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Abstract: The class imbalance problem presents an important challenge to 

the data mining community, in which the number of examples of one class 

is more than the others. This problem is characterized by a different 

distribution of cases between all the classes. In this paper, our goal is to study 

the various challenges of class imbalance problem and provide a comparative 

study of the current development of research in learning from imbalanced 

data. We provide a thorough understanding of the nature of the problem, the 

methods used for data balancing, the learning objectives and assessment 

metrics used for getting measurable performance, the stated research 

solutions and the imbalanced problem in multiple classes. This paper 

highlights the significant opportunities and challenges in the field and 

provides potential future research directions in the class imbalance problem. 
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Introduction 

Classification is a vital task in data mining 
applications. The classification algorithm is used to train 
the model to predict the class level of unseen data. The 
various classification algorithms such as Bayesian 
network, Decision Tree, Support Vector Machine (SVM) 
and nearest neighbour have been used to predict the class 
of unknown data. But all the current classification 
methods give a comparatively balanced class distribution 
(Chawla et al., 2004).  

In a class imbalance problem, the number of 
instances of one class is substantially more than the other 
classes, and the class that is of more interest (Minority 
class or Positive) has a few instances when contrasted 
with negative (Majority class) cases. At the point when a 
model framed with the imbalanced dataset, it eventually 
gives its inclination towards common class, because they 
are designed to maximize the overall prediction 
accuracy. Therefore, standard classifiers ignore all 
minority class instances (treating them as noise or 
outliner) and lose its classification ability in class 
imbalance problem. For example, in a dataset whose 
Imbalance Ratio (IR) is 1:100 (i.e., for each occurrence 
of the smaller class, there are 100 normal class cases). A 
conventional classifier may acquire a precision of 99% 
by the ignorance of uncommon examples, with the 
classification of all instances as the majority. An exact 

model is one that can give a higher recognizable proof 
rate of uncommon cases. Therefore, the class imbalance 
problem is likewise called the rare class problem.  

The presence of class imbalance problem in many 
real-world data attracts much more growth of attention 
from the research community; allude to the most 
challenging problem in data mining area (Yang et al., 
2006). These issues have been seen in a few fields like as 
credit card fraud detection (Shen et al., 2007), medical 
diagnosis (Mazurowski et al., 2008), detection of oil spills 
from satellite images (Kubat et al., 1998), risk management 
(Ezawa et al., 1996), text classification (Cardie et al., 1997), 
modern manufacturing plants (Segal et al., 1994). A lot of 
research has been done in the class imbalance problem due 
to its use in various practical applications like Machine 
learning and Data Mining. To address the class imbalance 
problem, various techniques have been developed. These 
methods are divided into three parts: (1) the kind of data 
and data complexity, (2) the possible solution that can 
predict/identify the class level of unseen data; (3) the 
appropriate evaluation metrics to measure the classification 
performance. Within these suggested groups, the most 
challenging issue is the second one. The possible solutions 
of the class imbalance problem can be divided into two 
categories as data level and algorithm level solutions. At the 
data level (external method), the data is preprocessed in 
advance which is the primary motive to remove the 
effect of skewed class distribution. 
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Fig. 1: Imbalanced dataset; stars are out represented by circles 

 

At the algorithm level (internal process), the objective is 

to create an effective method or change the current one 

that can bias toward the positive class (Weiss and 

Provost, 2003). Both the approaches have some 

drawbacks, some of them are: 

 

1) The data level approach has the drawback of losing 

some valuable information when majority class 

samples are under-sampled and over-generalization 

when minority class samples are over-sampled 

2) The disadvantage of the algorithm-based approach is 

that it requires algorithm specific modification 
 

Fig. 1 demonstrates the dispersion of majority class 

object and minority class object.  

Due to lack of unified framework, we need additional 

research efforts for the advancement of class imbalance 

problem. The objective of this paper is to review the 

two-class imbalance problem and to propose a 

generalized framework that is appropriate for all types of 

class imbalance problem. 

The organization of the rest of the paper is as follows: 

In the second section, we discuss the domain of the class 

imbalance issue. In the third section, we discuss the 

classification of the imbalance dataset problem, which 

includes the nature of the problem, data intrinsic 

characteristics and evaluation criteria for measuring 

classification performance. The fourth section provides 

the research objectives of class imbalance learning. The 

fifth section, exhibit the research solutions for imbalanced 

learning which incorporate data pre-processing 

techniques, cost-sensitive learning and various ensemble 

techniques. In section sixth, we discuss the classification 

of multi-class imbalance data. Finally, in the seventh 

section, we present opportunities and challenges for future 

research in the field and make concluding remarks. 

Domain of Class Imbalance Problem  

In data mining applications, the class imbalance issue 
exists in different regions which are of great significance in 
data mining. The Fig. 2 shows the domain which suffers 
most due to the class imbalance problem. The following 
examples briefly illustrate each one: 

Medical Diagnosis 

All the information about the patient and their 
medical history are stored in the medical database. The 
data mining methods applied to these data sets are used 
to discover the progression and features of certain 
diseases. This data or information can be used for early 
identification of diseases. But in the medical domain, 
disease cases are very infrequent in comparison with 
typical cases, and the cost of misclassifying will be fatal 
as possibly influenced patients will be viewed as healthy. 

