

© 2019 Anderson Faustino da Silva and Leonardo Deganello de Souza. This open access article is distributed under a

Creative Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Science Journal of Computer Science

Original Research Paper
Understanding the Code Transformation Algorithms’ Impact

Anderson Faustino da Silva and Leonardo Deganello de Souza

Department of Informatic, State University of Maringá, Maringá, Paraná, Brazil

Article history
Received: 27-02-2019

Revised: 09-08-2019
Accepted: 26-11-2019

Corresponding Author:
Anderson Faustino da Silva
Department of Informatic, State

University of Maringa,

Maringa, Parana, Brazil
Email: anderson@din.uem.br

Abstract: Modern compilers provide several code transformations, which are

automatic program transformations applied with the goal of improving the

program performance. In this article, we investigate how standard compiler

code transformations, performed at the compiler intermediate representation,

affect such representation and consequently the performance. Our research

targets clang/LLVM, a popular compiler infrastructure. Our experimental

evaluation demonstrates how several code transformations change the

intermediate representation and consequently improve the target code’s

performance in terms of runtime.

Keywords: Code Transformation, Intermediate Representation,

Clang/LLVM
Introduction

The process of code generation, performed by
compilers, is divided into two major phases (Aho et al.,
2006; Sebesta, 2009; Scott, 2009). The first, analysis,
analyzes the source code to verify its correctness
according to the rules defined by the programming
language. The second, synthesis, transforms the source
code in the target code. In general, each phase can be
subdivided into several sub-phases, where the number of
phases will depend on the compiler.

Although the number of phases of modern compilers

is different, they have in common a code optimization

phase (Muchnick, 1997). This phase aims to change the

structure of the source code to improve the target code’s

performance; however without changing the semantics.
Modern compilers have several Transformation

Algorithms (TA), which are well-known as optimizations;

although this does not mean that any TA will improve the

quality of the target code. Loss of performance may occur

because the characteristics of the source code do not fit the

characteristics by which a TA was proposed. For example,

constant folding, whose objective is to evaluate

continuous expressions in compilation time, will be useful

when the code provides such expressions.
It is important to note that compilers are designed

to be generic. In other words, compilers are designed

to generate efficient target code for any source code.

Therefore, compilers should be prepared to improve

the quality of any source code. In this context, it is

essential to which to apply, during the compilation

process, will be efficient.
Of course, a question could arise. Why do I need to

choose TAs instead of applying all TAs available? It is

necessary to choose TAs for two reasons. First, as

mentioned previously, the characteristics of the source code

may not correspond to the characteristics expected by the

TA. Second, although it is expected that a TA improve the

quality of the source code the reverse may occur. An

example is the use of inline, which replaces a function call

by your body. Such transformation can lead to code

explosion, which in turn can lead to misuse of the cache;

consequently degrading the target code’s performance.
In this context, this article aims to analyze the behavior

of several TAs applied by the compiler clang/LLVM, at

the Intermediate Representation (IR) level and thus

understand the relationship between TAs, IR and target

code’s performance.
The contributions of this article are as follows:

1. We present a detailed analysis of how TAs modify

the IR
2. We present the relationship between TAs and target

code’s performance

Our experimental evaluation demonstrates that although

several TAs change the IR, a few are effective in improving

the target code’s performance in terms of reducing its

runtime. In addition, the evaluation demonstrates that a

reduction in runtime is directly proportional to the reduction

in the number of memory instructions.
The rest of this article is organized as follows. Section 2

presents related work in the context of code transformation

algorithms’ impact. Section 3 provides some hints on

code transformation algorithms. Section 4 describes the

experimental setup and outlines the methodology used in

all experiments. The next three sections, Section 5, 6 and

../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520

Anderson Faustino da Silva and Leonardo Deganello de Souza / Journal of Computer Science 2019, 15 (11): 1678.1693
DOI: 10.3844/jcssp.2019.1678.1693

1679

7, presents our findings. Section 8 remarks about the

presented work and future work.

Related Work

Seng and Tullsen (2003) examine the effect of TA s on

energy usage and power consumption, in the context of

the Intel Pentium 4 processor. The authors evaluate the

compiler optimization levels, besides three

optimizations, namely, loop unrolling, loop vectorization

and inline. They demonstrate that enabling TAs leads to

reduce energy consumption; although such reduction

comes from a reduction in program runtime.
Eyerman et al. (2008) evaluate the performance impact

of TAs on superscalar processors. Similar to Seng and

Tullsen (2003), Eyerman et al. (2008) also evaluates the

compiler optimization levels, besides several individual

TAs. The results indicate TAs have different performance

impact on in-order versus out-of-order processors.
Ibrahim et al. (2009) evaluate the influence of the

compiler optimization levels on the energy and power

consumption, but in the context of embedded software.

They demonstrate high compiler optimization levels

reduce the runtime, however, increasing power

consumption. In addition, they demonstrate TAs may

decrease both memory references and data cache miss

rate, increasing IPC, as well. However, such behavior

consequently increases power consumption.
Foleiss et al. (2011) evaluate the effect of TAs on code

size, in the context of code generation targeting small

footprint and low energy consumption. The goal of this

research is to identify which TAs are heavily related, in

respect to code size reduction. They demonstrate single

TA does not lead to interesting results and it is necessary

to combine several TAs to generate small code.
Instead of evaluating TAs, Lee et al. (2012) propose a

compiler optimization strategy to reduce cache power with

victim cache. Their proposal improves performance,

besides reducing power consumption by minimizing

accesses to the L2 cache, miss rate and miss penalty. To

achieve this goal, they propose an approach which analyzes

an application, perform scheduling and then insert the

instrumentation instructions in the code to control victim

cache. They demonstrate compiler optimizations can

improve performance related to cache access.
Dong et al. (2015) study how TAs influence traditional

symbolic execution. They focus on clang/LLVM’s TAs,
trying to understant how different TAs influence the
performance of symbolic execution across different
program classes. They demonstrate that applying some
TAs in a pre-defined order leads to a slowdown. As a

result, they indicate TAs should be chosen carefully when
performing symbolic execution.

Hariri et al. (2016) study how TAs affect the cost and

results of mutation testing performed at the compiler

intermediate representation. They demonstrate that using

high compiler optimization levels, the total number of

mutants generated is higher than at a low compiler

optimization level. This means mutation testing can use

very high compiler optimization levels.
Yuan et al. (2018) evaluate the TAs effect on system-

level near field EMI. They demonstrate that different TAs

have large EMI impact for the same program.
As can be observed in this section, these researches

differ from our research because our goal is to understand

the relationship between TAs, IR and target code’s

performance and not only evaluating the TAs impact on

performance.

