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Abstract: This work developed a control algorithm for dynamical systems 
to high performance manner, in a way to produce an optimum output 
applying a modification in digital filters, capable of increasing the 
convergence zone within the desired cut -off frequency. Such task focused 
on consistently improving the challenge present in digital filters, which are 
time-invariant linear systems that are able to modify connected input signal 
characteristics, where only a specific signal component of the frequency is 
able to reach the filter output. In dynamic systems, digital filters are applied 
to optimize system measurements with respect to performance and stability. 
This work, through C and C# coding demonstrates a modification to 
windowed low-pass filters within the π sample space. The π sample space 
is divided, and small parts of the equation are added into a polynomial of 
degree n; this technique removes unwanted frequency components in small 
angular frequency windows, causing acceleration of the signal with respect 
to the windowed low-pass filter. This feature is very important in dynamic 
measurement systems because the system achieves an increased number in 
values closer to the target to obtain an average that indicates values with a 
high level of accuracy and repeatability. This work also conducted a series 
of experiments to verify and validate the control algorithm, this software 
was fully implemented in embedded industrial systems, which support low-
level C coding language that is the industry standard. 
 
Keywords: Control Algorithm, Software Development, Digital Windowed 
Filter, Digital Signal Processing, Low-level Programming 

 

Introduction 

The unceasing challenge to improve digital signals 
accuracy and performance requires a software and 
processing time capabilities that are met only by costly 
hardware employment. Therefore, it brings several 
practical financial business limitations to most of 
industries from telecommunications, to cars, to machines 
present manufacturing in industrial sites and any other 

system that demands digital signal processing within 
better boundaries and in less time. This work shows a 
software-based control algorithm solution that can be 
implemented requiring low- cost hardware and that can be 
embedded to almost every device with a digital filter that 
processes signals aimed to increase precision, reduce 
processing time and increase productivity with a 50% 
improvement in the cut-off frequency convergence in FIR 
filter type low pass. This algorithm creates, to the best of 
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our knowledge, a comprehensive new solution that can be 
applied to solve, in a satisfactory manner, the defies that 
lie ahead the digital signal processing task, i.e. filters. The 
work was developed using C low-level programming 
language and C# to computationally achieve the 
objective. It is alto interesting to point out that using this 
programmable technique an increase of 48.8% in 
standard deviation gain. 

Filters are time-invariant linear systems that are able 
to modify input signals, where only the frequency 
component of a specific signal is able to reach the filter 
output. The consideration of analog signals x (t) and y (t) 
and a filter designed as a response function for impulse h 
(t) is shown in (1): 

 
(1) ( ) * ( )y h t x t=  (1) 

 
In the frequency domain, this can be equated as 

shown in (2): 

 
( ) ( ) * ( )Y j H j X jω ω ω=  (2) 

 
Considering that the digital filter implemented is a 

Digital Signal Processor (DSP) and that the purpose is to 
process an analog signal x (t) sampled by an analog into 
a Digital Converter (ADC) and an output y (t) generated 
by a digital into an analog converter (DAC), then it is 
possible to characterize a digital filtering (Bimbi Jr. et 
al., 2016a; 2016b) system as shown in Fig. 1 
(Butterweck, 1975). 

If the signals being processed are digital, then the 
diagram can be summarized as shown in Fig. 2 
(Butterweck, 1975). 

To implement a digital and Linear Invariant Time 
(LTI) filter, a DSP is required; the computational 
algorithms of the DSP will be described. The algorithms 
can be represented as block diagrams using basic 
structures, such as unit delays, gains and feedbacks. The 
structures of the block diagrams are similar to the 
differential equation of the filter, also known as the 
canonical structure (Adams and Willson Jr., 1983): 
 