Fraud Detection  

Fraud recognition in the money exchange, for 
example, credit card fraud is costly for each association. 
Frauds are identified by analyzing the unusual patterns in 
transaction databases. But, in exchange accumulations, 
there are more trustworthy clients than a fraudulent 
transaction. Therefore, it is difficult to find fraud due to 
rare cases of fraud transactions.  

Fault Diagnosis  

Due to network-based computer systems, intrusions 
on systems and networks are overgrowing. Therefore, 
early detection approaches used to automate and enhance 

the standard development of fault diagnosis. 

Detection of Oil Spills  

There are just 2 to 5% of oil flow from the 
conventional sources. While most of the contamination 
caused by ships that need to discharge their waste material 
into the sea. A satellite image-based system could be an 

Majority class object 

Minority class object 
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efficient way to find illegal dumping of the waste and could 
have the significant environmental impact. 

The medical diagnostic problem, fraud detection 
problem and intrusion detection problem are also known 
as an anomaly detection problem.  

Class Imbalance Problem 

In this part, we present the nature of the problem; the 
data intrinsic characteristics, such as lack of density, class 
overlapping, noisy data, small disjuncts, dataset shift and 
the evaluation metrics to judge the classifier execution.  

Nature of the Problem  

The class imbalance issue is the one which has 
skewed data distribution among its classes. This 
imbalance form is likewise considered as a between-
class imbalance; e.g., 100:1, 1,000:1 and 10,000:1. This 
problem attracts many research interests from 
researchers due to several real-world classification 
problems, like risk management (Huang et al., 2006), 
pollution detection (Lu and Wang, 2008), remote-
sensing (Williams et al., 2009), fraud analysis (Cieslak 
et al., 2006) and medical diagnosis (Freitas et al., 2007; 
Mazurowski et al., 2008).  

The significance of the imbalanced problem can be 
explained with an example from the medical field. 
Consider the instance of “Mammography dataset” which 
is used for detection of breast cancer through 
identification of characteristic masses. By investigating 
the mammography pictures, collected from a set of 
distinct patients, the classes that show “positive” or 
“negative” for a picture illustrative of a “cancerous” or 
“non-cancerous” patient, individually. In the real world, 
the non-cancerous patients greatly exceed in the number 
of cancerous patients, i.e., the “negative” samples 
outweigh over the “positive” samples. Thus, a classifier 
is needed that gives a uniform prediction efficiency for 

both the classes. But in fact, the standard methods have 
an inclination towards the normal class having 
accuracies near to 100 percent and the small class having 
correctness of 0 to 5%. The conventional classifiers 
overall ignore the small class samples and predict the 
accuracy close to 100% of the prevalent class.  

Therefore, not only between-class imbalance 
generates an imbalance problem, but also data 
complexity, such as lack of data, class overlapping, 
small disjuncts, noisy data and dataset shift also 
influence the classification accuracy. The Fig. 3 shows 
the data intrinsic characteristics that also hinder 
classification performance.    

Imbalance Due to Rare Instances 

The sample size also plays a vital role in finding the 
“effectiveness” of a classification model. A data set in 
which minority class samples are insufficient is known 
as an imbalance due to rare instances. Japkowicz and 
Stephen (2002) proposed that when the number of 
examples of the training set increases, the error rate 
decreases which are created by imbalanced class 
distribution. This problem is also referred as lack of 
density or lack of information. When sample size is 
small, it is tough for algorithms to discriminate rare 
examples from the prevalent class samples. 

Class separability or Overlapping [Fig. 4] 

When a sample of one class overlaps on another 
class, it is known as class overlapping. It is difficult to 
discriminate in such kind of overlapping classes, and 
therefore much harder rules are induced to distinguish 
such examples. The highly overlapped samples decrease 
the probability of correct classification of the number of 
minority class instances. Japkowicz and Stephen (2002) 
proposed that “directly divisible” problems are not easily 
affected by any measure of imbalance. 

  

 
 

Fig. 2: The domain which affected most due to the Rare Class Problem 
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Fig. 3: The data intrinsic characteristics 
 

 
 

Fig. 4: Class overlapping in imbalanced datasets 
 

 
 

Fig. 5: Small disjuncts in imbalanced datasets 
 

Noisy Data 

The presence of the noise significantly affects the 
minority classes because the small class has few cases. To 
avoid the noise areas in the learned sub concepts, the over-
fitting methods should be applied, such as pruning. The 
primary disadvantage of this method is that some right 
minority classes get rejected, so the model ought to be set to 
give a better overall behaviour for all the class of problem. 

Small Disjuncts or Within-Class Concepts [Fig. 5] 

The small disjuncts exist in the dataset when the 
concepts are represented within little groups, where the 
rare class is framed by sub-concepts (Weiss and Provost, 
2003). The complexity of the problem is increased by the 
presence of the sub-concepts because it is complicated to 
analyze whether these instances demonstrate actual sub-
concepts or are noise examples. 

Data intrinsic 

characteristic 

Class overlapping Noisy data 

Dataset shift Small disjuncts 
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Table 1: Confusion Matrix for a two-class problem   

  Predicted Positive  Predicted Negative  

Actual  True Positive False Negative 

Positive  (TP) (FN) 

Actual False Positive True Negative 

Negative  (FP)  (TN) 

 

Dataset Shift 

The problem of dataset shift occurred because the 

training and test data have various appropriations. This 

issue frequently occurred due to sample selection bias. This 

problem is vital when dealing with the highly imbalanced 

domain, because the uncommon class is acute to singular 

classification errors, because of the low number of tests it 

presents (Moreno-Torres and Herrera, 2010). 