Code Transformation Algorithms

Modern compilers (Aho et al., 2006) provide several

code transformations (Muchnick, 1997), which can be

turned on or off during target code generation, to

improve the target code quality. However, it is a difficult

task to discover what transformations should be turned

on or off. To address this issue, compiler developers

provide several code transformation sequences, well-

known as compiler optimization levels.
A compiler optimization level is composed of analysis

and transformation algorithms. The former analyzes the

code and adds instrumentation on it. The later transforms

the code hoping to improve the performance.
The clang/LLVM compiler provides three levels for

runtime performance, as follows:

O1: This level applies transformations which optimize

quickly
O2: This level applies transformations practically

certain to produce better performance
O3: This level applies transformations likely to have a

beneficial effect

Table 1 Presents the analysis and transformations

algorithms existing in clang/LLVM compiler, which are

applied at compiler IR level.
The sequences of the three clang/LLVM optimization

levels represent the order of application, of each analysis

and/or transformation algorithm.
It is important to realize that some algorithms are

repeated. This happens for one out of two reasons, a

specific transformation needs a specific analysis or some

transformations open space for another.
The clang/LLVM optimization levels comprise 130,

142 and 143 algorithms, respectively for O1, O2 and O3.

However, only 64 different algorithms are used, 19

analysis and 45 transformations.
It is possible to realize that O1, O2 and O3 are actually

clang/LLVM optimization levels. The level O2 removes

always-inline from O1 and adds mldst-motion, constmerge,

elim-avail-extern, globaldce, gvn, inline, mldst-motion and

slp-vectorizer.

../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520

Anderson Faustino da Silva and Leonardo Deganello de Souza / Journal of Computer Science 2019, 15 (11): 1678.1693
DOI: 10.3844/jcssp.2019.1678.1693

1680

Table 1: Clang/LLVM Analysis/Transformations
O1 targetlibinfo tti tbaa scoped-noalias assumption-cache-tracker forceattrs inferattrs ipsccp globalopt domtree mem2reg

deadargelim basicaa aa domtree instcombine simplifycfg basiccg globals-aa prune-eh always-inline functionattrs domtree sroa

early-cse lazy-value-info jump-threading correlated-propagation simplifycfg basicaa aa domtree instcombine tailcallelim

simplifycfg reassociate domtree loops loop-simplify lcssa loop-rotate basicaa aa licm loop-unswitch simplifycfg basicaa aa

domtree instcombine loops scalar-evolution loop-simplify lcssa indvars aa loop-idiom loop- deletion loop-unroll basicaa aa

memdep memcpyopt sccp domtree demanded-bits bdce basicaa aa instcombine lazy- value-info jump-threading correlated-

propagation domtree basicaa aa memdep dse loops loop-simplify lcssa aa licm adce simplifycfg basicaa aa domtree

instcombine barrier basiccg rpo-functionattrs basiccg globals-aa float2int domtree loops loop-simplify lcssa loop-rotate

branch-prob block-freq scalar-evolution basicaa aa loop-accesses demanded-bits loop- vectorize instcombine simplifycfg

basicaa aa domtree instcombine loops loop-simplify lcssa scalar-evolution loop-unroll basicaa aa instcombine loop-simplify

lcssa aa licm scalar-evolution alignment-from-assumptions strip-dead-prototypes verify
O2 targetlibinfo tti tbaa scoped-noalias assumption-cache-tracker forceattrs inferattrs ipsccp globalopt domtree mem2reg

deadargelim basicaa aa domtree instcombine simplifycfg basiccg globals-aa prune-eh inline functionattrs domtree sroa

early-cse lazy-value-info jump-threading correlated-propagation simplifycfg basicaa aa domtree instcombine tailcallelim

simplifycfg reassociate domtree loops loop-simplify lcssa loop-rotate basicaa aa licm loop-unswitch simplifycfg basicaa aa

domtree instcombine loops scalar-evolution loop-simplify lcssa indvars aa loop-idiom loop-deletion loop-unroll basicaa aa

mldst-motion aa memdep gvn basicaa aa memdep memcpyopt sccp domtree demanded-bits bdce basicaa aa instcombine

lazy-value-info jump-threading correlated-propagation domtree basicaa aa memdep dse loops loop-simplify lcssa aa licm adce

simplifycfg basicaa aa domtree instcombine barrier basiccg rpo-functionattrs elim-avail-extern basiccg globals-aa float2int

domtree loops loop-simplify lcssa loop-rotate branch-prob block-freq scalar-evolution basicaa aa loop-accesses

demanded-bits loop-vectorize instcombine scalar-evolution aa slp-vectorizer simplifycfg basicaa aa domtree instcombine

loops loop-simplify lcssa scalar-evolution loop-unroll basicaa aa instcombine loop-simplify lcssa aa licm scalar-evolution

alignment-from-assumptions strip-dead-prototypes globaldce constmerge verify
O3 targetlibinfo tti tbaa scoped-noalias assumption-cache-tracker forceattrs inferattrs ipsccp globalopt domtree mem2reg

deadargelim basicaa aa domtree instcombine simplifycfg basiccg globals-aa prune-eh inline functionattrs argpromotion

domtree sroa early-cse lazy-value-info jump-threading correlated-propagation simplifycfg basicaa aa domtree instcombine

tailcallelim simplifycfg reassociate domtree loops loop-simplify lcssa loop-rotate basicaa aa licm loop- unswitch

simplifycfg basicaa aa domtree instcombine loops scalar-evolution loop-simplify lcssa indvars aa loop-idiom loop-deletion

loop-unroll basicaa aa mldst-motion aa memdep gvn basicaa aa memdep memcpyopt sccp domtree demanded-bits bdce

basicaa aa instcombine lazy-value-info jump-threading correlated-propagation domtree basicaa aa memdep dse loops loop-

simplify lcssa aa licm adce simplifycfg basicaa aa domtree instcombine barrier basiccg rpo-functionattrs elim-avail-extern

basiccg globals-aa float2int domtree loops loop-simplify lcssa loop-rotate branch-prob block-freq scalar-evolution basicaa aa

loop-accesses demanded-bits loop-vectorize instcombine scalar-evolution aa slp-vectorizer simplifycfg basicaa aa domtree

instcombine loops loop-simplify lcssa scalar-evolution loop-unroll basicaa aa instcombine loop-simplify lcssa aa licm scalar-

evolution alignment-from-assumptions strip-dead-prototypes globaldce constmerge verify
O1 aa adce alignment-from-assumptions always-inline argpromotion assumption-cache-tracker barrier basicaa basiccg bdce