Signals and Systems 

Signals are present in various electronic systems for 
measurement and analysis. A signal can generally be 
specified as a function that carries information. For 
analysis and decisions regarding the carried information, 
we apply the Digital Signal Processing (DSP) technique. 
In general, signals are generated by physical processes 
and require a transducer that translates these physical 
measurements into an electrical signal in order to be 
analyzed for digital processing (Adams and Willson Jr., 
1984). A fundamental aspect of this implementation is 
the quantization and sampling of the signal; this aspect is 
directly connected to the quantity of samples. To proceed 
with the analysis, a continuous-time signal (or a discrete- 
time signal) is converted into a sample sequence. After 
the digital signal processing, this sequence may be 
converted back into a continuous-time signal (Ahmed et 
al., 1974). Digital signal processing can be described as 
when an analog signal is acquired and digitalized 
through sampling and when a filter is applied to obtain 
only the part that is desired during processing (Akansu 
and Medley, 1999). Signals can be characterized into 
categories, which are dependent on time, frequency and 
amplitude values. Continuous-time or analog signals are 
defined over any value of time that can be assumed in a 
continuous range. Thus, these signals can be represented 
by a function of continuous variables. Discrete-time 
signals are defined only at specific time values 
(Antoniou, 1982). They are represented mathematically 
by a sequence x of complex real numbers, where the nth 
number of this sequence is denoted x[n], as shown in (3): 
 

{ [ ]},X x n n= −∞ < < ∞  (3) 
 
where, n is an integer and samplings are acquired through 
a periodic and time-invariant process of sampling the 
analog signal. Thus, the numerical value of the nth number 
of this sampled sequence will equal the analog value xa (t) 
in discrete time nT as (4) demonstrates: 
 

[ ] ( ),n xa nT n= −∞ < < ∞  (4) 

 
 

Fig. 1: Architecture of a digital filter 

 

 
 

Fig. 2: Summary of the architecture of a digital filter 
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Continuous- or discrete-time signals can assume any 
amplitude value within finite or infinite space (i.e., they 
are continuous with respect to the amplitude values). 
Digital signals are discrete with respect to both time and 
amplitude. Thus, it can assume values within a finite set 
of possible values (Avenhaus, 1972). 

Signals can be deterministic or random; any signal 
that can be specified by a mathematical equation, data 
table or well- defined rule is called a deterministic 
signal. However, in practical applications, signals cannot 
be accurately represented by mathematical equations or 
complex descriptions. This behavior indicates signals 
that are unpredictable in time, which are called random 
signals (Belevitch, 1968). 

Linear Time-Invariant (LTI) Systems as Frequency 

Selector Filters 

The term filter is used to describe a device or 
function that discriminates the property or attribute that 
will be accepted as a function of an input object (i.e., 
what passes through it) (Boyd and Vandenberghe, 2004). 
An LTI system fits this description by filtering or 
discriminating frequency components as its input. The 
method of filtering is defined by the frequency response 
H (ω), which is entirely dependent on the 
parameterization of the system. Accordingly, it is 
possible to design filters that are capable of performing 
the selection of frequency components in some bands 
and attenuating frequency component signals in other 
bands (Antoniou, 1993). An LTI system modifies the 
spectrum of the input signal X(w) according to the 
frequency response H(w), which leads to an output 
signal with a spectrum Y(w) = H(w)X(w). In general, H 
(w) acts as a weight function for different frequency 
components of the input signal. Thus, an LTI system can 
be viewed as a filter, although it does not entirely block 
any frequency component of the input signal. 
Accordingly, one can conclude that a filter is a process 
used in digital signal processing that aims to perform a 
frequency selection and can be applied to noise 
removals, spectral analysis, and other applications. 
Filters are classified according to their features within 
the frequency domain; examples of filters are high-pass, 
low-pass, band- pass and band-stop (Antoniou, 2006). 