Assessment in Imbalanced Domain 

The assessment rule plays a crucial role in the 

evaluation of the classification accuracy and guides the 

classifier pattern. In the binary-class issue, the confusion 

matrix (Table 1) exhibits the results of accurately and 

inaccurately perceived cases of each class. The confusion 

matrix is used to measure the classification performance 

of both the prevalent classes and rare classes: 

 

• True Positive Rate: rate

TP
TP

TP FN
=

+
is the percentage 

of positive instances correctly classified 

• True Negative Rate: rate

TN
TN

TN FP
=

+
is the 

percentage of negative instances correctly classified 

• False Positive Rate: rate

FP
FP

TN FP
=

+
 is the 

percentage of negative instances misclassified 

• False Negative Rate: rate

TP
TP

TP FN
=

+
 is the 

percentage of positive instances misclassified 

 

The Equation 1 show accuracy rate, which is the 

most regularly used trial measures. However, on account 

of the imbalanced dataset, exactness is no longer an 

appropriate measure since the rare class has the 

negligible effect on efficiency as compared to the 

prevalent class (Joshi et al., 2001; Weiss, 2004): 

 

TP TN
Accuracy

TP FN FP TN

+
=

+ + +
 (1) 

 

The learning objective of classification is: (i) To 

adjust the recognition capabilities among the two classes; 

and/or (ii) to enhance the acknowledgement rate of the 

little class. None of these measures alone is adequate by 

themselves. Therefore, rather than exactness, other metrics 

such as Precision, Recall, F-measure and G-Mean are 

frequently used in the research field to provide extensive 

evaluations of imbalanced learning problems.  

Precision 

It is a measure of accuracy, i.e., of the cases labelled 

as positive, what number of are marked correctly. The 

precision equation demonstrates that accuracy (Equation 

2) is sensitive to data appropriations. However, when it 

is appropriately used, precision can efficiently measure 

classification execution in imbalanced learning 

situations. The shortcoming of precision is that it cannot 

show that how many positive instances are mislabeled: 

 

TP
Precision

TP FP
=

+
 (2) 

 

Recall  

The recall is a measure of fulfilment, i.e., how many 

samples of the minority class were marked accurately. 

The recall equation demonstrates that recall (Equation 3) 

is not sensitive to data distributions. On the other hand, it 

doesn't depend on the distribution. The downside of 

recall is that it doesn't show that what number of 

occurrences are incorrectly labelled as positive: 

 

TP
Recall

TP FN
=

+
 (3) 

 

F-Measure 

It is the union of recall and precision which is used 

for the estimation of the effectiveness of the 

classification. F-measure is (Lewis and Gale, 1998) used 

for the unification of precision and recall as an average: 

 

2 Recall Precision
F measure

Recall Precision

∗ ∗
− =

+
 (4) 

 

It provides in-depth observation of the capabilities of 

the classifier rather than the accuracy measured. 

However, it is more sensitive to the data distribution. In 

principle, F-measure is the harmonic mean amongst 

precision and recall (Tan, Steinbach and Kumar, 2006): 

 

( ) ( )
2

1 1
F measure

Recall R Precision P
− =

+
 (5) 

 

The smaller number of the two is the harmonic 

mean in F-measure. Hence, if the value of both recall 

and precision is high, then the estimation of F-

measure is likewise high. 
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G-Mean 

It is the ratio of positive and negative accuracy, 

which estimate the degree of inductive bias. The G-mean 

(Kubat et al., 1998) is defined as: 

 

G mean TPrate TNrate− = ⋅  (6) 

 

It quantifies the adjusted execution of a learning 

strategy between positive and negative classes. The 

difference between arithmetic, harmonic and 

geometric means are proposed by Tan et al. (2006). 

Though the F-measure and G-mean have improved 

over exactness measures, there are some shortcomings 

in specific situations. For example, how might we 

investigate the execution of various classifiers over a 

range sample distribution? 

ROC Curves  

The Receiver Operating Characteristics (ROC) 

assessment method (Bradley and Bradley, 1997) is used 

to overcome such issues. In this process, the two-single-

column based matrix used for the assessment, i.e., true 

positive rate (TPrate) and false positive rate (FPrate). 

These estimations are then connected with the false 

positive rate on the x-pivot and the true positive rate on 

the y-pivot. The ROC chart appeared in Fig. 6 gives a 

visual portrayal of profits and costs of classification with 

respect to the data dispersion.  

The ROC diagram which obtains TPrate = 1 and 

FPrate = 0 demonstrates the perfect arrangement. 

Therefore, a classifier is better to another if its 

relating point in ROC space should be as nearest as 

possible to the upper left turn in the ROC space. 

While a classifier whose relating point in ROC point 

is situated on the diagonal, such as joining the points 

(TPrate = 0, FPrate = 0), where each case is classified as 

a negative class and (TPrate = 1, FPrate = 1), where 

each case is classified as a positive class, is 

representative of a model that will give a random 

guess of the class description, i.e., a random classifier. 

The ROC curve gives a better description of the 

classification model performance. It is complicated to 

compare the better model on the basis of ROC curve 

as one of them has to completely dominate the other 

model over the entire space (Provost and Fawcett, 

1997). The region under a ROC bend (AUC) gives a 

single measure of a classifier’s execution for assessing 

that which model is superior on average.  

