

 © 2019 Tomohiro Sonobe. This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0

license.

 Journal of Computer Science

Original Research Paper

Variable Selection with PageRank for SAT Solvers

Tomohiro Sonobe

Global Research Center for Big Data Mathematics, National Institute of Informatics, Japan

Article history

Received: 01-05-2019

Revised: 25-07-2019

Accepted: 05-08-2019

Email: tomohiro_sonobe@nii.ac.jp

Abstract: How to choose decision variables often determines the

performance of SAT solvers. In state-of-the-art SAT solvers, Variable State

Independent Decaying Sum (VSIDS) has been used as a standard technique

in the decision process. In this study, we analyze the VSIDS from the point

of view of PageRank and propose a technique for improving the VSIDS.

While the VSIDS focuses on local search spaces, the PageRank values are

based on the relative importance from a global point of view. From this

fact, we utilize the PageRank values for controlling the VSIDS and improve

the performances of representative SAT solvers, MiniSAT and Glucose.

Keywords: SAT, Solver, PageRank, Variable Selection

Introduction

When a Boolean formula is given, the Boolean

Satisfiability (SAT) problem asks whether an assignment

of variables exists, which evaluates the formula as true.

A SAT problem is known as a classical NP-complete

problem and is believed not to be solvable in polynomial

time. In general, a formula is given in Conjunctive

Normal Form (CNF). The solvers for this kind of

problem are called SAT solvers. Today, they are used for

real-world applications (Marques-Silva, 2008), such as

circuit design (Stephan et al., 2006) and neural network

verification (Narodytska et al., 2018).

Many SAT solvers adopt the Davis-Putnam-

Logemann-Loveland (DPLL) algorithm (Davis et al.,

1962), which is based on a backtrack search. During the

last dozen years, various important methods have been

proposed to improve the performance of DPLL, such as,

Conflict-Driven-Clause-Learning (CDCL) to prevent

reappearance of similar searches, restart (Gomes et al.,

1998) instead of backtracking to start different search

from the first beginning in order to avoid heavy-tail

behavior, and Variable State Independent Decaying Sum

(VSIDS) decision heuristic (Moskewicz et al., 2001) to

determine the priority to select variables to be assigned.

The VSIDS is independent from the state of the variable,

thus its management is simple and easy. Many

CDCL/VSIDS-based solvers give scores to prioritize a

set of variables that appear in learnt clauses in order to

fully utilize the obtained learnt clauses.
SAT instances from real-world applications have an

internal structure, where specific variables have strong

relations to each other. For example in software

verification, a variable in a program can have At Least

One (ALO) value and At Most One (AMO) value from a

given range. By using a direct encoding, all the candidate

values are encoded into multiple Boolean variables (e.g.,

v1, v2,…,vr for the range [1..r]) in the SAT instance and

ALO/AMO constraints are encoded into clauses.

Amongst these Boolean variables, if one of them is

assigned to true, then the others are assigned to false.

Such variables exist in the instances from real-world

applications, which shapes the structure of SAT instance.

The VSIDS decision heuristic can select the related

variables to currently assigned variables, which boost the

efficiency of the search. This is because the VSIDS

prioritizes variables in learnt clauses. The variables in a

learnt clause are considered to be the culprits of a

conflict and these variables can be a part of the structure.

The VSIDS efficiently manages the priority of each

variable (as a simple score) in a dynamic manner. Many

state-of-the-art SAT solvers use the VSIDS.

In this study, we analyze the VSIDS with PageRank
(Page et al., 1999) and improve the performance of SAT

solvers by combining the PageRank with the VSIDS.

The PageRank values stand for the relative importance
of vertices in a graph. When we convert a SAT instance

to a Variable Incidence Graph (VIG) proposed by
Ansótegui et al. (2012), we can calculate the PageRank

value of each Boolean variable. As Katsirelos and Simon

(2012) have already revealed the relation between the
Boolean variables and their PageRanks, we also observe

the relation from another point of view. We implemented
a function to compute the PageRank of a VIG in

MiniSAT 2.2 (Eén and Sörensson, 2003) and conducted
experiments with 300 instances from the SAT

Competition 2014 application track to observe the

relation between the VSIDS and PageRank. As a result,
although we confirm that variables with a high

PageRank are often selected as decision variables, we

Tomohiro Sonobe / Journal of Computer Science 2019, 15 (8): 1074.1084

DOI: 10.3844/jcssp.2019.1074.1084

1075

found that the VSIDS scores did not completely correlate
with the PageRank.

From this observation, we can utilize the PageRank to

enhance the VSIDS. It is difficult to gain good

performance by combining the PageRank directly with the

VSIDS scores because the PageRank values stand for

relative importance from a global point of view. In

contrast, the VSIDS often focuses on a limited part of

structure, not a global structure. In addition, the

calculation of PageRank often needs a long computational

time. Hence we should not calculate it so frequently. In

our method, we reflect the PageRank to the VSIDS scores

for every a certain number of restarts. For the instances

whose PageRank distribution has an almost uniform

shape, we avoid using the method since these values have

no information. In order to utilize the learnt clauses, the

proposed method periodically reconstructs the VIG and

recalculate the PageRank. We implemented the proposed

method to MiniSAT 2.2 and Glucose (Audemard and

Simon, 2009) version 3 and conducted experiments for

300 instances from the SAT Competition 2014. The

experimental results indicates that the proposed method

can improve both solvers.