Sequences through Fourier Transform 

Similar to continuous-time signals, discrete-time 
signals can be demonstrated in different ways. One 
possible and applicable technique is the transformation 
of the time domain signal into a frequency domain 
through the Fourier transform technique, as (5) 
demonstrates (Antoniou and Rezk, 1977): 
 

[ ] ( )1

2
j jx n X e e d

π ω ω

π
ω

π −
= ∫  (5) 

where, X (ej� ) is described by (6): 
 

( ) [ ]j j

n

X e x n eω ω
∞

−

=−∞

= ∑  (6) 

 
The Fourier transform is a complex function of ω. Its 

frequency response can be expressed by X (�), as shown 
by (7) or (8) in polar form: 
 

( ) ( ) ( )j j j

R i
X e X e jX eω ω ω= +  (7) 

 

( ) ( )
jj j j eX e X e e
ωω ω <=  (8) 

 
Equation 11 describes the magnitude and phase of the 

Fourier transform. There are cases where we can prove 
that the Fourier transform is not able to converge; in 
these cases, the Z-transform can be applied. Considering 
that (5) and (6) are inverse, one should consider (9) 
(Benvenuto et al., 1984): 
 

1
[ ] [ ]

2
j m j m

m

x m e e d x n
π ω ω

π
ω

π

∞
−

−
=−∞

 
= 

 
∑∫  (9) 

 
By executing the inversion of the integration 

operation with the summation operation, we obtain (10): 
 

( )1
[ ] [ ]

2
j n m

m

x n x m e d
π ω

π
ω

π

∞
−

−
=−∞

 =  
 

∑ ∫  (10) 

 
By applying the integral within the parentheses, (11) 

is obtained: 
 

( )

1,
1 sin( ( ))

0,
2 ( ( ))

[ ]

j n m

m n
n m

e d m n
n m

m m

π ω

π

π
ω

π π
δ

−

−

=
− 

= ≠
− = −

∫  (11) 

 
Accordingly, (12) can be determined: 

 

[ ] [ ]( [ ]) [ ]
m

x n x m n m x nδ
∞

=−∞

= − =∑  (12) 

 
Z-Transform 

The Z-transform is a mathematical tool that applies to 
signal and system analyses. The Z-transform 
characterizes the discrete form of the Laplace transform. 
By applying the Fourier transform, a sequence can be 
characterized by (13) (Bomar, 1989): 
 

( ) [ ]( )j j

n

X e x n eω ω
∞

−

=−∞

= ∑  (13) 

 
Defining z as e

j�, one can characterize the Z-
transform as shown in (14): 
 

( ) [ ]( )n

n

X z x n z
∞

−

=−∞

= ∑  (14) 
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Equation 14 is also called a bilateral Z-transform; the 
unilateral Z-transform is described by (15), where the 
boundaries of the summation are limited by n starting at 
zero, thus determining its unilateral nature: 
 

0

( ) [ ]( )n

n

X z x n z
∞

−

=

=∑  (15) 

 
A relationship between the Fourier transform and the 

Z-transform can be observed. If we determine that z is a 
complex variable, it can be described by e

j� = cos(w) + 
jsen(w); thus, the Z-transform becomes the Fourier 
transform. For z = rej�, the circumference of the imaginary 
plane (i.e., the Z-plane) is determined, which is a circle 
with a unit radius equal to 1. Accordingly, the Z-transform 
when calculated for a circle with a unit radius is equal to 
the Fourier transform (Bomar and Joseph, 1987). 

Sampling Theorem 

In general, discrete-time signals can be conceived in 
different ways. The most common and applicable way is to 
carry out a representation of the continuous-time signals. 

This occurs when digital signal processing is carried 
out through a sequence obtained within a sample space. 
Within this sample space, readings are performed (i.e., 
the sample acquisition); the quantity of samples, based 
on the frequency that the signal resonates at, 
determines the precision and repeatability of its 
reconstitution. Accordingly, in a sample space, we 
obtain a sequence x[n] that is obtained from 
continuous-time signal (Bomar et al., 1997). 