ROC observation (Fawcett, 2006) and measurements 

such as precision, recall and f-measure (Hossin et al., 

2011) used for estimating the accuracy of learning 

algorithm of the minority class. 

 
 
Fig. 6: A Receiver Operating Character (ROC) Plot. The dashed 

line shows a random classifier, whereas the solid line 

indicates classifier that is better than the random classifier 
 

Research Objectives 

The motivation behind this work is to study the effect 
of class imbalance issues experienced by the data mining 
community in a wide range of areas and the use of 
various methods to enhance classification performance.  

In this part, we examine the effect of class 
irregularity issue in real-world data, and the datasets 
endure mostly because of a class unevenness issue.  

Impact of Class Imbalance Problem on Real-

World Data 

Rare events are those events, which occurred less 
frequently as compared to normal events. The 
developments in learning from class imbalance problem 
have been motivated by many real-life applications that 
suffer from skewed data representation. In such cases, 
the minority class is more important for learning, and 
hence we need methods for better recognition rates of 
minority class object.  

Some of the real-life issues are identifying malicious 

attacks, medical diagnostics, fraudulent transactions, 

sentiment analysis and dealing with exceptional cases in 

monitoring framework.  

Datasets 

In this part, we examined the properties of highly 

skewed datasets which endure more because of the class 

unevenness issue. We have considered binary datasets 

from the KEEL dataset repository (Alcalá-Fdez et al., 

2009; 2011) with various IR; from very imbalanced to 

low imbalance datasets. Table 2 compresses the qualities 

of datasets, the number of examples (#Ex.), number of 

attributes (#Atts.), the class attribute distribution and the IR. 
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Table 2: The features of the dataset from KEEL collection 

   % class 

Dataset #Ex. #Atts (min., maj.) IR 

Abalone19 4174 8 0.77,99.23 128.87 

Yeast6 1484 8 2.49,97.51 39.15 

Ecoli0137vs26 281 7 2.49,97.51 39.15 

Yeast5 1484 8 2.96,97.04 32.78 

Yeast1289vs7 947 8 3.17,96.83 30.56 

Yeast4 1484 8 3.43,96.57 28.41 

Yeast2vs8 482 8 4.15,95.85 23.10 

Glass5 214 9 4.20,95.80 22.81 

Yeast1458vs7 693 8 4.33,95.67 22.10 

Shuttle2vs4 129 9 4.65,95.35 20.50 

Glass2 214 9 8.78,91.22 10.39 

Yeast1vs7 459 8 6.72,93.28 13.87 

Glass4 214 9 6.07,93.28 13.87 

Abalone9vs18 731 8 5.65,94.25 16.68 

Ecoli4 336 7 6.74,93.26 13.84 

Ecoli0147vs56 332 6 7.53,92.47 12.28 

Led7digit02456789vs1 443 7 8.35,91.65 10.97 

 
This table is organized according to Imbalanced Ratio 
(IR) from high to low imbalanced.  

Research Solutions 

Because of the significance of the imbalanced 

dataset issue, a large number of solutions are reported 

in the literature.  

These courses of action are arranged into data level, 

algorithm level, cost-sensitive learning and ensemble 

learning, depending on how they deal with the issue. 

Data Preprocessing Methods  

In data preprocessing method (likewise called 

external approach), the essential target is to rearrange the 

class allocation by re-sampling the data space (Batista et al., 

2004; Fernández et al., 2008; Napierała et al., 2010; 

Stefanowski and Wilk, 2008). The solution at the data 

level contains the modification of an imbalanced 

dataset by some mechanism to provide a balanced 

distribution. The advantage of this approach is that it is 

more flexible and its utilization is autonomous of the 

fundamental classifier. This method can be classified 

into three categories: 

 

• Under-sampling techniques form a subset of the 

initial dataset by disposing of a portion of the 

occurrences of prevalent class 

• Over-sampling techniques built the superset of the 

initial dataset by copying a portion of the 

occurrences of the fewer class or creating new ones 

from the current fewer class samples 

• Hybrid techniques are the combination of both the 

above methods, which will expand the extent of the 

small class and slowly diminish the widespread class 

Under-Sampling Methods 

Following techniques falls under under-sampling 

methods: 

 “Random Under-Sampling” (RUS) 

Batista et al. (2004) is a non-heuristic method which 

will adjust the class dispersion by taking out the 

prevalent class samples. The primary disadvantage of 

this method is that it can eliminate valuable data that 

could be vital for the learning procedure. 

“Tomek Links” (TL) 

Tomek (1976) can be utilized as under-sampling or 

as a data-cleaning technique. As an under-sampling 

method, only samples associated with the dominant class 

disposed of and as a data- cleaning technique, samples of 

two classes (prevalent classes and rare classes) are 

discarded. Tomek Link algorithm work as follows: 

consider two instance pair (x, y), where x refers to the 

prevalent class while y refer to the rare class. The 

distance between these two observations is denoted by 

d(x,y), a pair (x,y) is called TL if there is no sample z, 

such that d(x,z)<d(x,y) or d(y,z)<d(x,y). If two examples 

form a Tomek Links (TL), at that point both of these 

samples is noise, or the two samples are borderline. The 

significant advantage of the Tomek Links is that it 

expels overlapping between classes.  