block-freq branch-prob constmerge correlated-propagation deadargelim demanded-bits domtree dse early-cse
U elim-avail-extern float2int functionattrs globals-aa globaldce globalopt gvn indvars inferattrs inline instcombine ipsccp
O2 jump-threading lazy-value-info lcssa licm loop-accesses loop-deletion loop-idiom loop-rotate loop-simplify loop-unroll
U loop-unswitch loop-vectorize loops mem2reg memcpyopt memdep mldst-motion prune-eh reassociate rpo-functionattrs
O3 scalar-evolution sccp scoped-noalias simplifycfg slp-vectorizer sroa strip-dead-prototypes tailcallelim targetlibinfo tbaa tti

verify

An.
aa basicaa basiccg block-freq branch-prob demanded-bits domtree functionattrs globals-aa inferattrs lazy-value-info loops

memdep rpo-functionattrs scoped-noalias targetlibinfo tbaa tti verify
Tr. adce alignment-from-assumptions always-inline argpromotion assumption-cache-tracker barrier bdce constmerge

correlated-propagation deadargelim dse early-cse elim-avail-extern float2int globaldce globalopt gvn indvars inline

instcombine ipsccp jump-threading lcssa licm loop-accesses loop-deletion loop-idiom loop-rotate loop-simplify loop-

unroll loop-unswitch loop-vectorize mem2reg memcpyopt mldst-motion prune-eh reassociate scalar-evolution sccp

simplifycfg slp-vectorizer sroa sroa strip-dead-prototypes tailcallelim
Rep. aa(13,16,16)1 basicaa(10,11,11) basiccg(2,2,2) correlated-propagation(1,1,1) demanded-bits(1,1,1) domtree(10,10,10)

globals-aa(1,1,1) instcombine(7,7,7) jump-threading(1,1,1) lazy-value-info(1,1,1) lcssa(5,5,5) licm(1,2,2) loop-

rotate(1,1,1) loop-simplify(5,5,5) loop-unroll(1,1,1) loops(4,4,4) memdep(1,2,2) scalar-evolution(3,4,4) simplifycfg(5,5,5)
1X(a,b,c) = X: analysis/transformation algorithm, a: O1 repetitions, b: O2 repetitions, c: O3:repetitions

Anderson Faustino da Silva and Leonardo Deganello de Souza / Journal of Computer Science 2019, 15 (11): 1678.1693
DOI: 10.3844/jcssp.2019.1678.1693

1681

In turn, the level O3 adds to the sequence O2
argpromotion. As can be seen in Table 1, the repetition of
some algorithms follows the same pattern for the levels O2
and O3. In addition, these levels increase the repetitions of
the aa, basicaa, licm, memdep and scalar-evolution
algorithms when compared to the level O1.

Details about each TA can be found at www.llvm.org.

Methodology

To analyze the behavior of TAs, we perform
several experiments. In addition to describing how the
experiments are performed, this section describes the
experimental setup and outlines the methodology used
in all experiments.

Hardware and Software

 Hardware Intel: Core i7-3770 processor with a

frequency of 3.40GHz, 8 MB cache and 8 GB of RAM
 Operating system: Debian 4.9.110-3 with kernel

4.9.0-8- amd.
 Compilation system: We use clang/LLVM (Lattner

and Adve, 2004; Team, 2019).
 Code transformation: We evaluate the TAs:

[O1UO2 UO3]
 Benchmarks: SPEC CPU2006 Benchmark suite

(Henning, 2006; Corporation, 2019), with train
dataset

Evaluating the TA Impact at the IR

To fulfill the goal of this research, we evaluate the TA

impact at the IR using two different features. They are:

1. a CFG-based features and
2. a DNA-based features

The features are collected at compile time, after the
compiler applies a TA, by modules we implemented for
this purpose.

In our experiments, each program is compiled using a
single TA, besides compiling without using a TA. In this
way, it is possible to evaluate the transformations
performed at the IR level.

In addition, we evaluate the TA impact at the IR in

terms of performance, collecting the program runtime.

The CFG-Based Features

The Control Flow Graph (CFG) features are a subset

of the features proposed by Namolaru et al. (2010),

which are numeric features extracted from relationships

between the program entities. The importance of these

features is due to Namolaru et al. (2010) prove their

influence on parameterizing code-generating systems, to

generate good target code.
We use a subset of the aforementioned features because

some features are related to instructions’ programs. We

will evaluate the instructions’ programs, however, using

different features.
Table 2 shows the CFG-based features extracted from

the IR and used during the analysis.

The DNA-based Features

The DNA-based features characterize each

instruction of the IR as a gene, which composes a DNA.
DNA has a great advantage as program features, it

captures all of the program’s structures and encodes all of

its instructions simultaneously.
The clang/LLVM IR is composed of 57 instructions.

Thus, we have 57 different genes. These genes is

presented in Table 3.
The genes can be grouped into eight groups, as

follows:

 Terminator instructions: A, B, C, D, E, F, G
 Binary operations: H, I, J, K, L, M, N, O, P, Q, R, S
 Bitwise operations: T, U, V, X, W, Y
 Vector instructions: Z, a, b
 Aggregate instructions: c, d
 Memory instructions: e, f, g, h, i, j, k
 Conversion instructions: l, m, n, o, p, q, r, s, t, u, v,

x, w; and
 Other instructions: y, z, 0, 1, 2, 3, 4

Metrics to Evaluate CFG-based Features

Our evaluation uses the following metrics: diversity,

decreasing value, increasing value, removal, adding and

rate of change.
An important issue to be considered is the diversity

of programs. This is an important metric because if there

were no diversity, it would be difficult to understand

how TAs perform in programs with distant structures. In

fact, in the absence of diversity would be necessary to

change the set of programs.
Decreasing and increasing value, removal and

adding evaluate how a TA changes a feature. As a
result, it is possible to understand what modifications
are made to the CFG. In addition, we want to evaluate
the rate of change in the CFG.

Metrics to Evaluate DNA-based Features

We use a DNA-approach to evaluate the changes
made into the IR. For this purpose, we use the algorithm
proposed by Needleman and Wunsch (1970).

Needleman and Wunsch propose an optimal global

alignment algorithm to find similarities between two

biological sequences. The iterative algorithm considers

all possible pair combinations that can be constructed

from two amino-acid sequences. As a result, the

algorithm returns a score which indicates the similarity

between two amino-acid sequences.