To carry out such a process, it is necessary to 
implement an ADC converter. An ADC converter is a 
very important element: it samples and quantizes the 
values of a continuous- time signal (TAGHOUTI, 2010). 
Accordingly, it is necessary for evaluating parameters, 
such as the quantization of the output, linearity, 
resolution and sampling frequency. During ADC 
conversion, it is necessary to choose a discrete number 
of samples from the continuous signal to be processed. 
The main problem in this field is the choice of the 

number of samples; a reduced number of samples 
different from the demand may result in a distorted 
representation of the signal (Boyd and Vandenberghe, 
2004). Accordingly, criterion when choosing the 
reconstitution frequency can be determined by using the 
Nyquist-Shannon theorem, where the sampling 
frequency is at least twice the fundamental frequency of 
the discrete-time signal. In practical terms, due to the 
sampling time (Senthilkum and Natarajan, 2008), a 
frequency that extrapolates the fundamental frequency of 
the signal is often applied, thus generating points 
between smaller intervals and ensuring a reliable 
reconstitution (Burrus and Parks, 1970). 

Digital Filters 

A discrete-time system is mathematically defined as 
the execution of a transformation that maps an input 
sequence x[n] into an output sequence y[n] (PANICH, 
2010). During digital signal processing, this procedure is 
generally intended for the manipulation of a signal; as an 
example, one can apply a system for checking weight in 
a dynamic form, where the variable that is important to 
the system is the weight, which is a DC component 
represented by a load cell. However, such acquisition 
requires the removal of unwanted components, such as 
vibrations generated by motors, rollers, bearings and 
conveyors, as well as electrical and electromagnetic 
noise that is present in the process (Butterweck, 1975). 

FIR Filters 

The architecture of an FIR filter (finite impulse 
response filter) (AMIN, 2011) has a general and regular 
behavior, since its coefficients are defined. These 
coefficients are defined by the choice of behavior required 
for the process or application. In a measurement system, 
as mentioned above, the DC component is interesting for 
the weight reconstitution: it allows low-pass type filters to 
be applicable, where the pass-band is limited as a low-
order frequency that tends towards the DC level (with a 
frequency equal to 0) (Butterweck et al., 1984). The 
architecture of an FIR filter can be seen in Fig. 3. 

 

 
 

Fig. 3: Architecture of an FIR filter 

T T T T x(k) 

h(0) h(1) h(2) h(3) h(P-1) 

y(k) 
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FIR filters can implement different functions by 
simply changing their coefficients and performing as 
low-pass, high-pass, band-pass or band-stop filters. For 
practical applications, filters do not have ideal 
characteristics, and their responses may contain ripples 
in a certain transition band. Accordingly, it can be said 
that even with the implementation of filters, an ideal 
response is not obtained when analyzing their spectra. 

Because the system attempts to measure only DC 
components that represent weights with frequencies 
tending towards zero, an interesting application is 
designing windows; in these windows, we can select 
frequencies appropriate for the desired behavior, which 
truncates the impulse response and obtains a causal and 
non-linear phase FIR filter. A windowed filter is 
characterized by a linear phase during its pass-band and 
a zero response during the stopband. An ideal low-pass 
filter with a wc < � bandwidth is described by (16): 
 

1 ,
( )

0,

j

cj

d

c w

e w w
H e

w

ω

ω

π

− ∝

< ≤

 ≤



 (16) 

  
where, wc is the cutoff frequency and ∝ is the sample 
delay. The filter response to infinite duration is given by 
(17) and (18): 
 

1 1
[ ] [ ( )] ( )

2
j j j

d d dh n H e H e e dw
πω ω ω

π
δ

π
−

−
= = ∫  (17) 

 
1 sin[ ( )]

[ ] 1( )
2 ( )

wc
j j

d
wc

wc n
h n e e dw

n

ω ω

π π−

− ∝
= =

− ∝∫  (18) 

 
To get an FIR filter from ℎd[n], we need to truncate the 

values of ℎd[n] on both sides. Thus, we determine a linear-
phase causal FIR filter in h[n] of length M, shown by (19): 

 

[ ],0 1
[ ]

0,
dh n n M

h n
otherwise

 ≤ ≤ −
= 


 (19) 

  
With this, we obtain ∝ = (� − 1)/2. This operation is 

called windowing, where a symmetric function is 
obtained with respect to the ranges of ∝ over 0 ≤ n ≤ � 
− 1, where zero is outside of the range. 