“One-Sided Selection” (OSS) 

Kubat and Matwin (1997) is an under-sampling 
method in which the excess, noisy and borderline 
examples are recognized and expelled from the majority 
class. OSS is method resulting from the application of 
Tomek Link (TL) followed by the application of the 
Condensed Nearest Neighbour (CNN) rule (Hart, 1968). 
Firstly, TL method is used to remove noise, and 
borderline majority class samples and then CNN is used 
to discard samples from the majority class that is 
redundant and far away from the decision border. The 
remaining observations, i.e., “safe” majority class as well 
as minority class instances are used for training.  

“Neighbourhood Cleaning Rule” (NCL) 

Wilson (1972) is an under-sampling method that 

removes some of the examples from the majority class.  

This cleaning algorithm work as follows: For each 

sample xi in the training set, its three nearest neighbours 

are identified. If xi refers to the prevalent class and the 

classification given by its three closest neighbours, differ 

from the original class of xi,  and then xi is eliminated. If 

xi refers to the rare class and its three closest neighbours 

misclassify xi, then the nearest neighbours that relate to 

the prevalent class are excluded. The primary advantage 

of this method is that it evacuates noisy cases. 
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Fig. 7: The figure shows how to generate synthetic data points 

using SMOTE method 

 

“Condensed Nearest Neighbour Rule” (CNN) 

Hart (1968) is used to locate a constant subgroup of 

observations. A subgroup X of Y is constant with Y if 

applying a 1-NN, X accurately classifies the observations 

in Y. This algorithm arbitrarily discovers one prevalent 

class samples and all samples from the rare class and put 

these cases in X. After that, use a 1-NN over the samples 

in X to classify the samples in Y. Each misclassified case 

from Y is displaced to X. The objective of this approach 

is to remove the samples from the prevalent class that is 

far-away from the decision border because these 

instances might be less useful for training.  

Over-Sampling Method 

This method creates duplicate samples of minority class 

to balance the ratio of majority class as well as minority 

class samples. Some of the over-sampling techniques are:  

“Random Over-Sampling” (ROS) 

Batista et al. (2004) is a non-heuristic strategy that 

means to adjust class circulation through randomly 

replicating minority class samples. The significant 

inadequacy of this approach is that it can improve the 

probability of happening over-fitting since it makes 

precise of existing examples.  

“Synthetic Minority Over-Sampling Technique” 

(SMOTE) 

 Chawla et al. (2002) is an over-sampling technique in 

which the primary focus is to develop new minority class 

instances by interpolating many small class examples that 

lie together for oversampling the learning set. In this 

method, the small class is over-sampled by taking each 

small class instance and introducing synthetic samples 

along the line segments that join any/all (k) nearest small 

class neighbours. Depending on the oversampling ratio, 

neighbours are randomly chosen from the k-nearest 

neighbours. However, in the SMOTE method, the issue of 

over-generalization is mainly associated due to the method 

in which synthetic examples are developed. In Fig. 7, x is 

the selected points, x1 to x4 are selected k-nearest 

neighbours (in our case 4-NN), and i1 to i4 is synthetic 

data points generated by SMOTE method.  

Hybrid Methods 

Hybrid methods combine both under-sampling and 

over-sampling methods. Some hybrid methods are: 

 

• “SMOTE + Tomek Links (TL)” is used to remove the 

problem of overfitting associated with SMOTE 

method. To overcome the overfitting problem and to 

build a better-defined class cluster, we apply Tomek 

Links (Tomek., 1976) to the over-examined learning 

set as a data cleaning strategy. Thus, both prevalent, 

as well as rare class samples, is discarded to form a 

balanced training set. 

• “SMOTE + ENN” (Wilson, 1972) is same as SMOTE 

+ Tomek links. The ENN is used to discard additional 

samples than the Tomek links, by providing more in-

depth data cleaning. ENN is used to remove samples 

from both majorities as well as minority classes. Thus, 

any sample that is misclassified by its 3-NN is 

discarded from the learning set. 

 

Algorithm-Based Methods 

At the algorithm level approaches (also called 
internal), the solution tries to acquire the properties of 
the existing algorithms which will bias the learning 
toward to the small classes (Liu et al., 2000; Lin et al., 
2002; Barandela et al., 2003a). This technique creates 
the new method or modifies existing processes, taking 
into account the significance of minority class samples 
(Barandela et al., 2003b), (Zadrozny and Elkan, 2001; 
Diamantini and Potena, 2009; Cieslak et al., 2012). 

The idea behind the algorithm based approach is to 
select a suitable induction bias that is used to deal with the 
class imbalance problem. The objective of modifying 
algorithm is to provide adjustments to the training 
algorithm, mainly with Decision Tree and SVM. In the 
decision trees, one method is to change the probabilistic 
guess at the tree leaf (Zadrozny and Elkan, 2001; Quinlan, 
1991); another way is to develop new pruning methods. In 
SVM, different penalty constant for different classes 
(Lin et al., 2002), or modifying the class boundary based 
on kernel-alignment (Wu and Chang, 2003) is used.  

The major shortcoming of the algorithm-level 

approach is that it requires knowledge of both the 

corresponding classifier and the application domain, 

especially why the training algorithm fails when the 

class allocation of available data is uneven.  

x2 

x 

x1 

x3 

i1 

i3 i4 

x4 
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Cost-Sensitive Learning 

The cost-sensitive method combines both the data 

level and algorithm-based approach, assuming greater 

misclassification cost with examples of the fewer 

class to the majority class, and thus, seek to curtail the 

high-cost errors (Chawla et al., 2008; Ling et al., 

2006; Zhang et al., 2008). 