../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
http://www.llvm.org/
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520

Anderson Faustino da Silva and Leonardo Deganello de Souza / Journal of Computer Science 2019, 15 (11): 1678.1693
DOI: 10.3844/jcssp.2019.1678.1693

1682

Table 2: CFG-based features
(F01) phi-nodes in BBs
(F02) edges in the control flow graph
(F03) critical edges in the control flow graph (F04) BBs
(F05) BBs with a single pred (F06) BBs with a single succ
(F07) BBs with a single pred and a single succ (F08) BBs with a single pred and two succs (F09) BBs with two pred
(F10) BBs with two succs
(F11) BBs with two pred and one succ (F12) BBs with two pred and two succs (F13) BBs with more than two preds (F14) BBs with

more than two succs (F15) BBs with more than two succs and
more than two preds
(F16) BBs with number of insts greater than 500 (F17) BBs with number of insts in [15, 500] (F18) BBs with number of insts less

than 15 (F19) BBs with no phi-nodes
(F20) BBs with less than three phi-nodes (F21) BBs with more than three phi-nodes
(F22) average of instructions per basic block
BBs = basic blocks
pred = predecessor, preds = predecessors
succ = successor, succs = successors
insts = instructions

Table 3: DNA-based features
Instruction Gene Instruction Gene
Br A InsertValue d
Switch B Load e
IndirectBr C Store f
Ret D Alloca g
Invoke E Fence h
Resume F AtomicRMW i
Unreachable G AtomicCmpXchg j
Add H GetElementPtr k
Sub I Trunc l
Mul J Zext m
Udiv K Sext n
Sdiv L UIToFP o
Urem M SIToFP p
Srem N PtrToInt q
Fadd O IntToPtr r
Fsub P BitCast s
Fmul Q AddrSpace t
Fdiv R FPTrunc u
Frem S FPExt v
Shl T FPToUI x
LShr U FPToSI w
Ashr V Icmp y
And X FCmp z
Or W Select 0
Xor Y VAArg 1
ExtractElement Z LandingPad 2
InsertElement a PHI 3
ShuffleVector b Call 4
ExtractValue c

Based on the results provided by this aforementioned

algorithm, we use the following metrics: matches,

mismatches and indels.
Matches indicate how many genes, from two DNA

sequences, are similar. Mismatches indicate the otherwise.

Finally, indels indicate how many gaps there are in DNA(s).
In addition, we evaluate the diversity of programs.

However, from a different perspective of view.

Metric to Evaluate Performance

We also evaluate the performance of each TA, in terms

of the target code’s runtime. The performance metric

measures the improvement of the target code when the

system applies a TA during target code generation, over

the target code without applying a TA. Such metric

(improvement) is measured as follows:

Anderson Faustino da Silva and Leonardo Deganello de Souza / Journal of Computer Science 2019, 15 (11): 1678.1693
DOI: 10.3844/jcssp.2019.1678.1693

1683

 100 1
runtime with TA

Improvement
runtime without TA

 
   
 

Collecting Data

The results are based on the arithmetic average of five

executions. In addition, the machine workload was as

minimal as possible.

Evaluating the CFG-Based Features

Diversity

According to CFG-based features, the programs are

clustering as shown in Fig. 1.
Two programs stand out, PERLBENCH and GCC. The

former is next to a cluster consisting of 3 programs. While

the latter stands out among all other programs. Also, if we

formed only 2 clusters, one would be formed by GCC while

the other programs would form the second cluster.
There is an imbalance between the five clusters,

concerning the number of programs that compose them.

Only two clusters comprise 70% of the programs, i.e. 12

programs. However, even in the face of such imbalance,

there is diversity among such programs.

Our Findings

Tables 4 and 5 indicate the changes made by a TA

in each CFG-based feature, the number of programs

affect by a TA (#P) and the average rate of change

performed in a feature’s value (Avg). The changes are

indicated as follows:

1. Decreasing value (↓)

2. Increasing value (↑)

3. Removal (-)

4. Adding (+) and

5. No modification (=)

As an example, the entry = indicates the feature
F01 had different behaviors for different programs, when
the programs were compiled applying adce. In other

words, for the feature F01 three different situations

occurred depending on the program.
Tables 4 and 5 shows results for 30 TAs, out of 64

available in [O1 O2 O3], because only 30 TAs cause

changes in the CFG-based features.
Based on CFG-based features, TAs can be classified

into two groups: (1) those that are weakly influenced by

the code structure and (2) those that are heavily influenced

by the code structure.
A TA of the first group is one that can be applied

indiscriminately in any program, which will cause

changes in its CFG. This occurs with 9 TAs: early-cse,

gvn, inline, instcombine, jump-threading, loop-rotate,

mem2reg, simplifycfg and sroa.

On the other hand, a TA of the second group should be
chosen according to the structure of the program. This is
necessary due to such TA need specific structures to cause a
transformation in the program’s CFG. Therefore, 9 TAs
(14%) change the CFG-based features of the entire universe
of evaluated programs, 21 TAs (33%) change the CFG-
based features of a sub-set of evaluated programs, while 34
TAs (53%) do not affect any program evaluated.

Few TAs add or remove features. Only 6 TAs add

features: Gvn, inline, jump-threading, mem2reg, sroa and

tailcallelim.
The removal of features only occurs in the application

of 4 TAs: simplifycfg, early-cse, mem2reg and sroa.
The TAs mem2reg and sroa are special cases. Such

TAs can change, increase, or reduce the value of a feature,
as well as remove or add features.

Observing the rate of change in the value of a feature is
possible grouping the TAs into six distinct groups, they are:

 rate > 200%: mem2reg and sroa
 60% < rate < 90%: gvn and instcombine
 10% < rate < 40%: jump-threading, loop-rotate and

simplifycfg
 7% < rate < 9%: early-cse and inline
 1% < rate < 2%: indvars, licm,

loop-deletion, loop-idiom,
loop-unroll, loop-unswitch and
loop-vectorize; and

 rate <1%: adce, bdce, correlated-propagation,

dse, globalopt, ipsccp, lcssa
 loop-simplify, memcpyopt,
 prune-eh, reassociate, sccp, slp-vectorizer and

tailcallelim

A few TAs change the CFG-based features

considerably. Depending on the rate used, we can only

consider two or four TAs. In this context, five TAs has a

modest effect on the CFG-based features. On the other

hand, 47% has a small effect (almost insignificant) on the

CFG-based features.
An important issue to be evaluated is how much such

changes in the CFG, of a particular program, affect

performance. This issue will be assessed after.
The results indicate compiler users should know the

structure of your program and the characteristics of a
particular TA, to choose which TAs apply to your code.
As mentioned before, in an attempt to minimize such
probe compiler developers provide various compiler
optimizations levels. In this way, the user does not need to
choose what TAs to apply, instead, he/she can just use
a pre-defined TA sequence. However, several
researches in the literature indicate the best approach, in
search for performance, is to create a specific sequence
for each program (Tartara and Crespi Reghizzi, 2013;
De Lima et al., 2013a; 2013b; Queiroz Junior and da
Silva, 2015; Siraichi et al., 2016; Filho et al., 2018).