Our contribution is summerized as follows:

• We analyze VSIDS with PageRank by converting

SAT instances into variable incidence graphs. It

figures out that both scores are highly correlated and

variables with high PageRank are often selected as

decision variables

• VSIDS can often focus on a local part of the search

space. In contrast, PageRank scores stand for the

relative importance of variables from a global point

of view. The proposed method can bring VSIDS to

escape from the local part when a restart is invoked

• The experimental results exhibit that the proposed

method can boost the performance of state-of-the-art

SAT solvers

Related Work

Katsirelos and Simon (2012) firstly analyzed the

solver activity with eigenvector (PageRank). They also

showed that variables with high PageRanks tended to be

assigned values. This paper sheds light on the local view

of the VSIDS and global view of the PageRank and

improves the decision heuristic by utilizing it.

The way to select the decision variables is the fatal

part of SAT solvers. Various types of decision heuristics

are overviewed in (Biere and Fröhlich, 2015). In

specific, Variable State Independent Decaying Sum

(VSIDS) is the most basic one for the recent SAT solvers

and was implemented first in Chaff (Moskewicz et al.,

2001). The VSIDS chooses the decision variable with

the highest score. Before the advent of the VSIDS, the

computational cost of decision heuristics was quite high.

For example, dynamic largest combined sum proposed

by Silva (1999) is one of them. Huang and Darwiche

(2003) proposed a decision heuristic based on a tree

decomposition technique, however its computational

cost was also high. Bruni and Santori (2008) modified

the VSIDS by adding more scores to variables involved

in the conflicts. In recent years, some techniques (Liang

et al., 2016; 2017; Nejati et al., 2017; Selsam and

Bjørner, 2019) from the discipline of machine learning

enhanced the decision heuristics in order to more

dynamically select the suitable variabes.
The VSIDS decision heuristic is considered to boost

the intensive search for the internal structure of the SAT
instance. It is confirmed that there are specific sets of
variables. For exmaple, backbone proposed by
Monasson et al. (1999) and backdoor proposed by
Williams et al. (2003) can make the instance easy to solve.
The structure is analyzed from a point of view of graph
theory, especially by using modularity (Clauset et al.,
2004). The modularity is a value for a partition of
vertices into communities and a high modularity value
indicates that a high density of edges in the communities
and a low density of edges between the communities.
Ansótegui et al. (2012) showed that SAT instances from
real-world applications had quite high modularity values
and randomly generated instances had low modularity
values. Newsham et al. (2014) pointed out that the number
of detected communities correlated with literal block
distance (Audemard and Simon, 2009) and the
modularity values were useful for predicting the
performance of the SAT solvers. There are some works
that improve the solver performance. Martins et al.
(2013) utilized the detected community for MAX-SAT
solvers to select relaxation variables. Sonobe et al.
(2014) proposed a diversification technique, called
community branching, for portfolio-based parallel SAT
solvers. Jamali and Mitchel (2018) incorporated
betweenness centrality into the decision process aiming at
prioritizing variables appearing in many shortest paths,
which means that these variables have strong influence on
many other variables. Such variables were also introduced
as bridge variable in (Liang et al., 2015). Other than graph
theory, Ansótegui et al. (2014) described self-similarity
property of instances from real-world applications.

Analysis of SAT Solver

In this section, we explain technical background and

some analysis results.

Technical Background

A SAT instance Π is a conjunction of clauses, where

a clause c = (l1 ∨ l2 ∨…ln) is a disjunction of literals. A

literal is a positive or negative form of a Boolean

variable. An empty clause is always false and an empty

SAT instance is always true. A conflict occurs when an

empty clause appears under a certain variable

Tomohiro Sonobe / Journal of Computer Science 2019, 15 (8): 1074.1084

DOI: 10.3844/jcssp.2019.1074.1084

1076

assignment. A SAT instance is satisfiable if there is a

solution in the formula otherwise it is unsatisfiable:

Algorithm 1: Pseudo code of CDCL

Input: a CNF formula Π

Output: satisfiable or unsatisfiable

1: level = 0 // decision level

2: trail = 0/ // assignment of variables

3: learnts = 0/ // learnt clauses

4: inc_score = 1.0 // incremental value for VSIDS scores

5: conf // conflicting clause

6: learnt // learnt clause

7: blevel // level to backtrack

8: next // next decision variable

9: while true do

10: conf = unitPropagation(Π, trail) // a conflicting variable

11: if conf ≠ NULL then

12: learnt = conflictAnalysis(Π, trail, conf)

13: blevel = calcBackjumpLevel(learnt)

14: if blevel < 0 then

15: return unsatisfiable

16: end if

17: for each var in learnt do

18: increaseVSIDSScores(var, inc_score)

19: end for
20: inc_score = inc_score / 0.95

21: learnts = learnts ∪ learnt

22: if restart() then

23: blevel = 0

24: end if
25: backjump(blevel);

26: level = blevel

27: else

28: next = chooseDecisionVariable(Π, trail)

29: if next == NULL then

30: return satisfiable

31: end if

32: trail = trail ∪ next

33: level = level + 1

34: end if

35: end while

The state-of-the-art SAT solvers for application

instances are based on Conflict-Driven-Clause-Learning

(CDCL) which was derived from the DPLL algorithm.

The pseudo code of CDCL is shown in Algorithm 1.