Cost-sensitive learning biases the classifier toward 

the small class and therefore the rare class gain importance. 

The fundamental element of this learning is that it tends to 

limit the overall misclassification cost. In this way, the cost 

related to a rare example must be more noteworthy than the 

cost of misclassifying a predominant one, i.e., Cost(+,-

)>Cost(-,+). The accurate classification shows nil penalties, 

i.e.,C(+,+) = C(-,-) = 0.  

The major shortcoming of this approach is that the 

costs are precisely unknown and we usually tend to 

utilize approximations or proportions of proportionality. 

The cost-sensitive learning divided into three types:  

 

1. The first approach based on modifying the training 

data. In this method, resampling is applied to the 

original class distribution of the learning dataset by 

a cost decision matrix using oversampling, 

undersampling or assigning instance weights. This 

technique can be clarified by the interpretation 

hypothesis (Zadrozny et al., 2003) 

2. The second approach changes a specific classifier 

learning algorithm to develop a cost-sensitive 

classifier. For instance, in the case of decision tree 

induction, the tree-building method is used to 

decrease the misclassification costs. The cost 

information used to, (i) select the best attribute to 

split the data (Ling and Li, 2004; Segal et al., 1994); 

and (ii) choose whether a sub-tree ought to be 

pruned (Bradford et al., 1998) 

3. The third approach uses Bayes decision theory to 

attach each example to the class with a lowest 

expected cost. For instance, a decision tree for a 

two-class issue attaches the class label of a leaf 

node, depending on the prevalent class of the 

training examples that reach the node. A cost-

sensitive method selects the class label from the 

node that decreases the classification cost 

(Domingos and Metacost, 1999; Zadrozny and 

Elkan, 2001) 

 

This approach considers that a cost-matrix is 

accessible for distinct types of errors or examples. 

However, for a given data set, this matrix is ordinarily 

unavailable.  

In Table 3, the C(i, i) linked with True Positive(TP) 

or True Negative(TN), treated as the observation that 

correctly classified in both the cases.  

Table 3: Cost matrix 

  Predicted  Predicted 

 Positive ‘1’ Negative ‘0’ 

Actual Positive ‘1’  C (1,1)  TP C (0,1) FN 

Actual Negative ‘0’ C (1,0)  FP C (0,0)  TN 

 

The rare class considered the minority or positive 

class, which have more significance for learning. It is 

more costly to misclassified an actual positive (TP) as 

negative (FN), to classify an actual negative (TN) as a 

positive example (FP), i.e., the value C(0,1) assigned to 

FN is larger than that of C(1,0) related to FP. That is 

what we analyze from some of the typical cases such as 

bank scam, medical diagnosis and customer retention.  

Ensemble Learning 

The basic concept of ensemble learning is to attempt 

to enhance the execution of single classifiers by inciting 

various classifiers and then combined their predictions to 

acquire a new classifier that exceed each one of them. 

This technique follows the natural human behaviour that 

tends to look for a few assumptions previously settling 

on any crucial decisions. The keys to the proper 

performance of ensembles are “diversity”, that is 

achieved by the combination of ensemble methods and 

one of the methods, sampling or cost-sensitive learning 

solutions. The most broadly used ensemble learning 

methods are Bagging (Breiman, 1996) and AdaBoost 

(Friedman et al., 2000; Schapire, 2002), which are most 

successful in variance reduction. The ensemble methods 

are of two types: Bagging and Boosting. 

Bagging (Breiman, 1996) 

It is bootstrap aggregating to create ensembles. It 

consists of learning a set of classifiers (every one with an 

alternate subset, recognized as “bag”) with bootstrapped 

replicas of the initial learning dataset. The random 

drawing (with replacement) used to form a new dataset 

so that the initial dataset size maintained. Hence, 

diversity achieved using resembling method by the use 

of different datasets. When classifying an unknown 

sample, all individual classifiers used and a majority or 

weighted vote is used to deduce the class.  

Bagging is the method that is adopted by maximum 

ensemble methods for imbalanced classification. It is 

because of its easiness in the combination of data 

processing methods into Bagging, which is made when 

each bootstrap copy is calculated. 

SMOTEBagging (Wang and Yao, 2009) 

In SMOTEBagging, each base classifier is obtained 

from a random example of learning data. This method 

combines bagging with SMOTE and over-sampling in 

each round so that the dataset is entirely balanced. This 

technique can be developed in two ways: (i) 
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Bootstrapped replica of the majority class examples; and 

(ii) using SMOTE and random over-sampling relying 

upon resampling rate.  

UnderBagging (Barandela et al., 2003a) 

This method arbitrarily under-samples the dataset in 

each Bagging round. This methodology is typically 

connected to the majority class. 

Roughly Balanced Bagging (Hido et al., 2009) 

It is based on undersampling; however, it doesn't 

bootstrap a balanced bag. In this method, the quantity 

of minority samples is kept settled, whereas the number 

of majority samples is determined using negative 

binomial distribution.  