../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520

Anderson Faustino da Silva and Leonardo Deganello de Souza / Journal of Computer Science 2019, 15 (11): 1678.1693
DOI: 10.3844/jcssp.2019.1678.1693

1684

Table 4: Results for CFG-based features (Part I)
 Features
 --
Transformation F01 F02 F03 F04 F05 F06 F07 F08 F09 F10 F11 #P jAvgj
Adce = = = = = = = = = = = 7 0.81
Bdce = = = = = = = = = = = 7 0.81
Correlated-propagation = = = = = = = = = = = 1 0.08
Dse = = = = = = = = = = = 7 0.04
early-cse = = = = = = = = = = = 17 7.91
globalopt = = = = = = = = = = = 2 0.05
gvn   =    = = = = = 17 64.40
indvars = = = = = = = = = = = 16 1.07
inline =  =    = =   = 17 8.54
instcombine  = = = = = = = = = = 17 88.71
ipsccp = = = = = = = = = = = 11 0.06
jump-threading       = =  =  = 17 30.42
lcssa = = = = = = = = = = = 4 0.58
licm = = = = = = = = = = = 16 1.09
loop-deletion = = = = = = = = = = = 16 1.07
loop-idiom = = = = = = = = = = = 16 1.07
loop-rotate =    = = = =   = 17 10.88
loop-simplify = = = = = = = = = = = 16 0.98
loop-unroll = = = = = = = = = = = 16 1.02
loop-unswitch = = = = = = = = = = = 16 1.07l
oop-vectorize = = = = = = = = = = = 16 1.07
mem2reg  = = = = = = = = = = 17 222.72
memcpyopt = = = = = = = = = = = 2 0.01
prune-eh = = = = = = = = = = = 5 0.64
reassociate = = = = = = = = = = = 14 0.63
sccp = = = = = = = = = = = 3 0.01
simplifycfg =-      = =   = 17 21.42
slp-vectorizer = = = = = = = = = = = 1 0.03
sroa  = = = = = = = = = = 17 225.13
tailcallelim = = = = = = = = = = = 8 0.26

Table 5: Results for CFG-based features (Part II)
 Features
 --
Transformation F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 #P |Avg|
adce = = = = = = = = = = = 7 0.81
bdce = = = = = = = = = = = 7 0.81
correlated-propagation = = = = = = = = = = = 1 0.08
dse = = = = = = = = = = = 7 0.04
early-cse = = = = =-   = = = = 17 7.91
globalopt = = = = = = = = = = = 2 0.05
gvn = = = = = =    =+ = 17 64.40
indvars = = = = = = = = = = = 16 1.07
inline = = = = =+ =    = = 17 8.54
instcombine = = = = =    = = = 17 88.71
ipsccp = = = = = = = = = = = 11 0.06
jump-threading =  = = =     =+  17 30.42
lcssa = = = = = = = = = = = 4 0.58
licm = = = = = = = = = = = 16 1.09
loop-deletion = = = = = = = = = = = 16 1.07
loop-idiom = = = = = = = = = = = 16 1.07
loop-rotate = = = = =     = = 17 10.88
loop-simplify = = = = = = = = = = = 16 0.98
loop-unroll = = = = = = = = = = = 16 1.02

Anderson Faustino da Silva and Leonardo Deganello de Souza / Journal of Computer Science 2019, 15 (11): 1678.1693
DOI: 10.3844/jcssp.2019.1678.1693

1685

Table 5: Continue
loop-unswitch = = = = = = = = = = = 16 1.07l
oop-vectorize = = = = = = = = = = = 16 1.07
mem2reg = = = = =-     +  17 222.72
memcpyopt = = = = = = = = = = = 2 0.01
prune-eh = = = = = = = = = = = 5 0.64
reassociate = = = = = = = = = = = 14 0.63
sccp = = = = = = = = = = = 3 0.01
simplifycfg =  = = =     =  17 21.42
slp-vectorizer = = = = = = = = = = = 1 0.03
sroa = = = = =-     +  17 225.13
tailcallelim = = = = = = = = = + = 8 0.26

Table 6: Results for DNA-based features
Indels

Transformation DNA Matches Mismatches Insertions Removals #Programs
Adc 186916.14 186355.0 28.79 0.0 532.36 14
Bdce 186916.14 186354.0 28.79 0.0 533.36 14
correlated-propagation 1037375.0 1037371.0 0.0 0.0 4.0 1
dse 198823.85 198679.92 0.62 0.0 143.31 13
early-cse 155068.35 134456.71 854.71 10.59 19756.94 17
globalopt 199072.83 199063.42 0.08 12.58 9.33 12
gvn 155068.35 140944.0 4765.06 2804.76 9359.29 17
indvars 164382.81 164378.56 3.06 161.44 1.19 16
inline 155068.35 154760.53 307.06 61356.47 0.76 17
instcombine 155068.35 125791.06 13555.65 2367.88 15721.65 17
ipsccp 169402.47 169166.53 5.93 0.0 230.0 15
jump-threading 155068.35 149717.24 638.41 730.12 4712.71 17
lcssa 122665.00 122665.0 0.0 11.0 0.0 4
licm 164382.81 163978.44 68.19 467.13 336.19 16
loop-deletion 164382.81 164378.63 3.06 161.38 1.13 16
loop-idiom 164382.81 164378.63 3.06 161.38 1.13 16
loop-rotate 155068.35 153331.82 1512.82 3645.71 223.71 17
loop-simplify 164382.81 164378.63 3.06 158.63 1.13 16
loop-unroll 164382.81 164376.5 3.13 163.31 3.19 16
loop-unswitch 164382.81 164378.63 3.06 161.38 1.13 16
loop-vectorize 164382.81 164378.63 3.06 161.38 1.13 16
mem2reg 155068.35 98811.94 12866.29 537.29 43390.12 17
memcpyopt 227864.67 227805.67 37.22 0.0 21.78 9
prune-eh 115949.60 115321.4 401.4 345.2 226.8 5
reassociate 155068.35 154425.53 82.65 62.0 560.18 17
sccp 184486.23 184329.38 9.38 0.0 147.46 13
simplifycfg 155068.35 146342.76 2375.76 771.71 6349.82 17
slp-vectorizer 122814.00 122741.0 56.0 92.5 17.0 4
sroa 155068.35 98244.53 12977.41 559.47 43846.41 17
tailcallelim 248673.00 248663.13 0.38 18.88 9.5 8

Table 7: The patterns
Transformation Exchange Insertion Removal
Adce MT MM CT OT - T M C O
Bdce MT MM CT OT - I M C O
correlated-propagation - - O
dse MM OT - T B M C O
early-cse TC TB TM TO BB BO BM BI B)C T B I M C O T B I A M C O
 BT IT IB IC II IM IO MB MC
 MM MO MI MT CI CO CM CB
 CC CT OT OB OC OO OM
Globalopt MM M C O M O
gvn TA TC TB TI TM TO TT BC BB T B I A M C O T B I A M C O
 BO BM BI BT IC IM II IT IO

Anderson Faustino da Silva and Leonardo Deganello de Souza / Journal of Computer Science 2019, 15 (11): 1678.1693
DOI: 10.3844/jcssp.2019.1678.1693