Given a CNF formula, this algorithm determines whether

the formula is satisfiable or unsatisfiable. This code also

includes the part of VSIDS and is based on MiniSAT

(Eén and Sörensson, 2003). The variable “level” is the

decision level that stands for the depth of the search tree.

The function “unitPropagation” conducts the

propagation for unit clauses and returns a conflicting

variable if a conflict occurs. After a conflict, the function

“conflictAnalysis” conducts the clause learning. From

the learnt clause, the function “calcBackjumpLevel”

calculates a level to which the solver jumps back. If the

backjump level is less than zero, the given formula is

unsatisfiable. Then the scores of the variables in the

learnt clause are increased by the function

“increaseVSIDSScores” and the degree of increment

(“inc_score”) is updated by being divided by 0.95 (this

value is used in MiniSAT). Note that all the VSIDS

scores and “inc_score” are decreased before a overflow.

The backjump level becomes zero when restarting of the

search is invoked. Finally, the backjumping is conducted

and the decision level is renewed. If there is no conflict,

the function “chooseDecisionVariable” picks up a

decision variable with the highest VSIDS score. If there

is no variable to assign, the search is ended and the

formula is turned out to be satisfiable.

The procedure of VSIDS is as follows:

1. Initialize all the scores as 0 (or randomly)

2. Choose a variable with the highest score as a

decision variable

3. Increase the scores of variables in learnt clauses

4. Decrease all the scores periodically

Note that the scores are increased not only when the

variables are in learnt clauses, but also when the

variables are involved in the learning process in recent

solvers. By increasing the scores of learnt variables, the

VSIDS achieves intensive searches for local parts of the

structure. For the purpose of reduction of computational

costs, the recent implementation increases the degree of

increment instead of the decrement of all the scores.

The PageRank is one of basic metrics for calculating the

importance of each vertex in a graph. Although it is

originally used to rank Web pages in the search engine,

today it is applied to other networks such as bioinformatics

(Morrison et al., 2005) and image categorization (Pan et al.,

2004). Assume that we have a weighted directed graph G =

(V, E) with n vertices and m edges. We denote a weight of

an edge as :w V V
+

× → ℝ , satisfying:

|(,)

(,) 1
v u v E

w u v

∈

=∑ (1)

for a vertex u. The PageRank is the stationary

distribution of the random walk with random jumping

with probability c, called the teleportation probability.

The walking goes on to outgoing edges from the current

vertex with probability 1−c. In general, the PageRank π

for vertex v is calculated as follows:

|(,)

() () (1) () (,)
u u v E

v c v c u w u vπ δ π

∈

= + − ∑ (2)

where, δ(v) is a probability to be selected as the

destination vertex from the random jumping and is set to

1.0 / n. The teleportation probability c is set to 0.15 in

the original paper (Page et al., 1999). This calculation

can converge in several dozen of iterations.

Tomohiro Sonobe / Journal of Computer Science 2019, 15 (8): 1074.1084

DOI: 10.3844/jcssp.2019.1074.1084

1077

We create a Variable Incidence Graph (VIG) from
the given CNF (Ansótegui et al., 2012). In the VIG, the
vertices correspond to the Boolean variables and the
edges correspond to the relations between the variables
in the same clause. A clause “C” generates |C|C2 edges
(|C|(|C|−1)/2) between every pair of the variables in the

clause C. The weight of each edge is (1/|C|C2), therefore,
the sum of the weights of the edges added by each clause
is always 1. We create a VIG by traversing all the
clauses and learnt clauses.

VSIDS and PageRank

The VSIDS tries to choose important variables and
the importance is expressed as a score. The score is
increased when the variable appears in learnt clauses.
The more variables appear in clauses, the more
frequently they are assigned values and appear in learnt
clauses. From this perspective, PageRanks of VIG can be

highly related with the VSIDS. This is because the
variables appearing in many clauses have many edges,
which leads to high PageRanks. However, they have
different views. The PageRank values are based on a
global view. The value stands for a relative importance.
In contrast, the VSIDS may focus on local parts of the

instance structure. The scores are high if corresponding
variables are current targets of the search. In fact, if the
top two highest PageRank variables are placed on
opposite sides of the VIG, one can have a high VSIDS
score while the other can have a low score. Whereas the
PageRank does not completely correspond to the VSIDS

score, there is a high correlation between them.

Analysis Result

To confirm our inference, we have conducted
experiments. We have implemented a PageRank
calculation function to MiniSAT 2.2. We conducted 20
iterations for the PageRank calculation setting the

teleportation ratio to 0.15. We chose variables of the top
10% highest PageRank and calculated a decision ratio
(the number of decisions for these variables / the total
number of decisions) for each instance. We used 300
instances from the SAT Competition 2014 application
category. We set the time limit for each instance to 5000

seconds and the experiments were conducted on a Linux
PC with Intel Core i7 4770 (3.40GHz, quad-core hyper-
threading) and 16 GB memory. We used the GNU
compiler (gcc) version 4.8.2.

The results are exhibited in Fig. 1 for 100 satisfiable

instances and Fig. 2 for 76 unsatisfiable instances. We

excluded instances that could not be solved within the

time limit. The x-axis indicates each instance, the left y-

axis indicates the decision ratio and the right y-axis

indicates the processing time. The instances sorted by

ascending order of the decision ratio. For satisfiable

instances, 89 out of 100 instances exhibited over 10%

decision ratio and 72 out of 76 unsatisfiable instances did.