Boosting (Schapire, 1990): This method needs the 

entire dataset to learn each classifier serially. However, 

in each iteration, the algorithm gives more attention to 

the different examples, with the purpose of correctly 

classifying those samples that were misclassified in the 

earlier round. That can be accomplished by equally 

assigning weights for all samples at the beginning. Then, 

after each round, incorrect examples get their weights 

increased; in the country, the weights of correctly 

classified samples are decreased. Additionally, each 

classifier assigned another weight depending on its 

general exactness over the learning set; more certainty 

allocated to more accurate classifiers. At last, when the 

new example is presented, every classifier gives a 

weighted vote (as indicated by its weight) and the 

majority selects the class mark. 

SMOTEBoost (Chawla et al., 2003) 

In boosting, the entire training set is utilized to train 

every classifier. SMOTEBoost introduce synthetic 

samples using SMOTE method. Since new samples are 

produced, the weights of the new instances are 

corresponding to the total number of samples in the new 

dataset. The weights of the samples from the original 

dataset are standardized in such a way that they frame an 

allocation with the new samples.  

RUSBoost (Seiffert et al., 2010) 

RUSBoost removes examples from the majority class 

every iteration using the random undersampling procedure. 

The weights of the remaining samples in the new datasets 

are normalized to form a balanced distribution.  

AdaBoost (Freund and Schapire, 1997) 

AdaBoost is most widely used ensemble training 

method reported to be equipped for bias reduction 

(Friedman et al., 2000). This technique weights each 

example following its value and put the maximum 

weight on the examples which are normally 

misclassified by the past classifiers. AdaBoost try to 

diminish the bias error as its target is on misclassified 

examples (Freund and Schapire, 1996). The instance 

weighting approach of AdaBoost is similar to resampling 

the data space by integrating both down-sizing and up-

sampling. Consequently, this method applies to data-

level methods, which apply to most classifications rule 

without modifying their base learning techniques.  

In a given dataset with skewed class distribution, 

minority class samples are often misclassified. At the 

point when the AdaBoost method is used, examples of 

the small class received more weights, and subsequent 

learning will target of the small class. At first sight, it 

shows that the AdaBoost method may enhance the 

prediction accuracy of the rare class. However, some 

empirical results stated that the improved performance 

of the rare class is not always guaranteed or up to the 

mark. The reason behind this is that AdaBoost 

algorithm is efficiency-driven: Its weighting approach 

may incline toward the majority class which 

constitutes more to the general order precision. 

Subsequently, the issues turn out to be the way to 

adjust AdaBoost strategy to inclination its boosting 

approach towards the interested class.  

Cost-Sensitive Boosting 

The drawback of AdaBoost is that it is an efficiency-

oriented method when the class circulation is skewed; 

this technique inclines the learning toward the majority 

class since it concentrates more on the general precision. 

But, the learning objective of the class imbalance 

problem is to enhance the recognizable rate of the 

minority class. Therefore, a desirable boosting approach 

is one who can differentiate distinct kind of examples 

and hike more weights of those examples which have 

higher recognition significance. 

The Cost-sensitive boosting method keeps the 

general learning structure of AdaBoost, however, in the 

meantime recommend the cost items into the weight 

update method. Based on these, three cost-sensitive 

boosting strategies AdaC1, AdaC2 and AdaC3 (Sun et al., 

2007) are implemented with weight update formula. 

The Fig. 8 shows the research taxonomy to address 

the class imbalance problem. These arrangements can be 

classified into four different categories such as data-level 

solutions, solutions at the algorithm level, cost-sensitive 

learning and Ensemble learning. Here, cost-sensitive 

boosting is like cost-sensitive strategies, but the cost 

minimization is directed by boosting technique.  

The analysis drawn from a comparative study of each 

reported research solution is shown in Table 4. 
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Fig. 8: The research taxonomy to address the class imbalance problem 
 
Table 4: Comparative study of research solutions 

Approach Methods & its description Algorithms Advantages  Disadvantages 

Data level • Under-sampling - It removes • Random under-sampling • This method is more • This method sometimes  
approach examples of prevalent class  • One-sided Selection (OSS)  adaptable and free from removes the essential data, 
  • Neighbourhood Cleaning classifier selected, in this which may be useful 
  Rule(NCL)  way the data should be for learning process 
  • Tomek Links arranged once for 
  • Condensed nearest classification 
  neighbour rule  • Can be easily 
  (CNN)  implemented 
 • Over-sampling – It adds • Random over-sampling • This method creates   • May lead to over-fitting 
 new examples of existing • Synthetic Minority rules which are precise • Time-consuming: Introduce 
 class Oversampling Technique and furthermore used to additional computational cost 
  (SMOTE) enhance the exactness  
   of classification 
 • Hybrid- It combines both • SMOTE + Tomek links • This method removes the • It takes longer training time 
 over-sampling and • SMOTE + ENN problem of over-sampling, 
 under-sampling methods   yet not by chopping down 
   the measure of the dominant 
   classes  
Algorithm • This approach creates the • Decision tree (C4.5) • Effective in certain context • It requires algorithm- 
based method  new method or modify • SVMs  specific modifications 
 existing methods   • It requires the insight of both 
    the relating classifier learning 
    methods and the application 
    area 
Ensemble • Bagging method –This • SMOTEBagging • It decreases discrepancy • It is more time consuming  
based learning method enhances the strength • UnderBagging • Its performance is better  • The problem of over-fitting 
 and precision of ensemble • Roughly balanced than individual classifiers 
 learning methods  Bagging • More resilience to noise 
 • Boosting method- It is  • AdaBoost • This method increases the • It ignores the general  
 iterative method, in which  • SMOTEBoost performance of other efficiency of the classifier 
 after every cycle the weight  • RUSBoost learning algorithms 
 of misclassified perceptions 
 increments, while weight of 
 accurately classified diminishes 
 • Cost-sensitive Boosting • AdaC1 
  • AdaC2 
  • AdaC3   
Cost-sensitive • It combines both data  • Minimize the cost of • Cost isn't exactly known, 
approach  based approach and algorithm  misclassification (by biasing need to utilize approximations 
 based method when the  the classifier toward the or ratios of proportionate 
 misclassification cost is huge  minority class)  
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Noteworthy Contribution in the Field  

Dongre and Malik (2017) reported that data adjusting 

provide the better solution than other techniques. But 

Dongre and Malik (2017) suggest that a hybrid approach 

gives the best solution for class imbalance learning.  