1686

Table 7: Continue
 AT AO MA MB MC MM MO MI
 MT CI CO CM CB CC CA CT OT
 OB OC OA OO OM OI
indvars TT T C O C O
inline TC TB TM TO TT BO BM BC IT T B I A M C O T O
 IC MO MT MM MC CO CM CC
 OT OB OC OO OM
instcombine TC TB TI TM TO TT BC BB BO T B I M C O T B I A M C O
 BMBI BT IB II IMIO IT IC AT
 AM MB MC MM MO MI MT CI
 CO CMCB CC CA CT OT OB OC
 OO OM OI
ipsccp TM TO BO MT MO OT - T B I M C O
jump-threading TA TB TI TM TC TO TT BM BT T B I A M C O T B I A M C O
 IC IMIO AOMBMMMOMIMT
)C C)O C)M O)T O)C O)O O)M O)I
lcssa - O -
licm TM TC TO TT BB BM AM MB T I M C O T B I M C O
 MM MO MI MT MC CA CO CM
 T OT OO OM OC
loop-deletion TT T O O
loop-idiom TT T O O
loop-rotate TM TO TT IT MC MM MO MI
 MT CT OT OO OM OI T B I M C O T M O
loop-simplify TT T O O
loop-unroll TT OT T M C O T M C O
loop-unswitch TT T O O
loop-vectorize TT T O O
mem2reg TC TB TI TM TO TT BC BB BA T B I M C O T B I A M C O
 BO BMBI BT IB II I)MIO I)T IC
 AT AO MA MB MC MM MO MI
 MT CI CO CM CB CC CT OT OB
 OC OO OM OI
memcpyopt MM M)O MC CO OM M C O
prune-eh TM TC TO TT AT AO MO MT T M C O T A M C O
 CO CT OT OO OM
reassociate TB TO BC BB BO BM IB IM MB B I M T B I M C O
 C MM MO MI MT CB CT OT
 OB
sccp BT IT MT MO CT O T T B I M C O
simplifycfg TC TB TI TM TO TT BB BO BM T B I A M C O T B I A M C O
 T BC IT IM II IO IC AT AM
 AO AA AC MA MB MC MM MO
 MI MT CI CO CM CC CT OT OB
 OC OA OO OM OI
slp-vectorizer BM BV MB MC MM MV CM OC B V M C B M C
 OM
Sroa TA TC TB TI TM TO TT BC BB T B I A M C O T B I A M C O
 BA BO BM BI BV BT IB II I)M
 IO IT IC AT AM AO AC MB MC
 MM MO MI MT MV MA CI CO
 CMCB CC CA CV CT OV OT OB
 OC OA OM OO OI
tailcallelim TT T O O
T = terminator, B = binary, I = bitwise, V = vector, A = aggregate, M = memory, C = conversion, O = other

Anderson Faustino da Silva and Leonardo Deganello de Souza / Journal of Computer Science 2019, 15 (11): 1678.1693
DOI: 10.3844/jcssp.2019.1678.1693

1687

Table 8: The improvements
 General Only Improvement
 -- --------------------------------------
Transformation Min Avg Max Min Avg Max #Programs
O1 - - - 18.76 73.52 165.27 17
O2 - - - 16.89 95.02 194.38 17
O3 - - - 17.09 94.20 192.13 17
adce -10.48 -3.02 2.19 0.18 1.06 2.19 3
bdce -9.20 -3.30 1.31 1.03 1.20 1.31 3
correlated-propagation -10.17 -3.33 0.94 0.73 0.84 0.94 3
dse -10.01 -3.62 3.03 0.59 1.81 3.03 2
early-cse -3.54 0.64 9.67 0.01 2.50 9.67 11
globalopt -12.60 -4.02 4.03 0.27 1.74 4.03 3
gvn -3.31 4.23 23.40 0.01 7.13 23.40 11
indvars -11.05 -3.92 4.54 1.17 2.35 4.54 3
inline -11.23 0.09 18.35 0.61 10.43 18.35 6
instcombine -9.76 3.00 14.00 0.28 6.11 14.00 12
ipsccp -9.61 -4.07 4.25 0.44 1.71 4.25 3
jump-threading -10.73 -3.54 5.44 0.04 2.60 5.44 4
lcssa -13.42 -4.92 4.88 4.88 4.88 4.88 1
licm -10.77 -4.54 5.11 1.01 2.87 5.11 3
loop-deletion -10.02 -4.46 4.55 1.03 2.30 4.55 3
loop-idiom -11.34 -4.19 4.55 0.14 1.83 4.55 3
loop-rotate -8.86 -2.64 5.58 0.26 2.21 5.58 6
loop-simplify -10.29 -4.65 3.72 0.75 2.24 3.72 2
loop-unroll -10.68 -4.43 3.75 1.12 2.44 3.75 2
loop-unswitch -12.34 -4.81 2.97 0.80 1.89 2.97 2
loop-vectorize -14.54 -5.44 3.24 3.24 3.24 3.24 1
mem2reg 16.06 55.25 116.14 16.06 55.25 116.14 17
memcpyopt -14.48 -4.92 3.78 0.38 2.08 3.78 2
prune-eh -11.83 -4.43 1.13 0.59 0.92 1.13 3
reassociate -13.46 -5.17 1.72 0.19 0.95 1.72 2
sccp -10.57 -3.54 1.51 0.13 1.01 1.51 3
simplifycfg -11.06 -3.94 1.7 0.09 0.83 1.70 4
slp-vectorizer -10.66 -3.15 2.42 0.29 1.41 2.42 4
sroa 16.42 57.17 125.44 16.42 57.17 125.44 17
tailcallelim -11.17 -3.28 3.34 0.14 1.89 3.34 5

Fig. 1: Clustering

povray

gobmk

h264ref

perlbench

soplex

namd

hmmer

omnetpp

sjeng

milc

bzip2

sphinx3

libquantum

astar

mcf

lbm

gcc

Anderson Faustino da Silva and Leonardo Deganello de Souza / Journal of Computer Science 2019, 15 (11): 1678.1693
DOI: 10.3844/jcssp.2019.1678.1693

1688

Fig. 2: Clustering

Fig. 3: The distribuition of instructions

Evaluating the DNA-Based Features

Diversity

Again, we will go into the diversity between

programs, however, according to the instructions that

compose it. Figure 2 displays the clusters of programs.
Clustering the programs based on DNA-based

features (their instructions) follows the same distribution
of clustering based on CFG-based features.
PERLBENCH and GCC are the two programs highlight,
the clusters remain unbalanced and only two clusters
comprise 70% of the programs. However, there are two
changes related to smaller clusters. First, H264REF
forms a cluster with GOBMK and not with POVRAY.