From these results, we found that the variables with high

PageRank values tend to be selected as decision variables

by the VSIDS. Hence there is a high correlation between

them. In addition, the instances with the high decision

ratio seem to be solved within a short processing time for

both satisfiable and unsatisfiable instances.

Fig. 1: Decision ratio of variables with top 10% highest PageRank and processing time for 100 satisfiable instances

decision ratio
ratio = 0.1

time

1

0.8

0.6

0.4

0.2

0

D
ec

is
io

n
 r

at
io

0 10 20 30 40 50 60 70 80 90 100

5000

4000

3000

2000

1000

0

T
im

e
(s

ec
)

Problem

Tomohiro Sonobe / Journal of Computer Science 2019, 15 (8): 1074.1084

DOI: 10.3844/jcssp.2019.1074.1084

1078

Fig. 2: Decision ratio of variables with top 10% highest PageRank and processing time for 76 unsatisfiable instances

Fig. 3: Spearman’s rank correlation coefficient between VSIDS and PageRank for 242 instances (x-axis indicates each instance and

y-axis indicates the correlation coefficient)

However, we can see that the PageRank values does

not completely coincide with the VSIDS values from
Fig. 3. This figure shows the Spearman’s rank
correlation coefficient between the VSIDS and
PageRank for each instance. Each value of each
instance is calculated as follows. First, we compute
ranks (positions in the ascending order) of VSIDS and
PageRank for each variable after 100000 conflicts
occur. Then we calculate Spearman’s rank correlation
coefficient between all the ranked variables. If the
correlation coefficient is 1, the VSIDS and PageRank
are completely related. We calculated them for 300
instances of the SAT Competition 2014 application

category and showed the results in the Fig. 3 (we
excluded 58 instances because they were solved within
100000 conflicts). From this figure, we can see that the
VSIDS and PageRank hardly correlate in several tens
of the instances. In fact, we observed negative
correlation coefficients in 36 instances. The reason why
the value is not so high is that the VSIDS and
PageRank have different views. While the VSIDS
focuses on variables in a specific part of the structure,
the PageRank calculates the global importance of each
variable. Thus, we should not simply replace the
VSIDS with the PageRank. In the next section, we
propose a method to combine them.

decision ratio
ratio = 0.1

time

1

0.8

0.6

0.4

0.2

0

D
ec

is
io

n
 r

at
io

0 10 20 30 40 50 60 70 80

5000

4000

3000

2000

1000

0

T
im

e
(s

ec
)

Problem

1

0.5

0

-0.5

-1

D
ec

is
io

n
 r

at
io

correlation

0 50 100 150 200 250

Problem

Tomohiro Sonobe / Journal of Computer Science 2019, 15 (8): 1074.1084

DOI: 10.3844/jcssp.2019.1074.1084

1079

Proposed Method

The VSIDS tends to focus on a specific part of the

structure in the given instance. This feature has

advantages and disadvantages. While it can efficiently

search variables that are strongly related, it could lead to

a certain search spaces excessively. The restarting of the

search can be a remedy of this issue, however the VSIDS

scores are taken over to the search and the same search

can repeat in vain because the scores are not changed

after the restart. There is a possibility that the VSIDS

guides the solver to a certain search space where no

useful learnt clauses can be extracted.

We can solve this problem by combining the

PageRank values with the VSIDS scores. PageRank has

a global view and ranks all the vertices (variables).

Hence this perspective enables the VSIDS to escape

from the local structure and have a look at the global

structure. However, in order not to spoil the advantage of

VSIDS, we should not apply the PageRank to the VSIDS

scores so frequently. We have to control the number of

the applications. In addition, we should limit the

application only for the variables with a high PageRank

because the variables with a low PageRank are

considered as not important. In order to convert the

search space effectively, we should increase the VSIDS

scores for the variables with a high PageRank and a low

VSIDS score. For this issue, we first calculate rankings

of the VSIDS scores and PageRank for each variable and

increase the scores by considering those rankings.

We should also observe the distribution of the

PageRank value. If the PageRank values are uniformly

distributed, the variables have almost same importance

and we have no idea which variables we should choose

first. In our preliminary experiments, we figured out that

the proposed method had almost no effect for instances

with the uniform PageRank distribution. Thus, we first

calculate the degree of unification of the PageRank and

decide whether we use our proposal or not. The timing

of the execution of the proposed method is suitable for

the moment of restarting because our aim is to refresh

the search. We implement Algorithm 2 right after the

restarting routine.

The PageRank values are calculated outside. The

“run_count” stands for the number of calls of this

function. In fact, the main part of this function is

conducted every “INTERVAL” restarts because this

function modifies the VSIDS scores drastically. We

control the number of the applications by adjusting this

parameter. The “inc_score” is the degree of increment of

the VSIDS scores, calculated by the solver. Note that the

second argument of the function “increaseVSIDSScore”

is just “inc_score” when clause learning is conducted.

The function “calcRanking” returns the corresponding

rank of each element of the given array (greater values

rank higher). We calculate rankings of the PageRank and

VSIDS score of each variable, “p_rank” and “a_rank”.

The main part of this function increases the VSIDS

scores of variables with top-(“nv”×“TARGET_RATIO”)

PageRanks (e.g., if “TARGET_RATIO” is set as 0.05,

5% of variables). The function “selectTopKthIndex”

returns an index of top k-th (the second argument) index

of the given array (the first argument).

