumps, augmented by low-

overhead, tuneable run-time tracing were used in the

experiment activity.

The complexity of the program is very related to the

algorithm that use control flow graphs and dependence

graph. Arora et al. (2012) also compare the features of

control flow and dependence flow of representation. They

show that, dependence graph supports features like

control, data and transitive dependence, single and

multiple procedure, inter and intra procedure calls,

multiple types of edges, slicing, context sensitivity,

inheritance and polymorphism, test case generation and

parameter passing. Whereas flow graph be deficient in

representing data and transitive dependence, multiple

procedures, inter and intra procedure calls, multiple types

of edges, slicing, context sensitivity, inheritance and

polymorphism etc.

Mohanty et al. (2015) applied aspect-oriented reverse

hierarchical dynamic slicing algorithm on the

intermediate program representation to compute the

dynamic slices. This approach constructs the graph and

computes the dynamic slices level wise. However, the

complexity of the program is related to the algorithm

that not only concerns about dependence of the data.

Conclusion and Future Work

We have applied the AODFG on a benchmark

aspect-oriented program and let the right person to test

the prototype. Then, the collections of data from the

subjects were analysed to look for the effectiveness as a

representation tool. From the experiment that has been

done, it shows that AODFG definitely provides the same

value of nodes, data edge and control edge compared to

the dependence graph and the control flow graph for the

same class or aspect file. The AODFG provides two

different kind of information in one single graph. The

advantage of AODFG is using a single graph

representation to get information such as the flow of data

and the flow control in the program.
Looking further at the subjects, can conclude that

aspect-oriented is relatively new for the developers. Not
many people know about it, although it was introduced
and proposed more than a decade ago. Maybe developers
especially programmers are very satisfied and
compatible with object-oriented. However, aspect-
oriented is still depending on object-oriented as a based
technique and this can make software development
technology keep growing and research activity in this
area are become more interesting.

Aspect-oriented although is not as popular as object-
oriented, but AODFG can be one of the alternatives for
program analysis. Positive responds from our subjects
whom are the twenty experienced software practitioners
from different companies almost agree that AOST can
effectively help in analysing aspect-oriented programs.

This study was proposed for DFG that works for
CFG and DG implemented in aspect-oriented programs
based on the AspectJ. But there are many other
techniques that can be introduced to work with aspect-
oriented programming and future programming trends.
Some of them are control dependence graph, program
dependence graph, mapping information, symbol table
information, local def-use, dominator tree and so on.

Syarbaini Ahmad and Abdul Azim A. Ghani / Journal of Computer Science 2018, 14 (6): 727.739

DOI: 10.3844/jcssp.2018.727.739

739

Author’s Contributions

Syarbaini Ahmad: Writing the manuscript, testing

and analyze the output.

Abdul Azim A. Ghani: Conceptual study and

contents. Critical review of each version, correction

and approval.

Ethics

The authors confirm that they abide to all ethical

protocols and procedures while preparing this manuscript.

References

Ahmad, S., A.A.A. Ghani and F.M. Sani, 2014.

Dependence flow graph for analysis of aspect-

oriented programs. Int. J. Software Eng. Applic., 5:

125-144.
Arora, V., R. Bhatia and M. Singh, 2012. Evaluation of

flow graph and dependence graphs for program
representation. Int. J. Comput. Applic., 56: 18-23.

Bernardi, M.L. and G.A. di Lucca, 2007. An
interprocedural aspect control flow graph to support
the maintenance of aspect oriented systems.
Proceedings of the IEEE International Conference
on Software Maintenance, (CSM’ 07), pp: 435-444.
DOI: 10.1109/ICSM.2007.4362656

Capilla, R., J.C. Duenas and R. Ferenc, 2010. A
retrospective view of software maintenance and
reengineering research-a selection of papers from
European conference on software maintenance and
reengineering. J. Software Maintenance Evolut. Res.
Pract. DOI: 10.1002/smr.548

Gallagher, K.B. and J.R. Lyle, 1991. Using program
slicing in software maintenance. IEEE Trans.
Software Eng., 17: 751-761.

Gold, R., 2014. Reductions of control flow graphs. Int. J.
Comput. Electrical Automat., Control Inform. Eng.,
8: 427-434.

Gold, R., 2015. A uniform approach to control flow
graphs of program. Far East J. Applied Math., 93:
27-49.

Jia, L., Y. Jing, W. Ming and J.C. Hong, 2008.
Crosscutting invariant and an efficient checking
algorithm using program slicing. ACM Sigplan
Notices, 43: 12-20. DOI: 10.1145/1361213.1361215

Lallchandani, J.T. and R. Mall, 2009. Static slicing of
UML architectural models. J. Object Technol., 8:
159-159. DOI: 10.5381/jot.2009.8.1.a2

Mohanty, S.R., P.K. Behera and D.P. Mohapatra, 2015.

Slicing aspect-oriented program hierarchically. Int.

J. Comput. Sci. Inform. Technol., 6: 5004-5013.

Ohmann, P. and B. Liblit, 2013. Lightweight control-flow

instrumentation and postmortem analysis in support

of debugging. Proceedings of the IEEE/ACM 28th

International Conference on Automated Software

Engineering, Nov. 11-15, IEEE Xplore Press, Silicon

Valley. DOI: 10.1109/ASE.2013.6693096

Parizi, R.M. and A.A.A. Ghani, 2008. AJcFgraph -

AspectJ control flow graph builder for aspect-

oriented software. Int. J. Comput. Sci., 00: 170-181.

Parizi, R.M., 2008. Control flow structure and graph

embodiment of Aspect-Oriented Programs (AOPs):

Definitions, algorithm and tool support. PhD Thesis,

University Putra Malaysia.

Pigoski, T.M., 1997. Practical Software Maintenance: Best

Practices for Managing your Software Investment. 1st

Edn., Wiley, New York, ISBN-10: 0471170011,

pp: 384.

Pingali, K., M. Beck, R., Johnson, P. Stodghill and M.

Moudgill, 2003. Dependence flow graphs: An

algebraic approach to program dependencies keshav

pingali. Proceedings of the 18th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming

Languages, (PPL’ 03) pp: 67-78.

Singh, J., S. Panda, P.M. Khilar and D.P. Mohapatra,

2016. A graph-based dynamic slicing of distributed

aspect-oriented software. ACM Sigsoft Software

Eng. Notes, 41: 1-8.

Weiser, M., 1979. Program slices: Formal, psychological

and practical investigations of an automatic program

abstraction method. PhD Thesis, University of

Michigan, USA.

Xu, G. and A. Rountev, 2007. Data-flow and control-

flow analysis of aspectj software for program

slicing. Program, Ohio State University.

Yatapanage, N., K. Winter and S. Zafar, 2010. Slicing

behavior tree models for verification of A large

systems. Theoretical Comput. Sci., 323: 125-139.

Zhao, J., 2002. Slicing aspect-oriented software.

Proceedings 10th International Workshop on

Program Comprehension, (WPC’ 02), pp: 251-260.

DOI: 10.1109/WPC.2002.1021346