Second, SOPLEX forms a cluster with HMMER and not
with NAMD.

An Overview of the Programs

A representation based on IR instructions makes it
possible to analyze the distribution of the instructions that
compose the programs. Figure 3 shows the distribution of
instructions according to their classes, without using a TA.

The composition of the programs is dominated by

memory instructions. These instructions consume from

46.91% to 73.38% of total instructions. The second class

that dominates most programs (15 in the case) is the

terminator instructions, with a percentage ranging from

10.81% to 21.03%. Only the programs LBM and NAMD

h264ref

gobmk

povray

perlbench

soplex

hmmer

namd

omnetpp

sjeng

bzip2

milc

sphinx3

mcf

lbm

libquantum

astar

gcc

100

80

60

40

20

0

terminator

binary

bitwise
vector

aggregate

memory

conversion

others

as
ta

r

b
zi

p
2

g
cc

g
o

b
m

k

h
2

6
4

re
f

h
m

m
er

lb
m

li
b

q
u

an
tu

m

m
il

c

m
cf

n
am

d

o
m

n
et

p
p

p
er

lb
em

ch

p
o

v
ra

y

sj
en

g

so
p

le
x

sp
h

in
x

3

../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520

Anderson Faustino da Silva and Leonardo Deganello de Souza / Journal of Computer Science 2019, 15 (11): 1678.1693
DOI: 10.3844/jcssp.2019.1678.1693

1689

have the second dominant class the binary operations,

whose percentages are 33.80% and 11.24%, respectively.
Excluding LBM and NAMD, binary instructions do

not compose more than 10% of all instructions. This

pattern is followed by the conversion and other

instructions. The other classes do not consume more than

4% of the instructions.
TAs that reduce the number of memory

instructions have great potential in improving the

performance of programs.

Our Findings

Table 6 presents the results obtained using the DNA-

based features. This table displays the length of the DNA

(without using a TA during target code generation), the

number of matches, mismatches and indels, besides the

number of programs affected by the TA. As in the

previous section, only the results for those TAs that affect

programs are displayed.
Twenty three (23) TAs, out of 30, have the ability to

exchange, insert or remove instructions. The other seven

(adce, bdce, correlated-propagation, dse, ipsccp,

memcpyopt and sccp) do not have the ability to insert

instructions.
Related to the change rate in a DNA, some TAs stand

out among others. The TAs gvn, instcombine, mem2reg

and sroa have a superior potential in exchanging

instructions when compared with other TAs. Regarding the

insertion of instructions, no TA compares to inline. This

was already expected, by the nature of this transformation

that exchanges a function call for its body.
In terms of IR change rate, it is difficult to determine

which would be an ideal rate without analyzing the classes

of the instructions and consequently the correspondent

machine instructions (assembly). Remember each

assembly instruction has a cost, which is determined in

clock cycles. In this way, to improve program

performance (reduce its runtime) the ideal is to reduce the

number of assembly instructions in the target code and

preferably reduce those instructions that have a high cost

(memory access instructions). This indicates that although

Table 6 presents theoretically low rates, these can have a

significant impact on the performance of the target code.

This will be shown in the next section.
Regardless of the change rate, our goal is understand

how TAs affect IR. In this context, we can notice that

different TAs operate in different degrees, but usually

always performing three distinct actions (remove, insert

and exchange). It is also clear, from the results, although

TAs have the potential to do three distinct actions, one

action always dominates the others. This means, TAs are

classified as follows:

1. TAs whose predominant action is to insert

instructions: global-opt, ind-vars, inline, lcssa, licm

loop-deletion, loop-idiom, loop-rotate, loop-simplify

loop-unroll, loop-unswitch loop-vectorize, slp-

vectorizer and tailcallelim

2. TAs whose predominant action is to remove

instructions: adce, bdce correlated-propagation, dse

early-cse, gvn, instcombine, ipsccp, jump-threading,

mem2reg, reassociate, sccp, simplifycfg and sroa

3. TAs whose predominant action is to exchange

instructions: memcpyopt and prune-eh

Several TAs affect most programs, only four TAs

impact less than 50% of the programs (correlated-

propagation, lcssa, prune-eh and slp-vectorizer).
Comparing the results obtained by the two different

features, it is possible to notice a difference in the number

of programs affected by some TA. Analyzing the

instructions that compose a program, it is possible to

realize a greater amount of TAs affects the programs and

not the amount specified by an analysis based only on the

CFG of the program.
The analysis based on DNA-based features indicates

adce, bdce affect 82% and not only 4% of the evaluated

programs; globalopt affects 71% and not 12%; ipsccp

affects 88% and not 65%; memcpyopt affects 53% and not

12%; reassociate affects 100% and not 82%; sccp affects

76% and not 18%; and slp-vectorizer affects 24% and not

5%. This is due to the CFG-based features is a macro

representation, compared to the DNA-based features.
Table 7 shows the patterns in the transformation of a

DNA. In this table, the second column presents the source

and target class in an instruction exchange. The third and

fourth columns display the classes of the instructions,

which are inserted and removed.
Several TAs operate on several classes of

instructions, such as early-cse, gvn,

inline, instcombine, jump-threading, licm, loop-rotate,

mem2reg, reassociate, simplifycfg and sroa. Only sroa

operates with all classes of instructions. In addition, a

few TAs follow the same pattern, namely, loop-

deletion loop-idiom, loop-simplify loop-unswitch,

loop-vectorize and tailcallelim. These are the TAs

with the smallest scope of action.
Two TAs handle vector instructions, slp-vectorize, as

expected, as well as sroa. However, while sroa only

exchange some instructions for vector instructions, slp-

vectorize changes vector instructions as well as inserts

new vector instructions in the IR.

Improvement

Finally, the last question analyzed is the performance

of the TAs related to reducing the program runtime.