Algorithm 2: Pseudo code of the proposal method

Input: array of PageRank of each variable: pr

Input: array of VSIDS score of each variable: act

Input: the number of calls of this function: run_count

Input: incremental value for VSIDS: inc_score

Input: interval of this function: INTERVAL

Input: ratio of increment: INC_RATIO

Input: ratio of target variables: TARGET_RATIO

 1: nv = the number of variables

 2: p_rank // rank of variables w.r.t. PageRank

 3: a_rank // rank of variables w.r.t. VSIDS score

 4: if run_count % INTERVAL ≠ 0 then

 5: return

 6: end if
 7: p_rank = calcRanking(pr)

 8: a_rank = calcRanking(act)

 9: for k = 0 to nv * TARGET_RATIO do

 10: var_index = selectTopKthIndex(p_rank, k);

 11: if p_rank[var_index] < a_rank[var_index] then

 12: increaseVSIDSScore(var_index, inc_score

 * INC_RATIO * a_rank[var_index] /

 p_rank[var_index])

 13: end if

 14: end for

By comparing the rankings of the PageRank and VSIDS

score, we increase the VSIDS score of the target variable

with a low VSIDS score and a high PageRank. For

example, when k = 0, the “var_index” stands for the

variable index with the highest (top-0th) PageRank.

Then, “p_rank[var_index]” and “a_rank[var_index]”

indicate the variable’s rank of PageRank and the rank of

VSIDS score, respectively. The value

“a_rank[var_index]”/“p_rank[var_index]” can be high

when the PageRank is high and the VSIDS score is low.

In this manner, we convert the search direction to other

search spaces where important, but not focused on so far,

variables exist from the point of view of the PageRank.

We limit the number of the variables by setting the

“TARGET_RATIO” because we do not have to observe

all the variables (the variables with low PageRank are

not important). We have to set the parameter

“INC_RATIO” to relatively large number in order to

increase the scores vigorously.

The procedure of PageRank calculation is in

Algorithm 3. This function is called before Algorithm 2.

Note that the function “calcPageRank” makes a VIG

from the clauses in the given CNF and learnt clauses that

Tomohiro Sonobe / Journal of Computer Science 2019, 15 (8): 1074.1084

DOI: 10.3844/jcssp.2019.1074.1084

1080

the solver currently preserves. We conduct the power

iteration method for the PageRank calculation.

Algorithm 3: Pseudo code of the PageRank calculation

Input: the number of calls of this function: run_count

Input: PageRank recalculation interval:

 REC_INTERVAL

 1: nv = the number of variables

 2: pr = [1.0/nv] * nv // PageRank array (global scope)

 3: fcp // first cumulative percentage

 4: if run_count % REC_INTERAVAL ≠ 0 then

 5: return

 6: end if

 7: pr = calcPageRank(pr)

 8: fcp = calcFirstCumulativePercentage(pr, nv/100)

 9: if fcp < 3 then

10: [turn off the proposed method]

 11: end if

Since the calculation of PageRank is expensive, we limit the

number of the power iterations to 5 and we limit the length

of clauses to less than or equal to 10 for constructing VIGs.

In practice, we do not need exact PageRank values in order

to apply them for the VSIDS scores. Besides, this function

is also executed every “REC_INTERVAL” restarts to

reduce the computational cost.

We also consider the distribution of the PageRank

value. The function “calcFirstCumulativePercentage”

calculates the cumulative percentage of the PageRank

value (“fcp”) for the variables with top 1% highest

PageRank. Let V0 a set of variables with top 1% highest

PageRank. Then:

' '

100 () / ()
u V v V

fcp u vπ π

∈ ∈

= ×∑ ∑ (3)

If this value is low, the distribution seems to be uniform. In

an extreme case when “fcp” is less than three, we do not use

our proposed method because we did not see any positive

effect in our preliminary experiments.

The whole flow of the proposed method is as follows.

After setting four parameters (“INC_RATIO”,

“INTERVAL”, “REC_INTERVAL” and

“TARGET_RATIO”), Algorithm 3 and 2 are called

when a restart is invoked (Algorithm 1). Note that the

variable “run_count” corresponds to the number of

invoked restarts.

Although there are four parameters to determine the

behavior of our method, we found that these values were

not so sensitive to the performance of solvers in the

preliminary experiments. The key idea is that we should

use the PageRank value if its distribution is skewed and

increase the score of the variables with a low VSIDS

scores and a high PageRank value.

Results

We have implemented the proposed method in
MiniSAT 2.2 and Glucose version 3 and conducted
experiments. The experimental conditions are same as
the previous section. However, there were 46
instances whose top 1% cumulative percentage of
PageRank is less than three. We did not apply our
method to these instances. Hence we excluded them
from the results below.

We conducted comparison experiments with our

methods, a randomized version of our method and

MiniSAT 2.2. We set the “INC_RATIO” to 10000,

“INTERVAL” to 10, “REC_INTERVAL” to 500 and

“TARGET_RATIO” to 0.05 for the proposed method.