Convergence Region with an Increasing 

Polynomial in Windowed FIR Filters 

The distortion reduction within a window carried out 
by a filter is an important factor regarding the rejection 
of undesirable points in present lobes, which are not 
acceptable beyond the main lobe; this occurs because it 
represents frequencies that are not required for that filter. 

As the number of M coefficients grows, the width of 
each side lobe decreases, but the area over the lobes 
remains constant (Cabezas and Diniz, 1990). This causes 
oscillations and ripples to experience peaks near the 
band edges. This fact is called the "Gibbs phenomenon." 
To carry out the proposal of reducing distortion within a 
window from the many applicable windows, it is 
necessary to adapt the window equation. In this study, 
reference windows are calculated by the Hamming 
window (20), the Hann window (21) and the Blackman 
window (22), where n is equal to the current coefficient 
of the filter and M is the total number of coefficients: 
 

2
[ ] 0,54 0,46cos

n
w n

M

π = −  
 

 (20) 

 
2

[ ] 0,50 0,50cos
n

w n
M

π = −  
 

 (21) 

 
2 4

[ ] 0,42 0,50cos 0,08cos
n n

w n
M M

π π   = − +   
   

 (22) 

 
The factor of 2� represents the entire spectrum of the 

radian axes. This technique enables the insertion of new 
points during the windowing process; this is due to the 
division of the 2� radians spectrum into smaller points to 
exert a more efficient filter. This occurs with the 
implementation of a polynomial of degree n applied to 2�, 
in addition to the constant factor, in order to maintain 
linearity. In Figs. 4 and 5, the full radian axis and the total 
division of the spectrum can be observed, respectively. 
 

 
  
Fig. 4: Full 2� radian spectrum 
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IV 

I II 

Sine 
axis 

Cosine 
axis α 
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Fig. 5: Full 2� radian spectrum divided into smaller points 
 

The central focus of this process is minimizing the 
effect of smaller lobes that are not included in the cut-off 
frequency determined for the system; this consists of the 
sum of window w[n] with a polynomial of degree nx-1 
for nx≥0. The described implementation can be 
visualized in (23) (i.e., the Bimbi polynomial): 

  
( )

0

2
[ ] 1 2cos

n yy M

y

n
w n F F G

M

π−=

=

  
= −  

  
∑  (23) 

 
where, G is described by (24): 

 

0

1

[ ]

n M

n

G
w n

=

=

  
=   

  
∑  (24) 

 
Equation 25 describes the sum the polynomial 

applied to w[n] using a windowed filter, where F1 is the 
window constant factor, F2 is the portion applied to the 
cosine, n is the current filter coefficient, M is the number 
of filter coefficients and G is the gain. 

Implementation and Results 

For development and execution of this work, the 
following software and equipment were used: the Visual 
Studio compiler (C# platform), a library with the 
purpose of mathematical/graphical development, and 
proofing by comparing the state-of-the-art techniques 
available (i.e., Hamming, Hann and Blackman) with the 
methods proposed in this study. For the application of 

the Visual Studio compiler with the DSPLab library, a 
tool is developed that is capable of carrying out digital 
filters, which provides a greater number of tests and 
comparisons by applying deterministic signals that have 
control of the following parameters: 
 
a) Analog source 

• Sine 
b) Amplitude (V) 
c) Signal frequency (Hz) 
d) Sampling frequency (Hz) 
e) Digital analog converter resolution (bits) 
f) Level (Vpp) 
g) Choice of digital filter (e.g., a state-of-the-art filter 

or a filter with application of the polynomial) 
• Hamming-windowed low-pass filter 
• Hann-windowed low-pass filter 
• Blackman-windowed low-pass filter 

h) Selection of the cutoff frequency applied to the 
digital filter 

i) Digital filter dimension (M) 
j) Visualization of the response in the time domain 
k) Visualization of the response in the frequency 

domain 
l) Impulse response 
 

For the graphic results, the "IPT_Filter_Design" tool 
was developed based on the DSPLab library. With this 
tool, it was possible to run tests in the time and 
frequency domains with sine-type signals that had the 
following characteristics: 
 
• Amplitude (5 Vdc) 
• Frequency (5 Hz) 
• Sampling frequency (10 kHz) 
• ADC resolution (16 bit) 
• Peak-to-peak voltage (5 Vdc) 
• Coefficients (101) 
 

Figure 6 shows the sine-type signal as a function of 
the mentioned characteristics, where tests with the 
Hamming, Hann and Blackman windows with a 1 Hz 
cut-off frequency are implemented. 