Interesting research which highlights a new future 
direction in imbalanced learning was proposed by 
Krawczyk (2016). This research analyzed different 
features of imbalanced learning such as classification, 
clustering, regression and big data analytics. The author 
in its future directions focused on the structure and 
nature of samples in rare classes to gain a better insight 
into the source of learning difficulties. In our review, we 
addressed some of the data intrinsic characteristics such 
as the size of the dataset and the lack of density, class 
overlapping, presence of noisy data, the problem due to 
the presence of small disjuncts and the dataset shift 
problem. The Krawczyk (2016) highlighted all the issues 
and challenges and provided future research directions in 
the field and also lead to advancing our understanding of 
the imbalanced learning system.  

But there is still the untouched area that makes 

imbalanced learning fresh and exciting for the research 

community and future development.  

Classification of Multi-Class Imbalanced Data 

In practice, real-world data may have more than two 
classes, which imply an additional difficulty in the 
classification performance. Some issues addressed are, 
the boundaries between the classes may overlap, small 
sample size or small disjuncts (small class can consist of 
several subconcepts). These issues are significantly more 
challenging in the multi-class problems.  

These issues can be tackled by developing 

sophisticated techniques for handling multi-class 

imbalance problems. In a two-class problem, we have a 

well-defined relationship between classes: One is 

considered as the smaller class and other as the prevalent 

class. The resolutions at the data level modify the class 

size ratio of the binary classes, either by under-sampling 

the prevalent class or over-sampling the smaller class 

and iterate the training method multiple times in search 

of uniform allocation. But in case of multiple classes, 

these arrangements are not applicable because of the 

expanded search area. Similarly, algorithm-based 

solutions attempt to modify the training methods to 

incline towards the rare classes. In the multi-class 

problem, there are many smaller classes exist, and in this 

position, it becomes difficult to modify according to the 

training method. Therefore, multi-class imbalance issue 

will be composed of two simple steps: 

 

1. The initial stage makes out of the detachment of 

the multi-class imbalance issue into simple 

binary-class subproblems 

2. In the second step, for every subproblem obtained, 

execute the existing solutions that have been developed 

to handle the binary-class imbalanced datasets 

 

There are many methods for dealing with multi-

class issues:  

The One-Versus-One (OVO) and One-Versus-All 

(OVA) are two common methods to diminish a multi-class 

classification issue to a set of two-class issues.  

One-Versus-One Approach (1 – 1) 

In OVO approach (Hastie and Tibshirani, 1998) a 

classifier is prepared for every match of classes, 

disregarding the samples that don't have a place with the 

related classes. When classifying examples, a query is 

submitted to all binary models, and the choices of these 

models are consolidated into overall classification 

(Hüllermeier and Brinker, 2008; Hüllermeier and 

Vanderlooy, 2010).  

One-Versus-All Approach (1 – a) 

In OVA approach (Rifkin et al., 2004) a classifier 

among one class and the all other classes are learned (in 

total “a” classifiers). In OVA approach all the instances 

of the current class to be considered the minority and the 

remaining examples the majority.  

The problems with these methods are that the two cases 

increment the training cost and may prompt ties or clashing 

voting (Duda et al., 2001) among the diverse classes.  

Conclusion and Future Research  

In this work, we investigated the cutting edge 

research developments on the classification of 

imbalanced data. In the paper, first we discuss the many 

examples of application domains that suffer mostly due 

to class imbalance problem; explain the nature of the 

class imbalance problem, mainly, we discuss that the 

imbalance rate by itself does not have the most 

significant result on classifiers performance, however 

there are numerous problems that affect for obtaining 

high classification efficiency for both classes of the 

problem, i.e., lack of data, the class overlapping, noisy 

data, small disjuncts and the dataset shift.  

We briefly reviewed impact of the class imbalance 

problem on real-world data; analyzed the properties of 

highly skewed datasets which suffer most due to the 

class imbalance problem; provide a comprehensive 

review of stated research results to this issue, namely, 

processing of instance, algorithm-based solutions, cost-

sensitive learning and ensemble learning with their pros 

and cons in an attempt to investigate state-of-the-art 

research directions in subsequent study; analyzed the 

impact of classification performance in the presence of 

multiple classes as opposed to only binary-classes.  
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This review paper mostly emphasizes the research 
efforts to explore only the solutions of two-class 
imbalance problem. Therefore, there is an exciting 
research issue open for future research in the multi-
class imbalance problem.  

Finally, we emphasize that this work provides the 
compressive review of current research work and 
solutions for imbalance datasets with binary classes. Due 
to huge potential applications, the problem of 
imbalanced data will attract major consideration in 
research and scientific communities. 
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