The number of solved instances and their total time are

shown in Table 1. Each column indicates the number of

solved instances and its total time in seconds. The 46

instances whose “fcp” value is less than three, instances

solved only by preprocessing and instances that were not

solved by any solver are excluded. The instance not

solved within the time limit is calculated as 5000. The

“baseline”, “proposal”, “no-recalc” and “random” stands

for the original MiniSAT 2.2, our proposal, our proposal

without no recalculation of PageRank

(“REC_INTERVAL” is ∞), our proposal with randomly

selection of target variables and randomly increment of

VSIDS scores, respectively. The “random” method is a

modified version of our method that selects the variables

randomly (according to the “TARGET_RATIO”) with

the same parameter setting of our proposal. From this

result, we can see that the proposed method could solve

the most instances within the shortest time. We can also

see that we should recalculate the PageRank values in

the search by using learnt clauses. By comparing

“proposal” and “random”, we figured out that using the

PageRank values is more effective than at least random

selection. Note that the total calculation time of the

PageRank values was negligible for all the instances

(0.77 seconds per solved instance on average).
Figure 4 (satisfiable instances) and 5 (unsatisfiable

instances) show the result of each instance for the
original MiniSAT 2.2 and our method. They show the
processing time and the cumulative percentage of the
PageRank values of the variables with the top 1%
highest PageRank (the “fcp” value). The x-axis indicates
each instance sorted by the time of the original MiniSAT
2.2 in ascending order. Hence the points on the same x-
axis show the result for a same instance. The left y-axis
indicates the time and the right y-axis indicates the
cumulative percentage of PageRank. For satisfiable
instances, although the total time was longer, we could
solve two more instances than the baseline. This is
because the original MiniSAT 2.2 is good at solving
them intrinsically. Hence there are few rooms to improve
the performance. In contrast, we could solve eight more
unsatisfiable instances within a shorter time. We could

Tomohiro Sonobe / Journal of Computer Science 2019, 15 (8): 1074.1084

DOI: 10.3844/jcssp.2019.1074.1084

1081

see that instances with high “fcp” values (around 50%)
could be solved in a short time.
We also implemented our method to Glucose 3. We

set the “INC_RATIO” to 10, “INTERVAL” to 50,
“REC_INTERVAL” to 5000 and “TARGET_RATIO”
to 0.05 for our proposal. We set higher “INTERVAL”
and “REC_INTERVAL” because Glucose 3 uses a
dynamic restart policy (Audemard and Simon, 2012) and it
can conduct the restart more frequently than MiniSAT 2.2.
Table 2 shows the number of solved instances (total
time) of each solver and Fig. 6 and 7 show the result of
each instance. We can see that our proposal exhibits the
best performance among the four solvers, same as in the
case of MiniSAT 2.2. We could achieve good
performance for the satisfiable instances and a little
improvement for the unsatisfiable instances. This
situation is opposite from MiniSAT 2.2. Glucose is good
at solving unsatisfiable instances and has difficulties to
solve satisfiable instances. In fact, there are few

unsatisfiable instances not solved by original Glucose 3
except for the instances with a low “fcp” value.

Table 1: The result of each solver based on MiniSAT 2.2. for

71 satisfiable instances and 86 unsatisfiable instances

Solver SAT (71) UNSAT (86) Total (157)

Baseline 67 (52550) 75 (109370) 142 (161920)

Proposal 69 (52690) 83 (85450) 152 (136140)

No-recalc 67 (63070) 80 (91730) 147 (154800)

Random 67 (61210) 77 (117890) 144 (179100)

Table 2: The result of each solver based on Glucose 3 for 63

satisfiable instances and 126 unsatisfiable instances

Solver SAT (63) UNSAT (126) Total (189)

Baseline 55 (68130) 125 (90520) 180 (158650)

Proposal 60 (51920) 125 (90680) 185 (142600)

No-recalc 57 (59540) 125 (91650) 182 (151190)

Random 57 (59780) 123 (92870) 180 (152650)

Fig. 4: The result of the original MiniSAT 2.2 and MiniSAT 2.2 with the proposed method for 71 satisfiable instances

Fig. 5: The result of the original MiniSAT 2.2 and MiniSAT 2.2 with the proposed method for 86 unsatisfiable instances

T
im

e
(s

ec
)

MiniSAT2.2
Proposal

fcp

0 10 20 30 40 50 60 70 80

Problem

100

80

60

40

20

0

5000

4000

3000

2000

1000

0

T
im

e
(s

ec
)

0 10 20 30 40 50 60 70 80 90

Problem

100

80

60

40

20

0

5000

4000

3000

2000

1000

0

F
ir

st
 c

u
m

u
la

ti
v
e

p
er

ce
n
ta

g
e

MiniSAT2.2
proposal

fcp

F
ir

st
 c

u
m

u
la

ti
v
e

p
er

ce
n
ta

g
e

Tomohiro Sonobe / Journal of Computer Science 2019, 15 (8): 1074.1084

DOI: 10.3844/jcssp.2019.1074.1084

1082

Fig. 6: The result of the original Glucose 3 and Glucose 3 with the proposed method for 63 satisfiable instances; Note that the

instances solved before the “fcp” calculation (i.e., solved only by preprocessing) are not included

Fig. 7: The result of the original Glucose 3 and Glucose 3 with the proposed method for 126 unsatisfiable instances

Conclusion

We investigated the relation between PageRank and

VSIDS and applied the PageRank value to the VSIDS

score. From observational experiments, we found that

variables with a high PageRank tend to be selected as

decision variables. However, we also observed that they

did not completely correlate when we saw the Spearman’s

rank correlation coefficient between them. It is because the

VSIDS focuses on the local part of the structure of given

instance, while PageRank gives the global view of the

importance of Boolean variables. We utilize this advantage

of the PageRank to convert the search space effectively by

comparing the VSIDS and PageRank of each variable. In

the computational experiments, we could boost the

efficiency of MiniSAT 2.2 and Glucose 3. Our method does

not depend on a specific implementation, thus we can

embed it to any CDCL solver. We are planning to apply this

method to parallel SAT solvers as future work.