Figures 7 and 8 compare the results in the time 
domain between a Hamming filter and Hamming filter 
with polynomial alteration respectively. 

Figure 9 shows the code to calculates the coefficients 
for Hamming window in art state and polynomial form. 

Figure 16 shows the code to calculates the 
coefficients for Hann window in art state and 
polynomial form. 

 Figures 10 and 11 compare the frequency domain 
results between the Hamming filter and the Hamming 
filter with polynomial alteration respectively. 
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Figures 12 and 13 compare the results of the impulse 
response between the Hamming filter and the Hamming 
filter with polynomial alteration respectively. 

Figures 14 and 15 compare the results in the time 
domain between a Hann filter and Hann filter with 
polynomial alteration respectively. 

Figures 17 and 18 compare the frequency domain 
results between the Hann filter and the Hann filter with 
polynomial alteration respectively. 

Figures 19 and 20 compare the results of the impulse 
response between the Hann filter and the Hann filter with 
polynomial alteration respectively. 

Figures 21 and 22 compare the results in the time 
domain between a Blackman filter and Blackman filter 
with polynomial alteration respectively. 

Figure 23 shows the code to calculates the 
coefficients for Blackman window in art state and 
polynomial form. 

Figures 24 and 25 compare the frequency domain 
results between the Blackman filter and the Blackman 
filter with polynomial alteration respectively. 

Figures 26 and 27 compare the results of the impulse 
response between the Blackman filter and the Blackman 
filter with polynomial alteration respectively. 

Figures 28 and 29 compare the results of the poles 
and zeros between the Hamming filter and the Hamming 
filter with polynomial alteration (with 20 coefficients) 
respectively. 

Figures 30 and 31 compare the results of the poles 
and zeros between the Hamming filter and the Hamming 
filter with polynomial alteration (with 100 coefficients) 
respectively. 

Figure 32 shows the code to apply calculated 
coefficients in acquired samples for all cases in FIR 
filters.

 

 
 

Fig. 6: Sine-type base signal 
 

 
 

Fig. 7: Hamming window response in the time domain (1 Hz cut-off frequency) 
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Fig. 8: Hamming window response in the time domain (1 Hz cut-off frequency, changed by the polynomial) 
 

 
 

Fig. 9: Hamming window code calculates the coefficients in art state and polynomial form 
  

 
 

Fig. 10: Hamming window response in the frequency domain (1 Hz cut-off frequency) 
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Fig. 11: Hamming window response in the frequency domain (1 Hz cut-off frequency, changed by the polynomial) 
 

 
 

Fig. 12: Hamming window impulse response (1 Hz cut- off frequency) 
  

 
 

Fig. 13: Hamming window impulse response (1 Hz cut-off frequency, changed by the polynomial) 



Sergio Bimbi Junior et al. / Journal of Computer Science 2018, 14 (7): 982.999 
DOI: 10.3844/jcssp.2018.982.999 

 

991 

 
 

Fig. 14: Hann window response in the time domain (1 Hz cut-off frequency) 
 

  
Fig. 15: Hann window response in the time domain (1Hz cut-off frequency, changed by the polynomial) 

  

 
 

Fig. 16: Hann window code calculates the coefficients in art state and polynomial form 
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Fig. 17: Hann window response in the frequency domain (1 Hz cut-off frequency) 
 

 
 

Fig. 18: Hann window response in the frequency domain (1 Hz cut-off frequency, changed by the polynomial) 
  

 
 

Fig. 19: Hann window impulse response (1 Hz cut-off frequency) 



Sergio Bimbi Junior et al. / Journal of Computer Science 2018, 14 (7): 982.999 
DOI: 10.3844/jcssp.2018.982.999 