Acknowledgment

This work was supported by JSPS KAKENHI Grant

Number JP17K12742.

T
im

e
(s

ec
)

0 10 20 30 40 50 60 70

Problem

100

80

60

40

20

0

5000

4000

3000

2000

1000

0

Glucose3
proposal

fcp

F
ir

st
 c

u
m

u
la

ti
v
e

p
er

ce
n
ta

g
e

T
im

e
(s

ec
)

0 20 40 60 80 100 120 140

Problem

100

80

60

40

20

0

5000

4000

3000

2000

1000

0

Glucose3
proposal

fcp

F
ir

st
 c

u
m

u
la

ti
v
e

p
er

ce
n
ta

g
e

Tomohiro Sonobe / Journal of Computer Science 2019, 15 (8): 1074.1084

DOI: 10.3844/jcssp.2019.1074.1084

1083

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of

the other authors have read and approved the manuscript

and no ethical issues involved.

References

Ansótegui, C., J. Giráldez-Cru and J. Levy, 2012. The

Community Structure of Sat Formulas. In: Theory

and Applications of Satisfiability Testing, Ganesh,

V. (Ed.), Springer, Berlin, Heidelberg, ISBN-13:

978-3-642-31611-1, pp: 410-423.

Ansótegui, C., M. Bonet, J. Giráldez-Cru and J. Levy,

2014. The fractal dimension of sat formulas.

Automated Reason., 6: 107-121.

 DOI: 10.1007/978-3- 319-08587-6_8

Audemard, G. and L. Simon, 2009. Predicting learnt

clauses quality in modern sat solvers. Proceedings of

the 21st International Jont Conference on Artifical

Intelligence, Jul. 11-17, Pasadena, California, USA,

pp: 399-404.

Audemard, G. and L. Simon, 2012. Refining Restarts

Strategies for Sat and Unsat. In: Principles and

Practice of Constraint Programming, Milano, M.

(Ed.), Springer, Berlin, Heidelberg, ISBN-13: 978-

3-642-33557-0, pp: 118-126.

Biere, A. and A. Fröhlich, 2015. Evaluating Cdcl

Variable Scoring Schemes. In: Theory and

Applications of Satisfiability Testing, Heule, M.

and S. Weaver (Eds.), ISBN-10: 978-3-319-

24318-4, pp: 405-422.
Bruni, R. and A. Santori, 2008. New updating criteria for

conflict-based branching heuristics in dpll
algorithms for satisfiability. Discrete Optimizat., 5:
569-583. DOI: 10.1016/j.disopt.2006.10.012

Clauset, A., M.E.J. Newman and C. Moore, 2004. Finding

community structure in very large networks. Phys.

Rev., 70: 6-36. DOI: 10.1103/PhysRevE.70.066111

Davis, M., G. Logemann and D. Loveland, 1962. A

machine program for theorem-proving. Mach.

Program Theorem-Prov., 5: 394-397.

 DOI: 10.1145/368273.368557

Eén, N. and N. Sörensson, 2003. An Extensible Sat-

Solver. In: Theory and Applications of

Satisfiability Testing, Giunchiglia, E. and A.

Tacchella (Eds.), ISBN-10: 978-3-540-20851-8,

pp: 502-518.

Gomes, C.P., B. Selman and H. Kautz, 1998. Boosting

combinatorial search through randomization.

Proceedings of the 15th International Conference on

Artificial Intelligence/Innovative Applications of

Artificial Intelligence, (AAI’ 98), ACM, Madison,

Wisconsin, USA, pp: 431-437.

Huang, J. and A. Darwiche, 2003. A structure-based

variable ordering heuristic for sat. Proceedings of

the 18th International Joint Conference on Artificial

Intelligence, Aug. 09-15, ACM, Acapulco, Mexico

pp: 1167-1172.

Jamali, S. and D. Mitchell, 2018. Centrality-Based

Improvements to Cdcl Heuristics. In: Theory and

Applications of Satisfiability Testing, Beyersdorff,

O. and C.M. Wintersteiger (Eds.), Springer

International Publishing, ISBN-13: 978-3-319-

94143-1, pp: 122-131.

Katsirelos, G. and L. Simon, 2012. Eigenvector

Centrality in Industrial Sat Instances. In: Principles

and Practice of Constraint Programming, Milano,

M. (Ed.), Springer, Cham, ISBN-13: 978-3-642-

33557-0, pp: 348-356.

Liang, J.H., V. Ganesh, E. Zulkoski, A. Zaman and K.

Czarnecki, 2015. Understanding Vsids Branching

Heuristics in Conflict-Driven Clause-Learning Sat

Solvers. In: Hardware and Software: Verification

and Testing, Piterman, N. (Ed.), Springer, Cham,

ISBN-13: 978-3-319-26287-1, pp: 225-241.

Liang, J.H., V. Ganesh, P. Poupart and K. Czarnecki,

2016. Exponential recency weighted average

branching heuristic for sat solvers. Proceedings of the

30th AAAI conference on artificial intelligence, Feb.

12-17, ACM, Phoenix, Arizona, pp: 3434-3440.

Liang, J.H., H.G. Poupart, K. Czarnecki and V.

Ganesh, 2017. An Empirical Study of Branching

Heuristics through the Lens of Global Learning

Rate. In: Theory and Applications of Satisfiability

Testing, Gaspers, S. and T. Walsh (Eds.), Springer,

Berlin, Heidelberg, ISBN-13: 978-3-319-66263-3,

pp: 119-135.

Marques-Silva, J., 2008. Practical applications of

boolean satisfiability. Proceedings of the 9th

International Workshop on Discrete Event Systems,

May 28-30, IEEE Xplore Press, Goteborg, Sweden,

pp: 74-80. DOI: 10.1109/WODES.2008.4605925

Martins, R., V. Manquinho and I. Lynce, 2013.

Community-Based Partitioning for Maxsat Solving.

In: Theory and Applications of Satisfiability

Testing, Järvisalo, M. and A. Van Gelder (Eds.),

Springer, Berlin, Heidelberg, ISBN-13: 978-3-642-

39070-8, pp: 182-191.

Monasson, R., R. Zecchina, S. Kirkpatrick, B. Selman

and L. Troyansky, 1999. Determining computational

complexity from characteristic phase transitions.

Nature, 16: 133-137. DOI: 10.1038/22055.

Morrison, J.L., R. Breitling, D.J. Higham and D.R.

Gilbert, 2005. Generank: Using search engine

technology for the analysis of microarray

experiments. BMC Bioinformat., 6: 21-29.

 DOI: 10.1186/1471-2105-6-233

Tomohiro Sonobe / Journal of Computer Science 2019, 15 (8): 1074.1084

DOI: 10.3844/jcssp.2019.1074.1084

1084

Moskewicz, M.W., C.F. Madigan, Y. Zhao, L. Zhang
and S. Malik, 2001. Chaff: Engineering an efficient

sat solver. Proceedings of the 38th Annual Design
Automation Conference, Jun. 22-22, IEEE Xplore

Press, Las Vegas, NV, USA, pp: 530-535.
 DOI: 10.1145/378239.379017

Narodytska, N., S. Kasiviswanathan, L. Ryzhyk, M.

Sagiv and T. Walsh, 2018. Verifying properties of

binarized deep neural networks. Proceedings of the

32nd AAAI Conference on Artificial Intelligence,

(CAI’ 18), pp: 6615-6624.

Nejati, S., Z. Newsham, J. Scott, J.H. Liang and C.

Gebotys et al., 2017. A Propagation Rate Based

Splitting Heuristic for Divide-and-Conquer Solvers.

In: Theory and Applications of Satisfiability

Testing, Gaspers, S. and T. Walsh (Eds.), Springer,

Cham, ISBN 978-3-319-66263-3, pp: 251-260.

Newsham, Z., V. Ganesh, S. Fischmeister, G. Audemard

and L. Simon, 2014. Impact of Community

Structure on Sat Solver Performance. In: Theory and

Applications of Satisfiability Testing, Sinz, C. and

U. Egly (Eds.), Springer, Cham,

 ISBN-13: 978-3-319-09283-6 pp: 252-268.

Page, L., S. Brin, R. Motwani and T. Winograd, 1999. The

pagerank citation ranking: Bringing order to the web.

The PageRank Citation Ranking: Bringing Order to the

Web, Technical Report, Stanford InfoLab.

Pan, J., H. Yang, C. Faloutsos and P. Duygulu, 2004.

Automatic multimedia cross-modal correlation

discovery. Proceedings of the 10th ACM

SIGKDD International Conference on Knowledge

Discovery and Data Mining, May 5-6, ACM Las

Vegas, NV, USA, pp: 653-658.

 DOI: 10.1007/978-3-540- 24775-3_62

Selsam, D. and N. Bjørner, 2019. Guiding High-

Performance Sat Solvers With Unsat-Core

Predictions. In: Theory and Applications of

Satisfiability Testing, Janota, M. and I. Lynce

(Eds.), Springer, Cham,

 ISBN-13: 978-3-030-24258-9, pp: 336- 353.

Silva, J.P.M., 1999. The Impact of Branching Heuristics

in Propositional Satisfiability algorithms. In:

Progress in Artificial Intelligence, Barahona, P. and

J.J. Alferes (Eds), Springer, Berlin, Heidelberg,

ISBN-13: 978-3-540-48159-1, pp: 62-74.

Sonobe, T., S. Kondoh and M. Inaba, 2014. Community

Branching for Parallel Portfolio Sat Solvers. In:

Theory and Applications of Satisfiability Testing,

Sinz, C. and U. Egly (Eds.), Springer, Cham,

 ISBN-13: 978-3-319-09283-6, pp: 188-196.

Stephan, P., R.K. Brayton and A.L. Sangiovanni-

Vincentelli, 2006. Combinational test generation

using satisfiability. Trans. Comput. Des. Integrat.

Circu. Syst., 15: pp: 1167-1176.

 DOI: 10.1109/43.536723

Williams, R., C.P. Gomes and B. Selman, 2003.

Backdoors to typical case complexity. Proceedings

of the 18th international Joint Conference on

Artificial Intelligence, Aug. 09-15, ACM, Acapulco,

Mexico, pp: 1173-1178.