 

993 

 
 

Fig. 20: Hann window impulse response (1 Hz cut-off frequency, changed by the polynomial) 
 

 
 

Fig. 21: Blackman window response in the time domain (1 Hz cut-off frequency) 
  

 
  

Fig. 22: Blackman window response in the time domain (1 Hz cut-off frequency, changed by the polynomial) 
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Fig. 23: Blackman window code calculates the coefficients in art state and polynomial form 
 

 
 

Fig. 24: Blackman window response in the frequency domain (1 Hz cut-off frequency) 
  

 
 

Fig. 25: Blackman window response in the frequency domain (1 Hz cut-off frequency, changed by the polynomial) 
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Fig. 26: Blackman window impulse response (1 Hz cut- off frequency) 
 

 
 

Fig. 27: Blackman window impulse response (1 Hz cut- off frequency, changed by the polynomial) 
  

 
 

Fig. 28: Poles and zeros of the Hamming-windowed filter with 20 coefficients 
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Fig. 29: Poles and zeros of the Hamming-windowed filter with 20 coefficients (changed by the polynomial) 
 

 
 

Fig. 30: Poles and zeros of the Hamming-windowed filter with 100 coefficients 
 

 
 

Fig. 31: Poles and zeros of the Hamming-windowed filter with 100 coefficients (changed by the polynomial) 
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Fig. 32: Code to apply calculated coefficients in acquired samples for all cases in FIR filters 

 

Conclusion 

Based on the results obtained, the behavior of signals 
in the time domain and the frequency domain there is a 
possibility of reducing the group delay (Oppenheim and 
Schafer, 2010), once the zone of convergence is 
increased, allowing the reduction of taps (Oppenheim 
and Schafer, 2010). This feature is of paramount 
importance, reducing computational effort as well as 
obtaining tangible values more quickly. In this way, it 
allows the increase of operation speed in dynamic 
systems. And, for the three proposed tests, i.e., Hamming 
window, Hann window and Blackman window, it is 
possible to observe the change in response in both the 
time domain and the frequency domain with a 50% gain 
in the frequency domain. For the Hamming and 
Blackman windows, it is possible to observe attenuation 
of the response by rejecting the unwanted frequency 
more efficiently. In the frequency domain, the best slope 
for the cut-off frequency in the first conduction lobe can 
be observed. Additionally, in these cases, windows 
behave with a larger spectrum and thus demonstrate the 
largest number of stable samples. In the case of the Hann 
window, the response to the frequency domain is more 
efficient, with the first driving lobe sloping the cut-off 
frequency more accurately. However, due to the gain, we 
obtain a greater amplitude than the state-of-the-art 
response for the time domain. The spectrum response 
was also shown to be more efficient by demonstrating an 
increased number of stable samples. With respect to the 
behavior of the poles and the zeros, an interesting 
characteristic observed is the inclination of the poles to 

always tend towards the unit radius (independent of the 
number of M coefficients). This fact indicates an 
improved response with respect to the target (i.e., 
reduced distortion). It is still necessary to analyze 
practical tests with the proposed case studies in this 
study by checking samples and calculating averages 
and standard deviations to verify whether the 
polynomial shows improved efficiency. In practical 
cases, implemented in checkweigher with mass 36.2g 
with filter implemented in art state obtains standard 
deviation of 0.2696, with polynomial for the standard 
deviation of 0.1318. This factor represents an 
improvement of 48.88%. With speeds until 200 
packages per minute in a belt with 250 mm of length. 
It is also necessary to test other windows in future 
studies, as well as other features (e.g., changing the 
filter type). With these tests, the efficiency of other 
applications could be determined, such as digital TV, 
aerospace studies, image segmentation, and other 
applications (i.e., any application that uses digital 
filters). An interesting topic to be developed in future 
studies is the implementation of a "Code Generator" 
with the "IPT_Filter_Design" tool, which could export 
coefficients together with the First-In-First-Out 
(FIFO) structure for application in industrial processes 
by using a Programmable Logic Controller (PLC) or 
microprocessor. 
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