../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520

Anderson Faustino da Silva and Leonardo Deganello de Souza / Journal of Computer Science 2019, 15 (11): 1678.1693
DOI: 10.3844/jcssp.2019.1678.1693

1690

100

80

60

40

20

0

100

80

60

40

20

0

100

80

60

40

20

0

100

80

60

40

20

0

as
ta

r

b
zi

p
2

g
cc

g
o
b

m
k

h
2
6
4

re
f

h
m

m
er

lb
m

li
b

q
u

an
tu

m

m
il

c

m
cf

n
am

d

o
m

n
et

p
p

p
er

lb
em

ch

p
o
v

ra
y

sj
en

g

so
p
le

x

sp
h
in

x
3

terminator

binary
bitwise
vector
aggregate
memory

conversion

others

terminator
binary
bitwise
vector
aggregate
memory
conversion
others

(a) early-cse

as
ta

r

b
zi

p
2

g
cc

g
o
b

m
k

h
2
6
4

re
f

h
m

m
er

lb
m

li
b

q
u

an
tu

m

m
il

c

m
cf

n
am

d

o
m

n
et

p
p

p
er

lb
em

ch

p
o
v

ra
y

sj
en

g

so
p
le

x

sp
h
in

x
3

(b) gvn

terminator
binary
bitwise
vector
aggregate
memory
conversion
others

as
ta

r

b
zi

p
2

g
cc

g
o
b

m
k

h
2
6
4

re
f

h
m

m
er

lb
m

li
b

q
u

an
tu

m

m
il

c

m
cf

n
am

d

o
m

n
et

p
p

p
er

lb
em

ch

p
o
v

ra
y

sj
en

g

so
p
le

x

sp
h
in

x
3

(c) instcombine

as
ta

r

b
zi

p
2

g
cc

g
o
b

m
k

h
2
6
4

re
f

h
m

m
er

lb
m

li
b

q
u

an
tu

m

m
il

c

m
cf

n
am

d

o
m

n
et

p
p

p
er

lb
em

ch

p
o
v

ra
y

sj
en

g

so
p
le

x

sp
h
in

x
3

terminator
binary
bitwise
vector
aggregate
memory
conversion
others

(d) Mem2reg

Anderson Faustino da Silva and Leonardo Deganello de Souza / Journal of Computer Science 2019, 15 (11): 1678.1693
DOI: 10.3844/jcssp.2019.1678.1693

1691

Fig. 4: The distribution of instruction

This analysis is essential to corroborate the results

presented in the previous sections.
Table 8 shows the improvement performed by each

TA and the three compiler optimization levels. This table

presents minimum, maximum and average improvement,

besides presents the same metrics considering only

programs which have performance gain.
Several TAs (25) cause an average loss of performance.

On the other hand, considering only the TAs which have

achieved a performance gain, the scenario is different. In

this case, the average performance gain is up to 3%, but for

no more than 4 programs. Inline is an exception to this case.

Although, inline does not achieve an average performance

considering the total programs, inline achieves a

performance gain of 10.43%, when it is considered the

programs that achieve performance gain.
It is evident that although several TAs change the

characteristics of the IR, such changes may have an

undesired effect. As mentioned before, although such

algorithms are considered optimizations there is no

guarantee of performance gain. Due to this fact, some

researchers prefer to use the term transformation rather

than optimization.
The most effective TAs are early-cse, gvn, instcombine,

mem2reg and sroa, both in terms of performance gain

achieved and field of activity. The average performance

gain achieved by the first three TAs reaches 4.23%

overall. Whereas for the subset of programs with

performance gain, the average gain reaches 7.30% for a

universe of 12 out of 17 programs.
The two excellent TAs are mem2reg and sroa. These

two can achieve a better performance gain than all other

TAs and are capable of improving the performance of all

programs in the universe of the programs evaluated. For

mem2reg and sroa the performance gain reaches 57.17%

in the overall average.
The compiler optimization levels achieve performance

gain for all programs, because they are formed by a

sequence of TAs. For the universe of TAs evaluated, the

performance gain is very far from that achieved by a

compiler optimization level, except for mem2reg and sroa.
The distances between the average performance

obtained by mem2reg and the compiler optimizations

levels are 24.81%, 41.85%, 41.35%, respectively for O1,

O2 and O3 and the distances for sroa are 22.24%, 39.83%,

39.31%, respectively for O1, O2 and O3.
An important issue is to clarify what led early-cse,

gvn, instcombine, mem2reg and sroa to perform better

than the other TAs. In order to clarify this fact, Fig. 4

presents the decomposition of the instructions that

compose the programs, for these five TAs.
The performance gain obtained by these TAs was due to

the reduction of memory instructions. Such reduction

follows a ratio of 4.10%, 5.30%, 6.15%, 24.22% and

24.32%, respectively for early-cse, gvn, instcombine,

mem2reg and sroa. The other classes of instructions had an

increase, which is more accentuated for mem2reg and sroa.

Conclusion

Modern compilers provide several code

transformation algorithms to be applied to the source

code, during target code generation, which goal is to

improve the quality of the target code. Such

algorithms transform the code structure, usually at the

intermediate representation level, without altering the

semantics of the program.
Although the goal of a transformation is to improve the

quality of the target code, in practice this does not always

occur. In fact, a particular transformation can degrade the

performance of a program. This phenomenon is due to the

changes made in the program negatively affect the

components of the hardware in question, such as the

misuse of memory.
In this article, we show how several code

transformation algorithms modify the structure of the

program, at the intermediate representation level. In

addition, we show code transformation algorithms have a

100

80

60

40

20

0

terminator
binary
bitwise
vector
aggregate
memory
conversion
others

as
ta

r

b
zi

p
2

g
cc

g
o
b

m
k

h
2
6
4

re
f

h
m

m
er

lb
m

li
b

q
u

an
tu

m

m
il

c

m
cf

n
am

d

o
m

n
et

p
p

p
er

lb
em

ch

p
o
v

ra
y

sj
en

g

so
p
le

x

sp
h
in

x
3

(e) sroa

../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520
../../../Checking%2520Folder/Mis%2520Rubqa/l%2520

Anderson Faustino da Silva and Leonardo Deganello de Souza / Journal of Computer Science 2019, 15 (11): 1678.1693
DOI: 10.3844/jcssp.2019.1678.1693

1692

direct impact on the reduction of program runtime, when

instructions are removed from the target code, mainly

memory instructions.
As future work, we plan to create a model to infer

what code transformation algorithm the compiler

should enable during target code generation, based on

our findings in this article.

Acknowledgement

This work manuscript undergoing several

modifications before the final version was submitted.

The corresponding author would like to thanks the co-

author and the reviewers.

Author’s Contributions

Anderson Faustino da Silva: Proposes the idea of

this researches, besides performing the experiments and

writing the text
Leonardo Daganello de Souza: Creates a system to

evaluate the data, besides performing some analysis and

creating figures

Ethics

This article is an original research and contains

unpublished material. The authors confirm that there is no

conflict of interest involved.

References

Aho, A.V., M.S. Lam, R. Sethi and J.D. Ullman, 2006.

Compilers: Principles, techniques and tools. Prentice

Hall.
Corporation, S.P.E., 2019.
De Lima, E.D., A.F. da Silva and C. Herrera, 2013a. A

case-based reasoning approach to find good

compiler optimization sequences. Proceedings of the

International Conference Chilean Computer Science

Society, Nov. 11-15, IEEE Xplore Press, Temuco,

Chile, pp: 8-10. DOI: 10.1109/SCCC.2013.21
De Lima, E.D., T.C. de Souza Xavier, A.F. da Silva and

L.B. Ruiz, 2013b. Compiling for performance and

power efficiency. Proceedings of the International

Workshop Power Timing Modeling, Optimization

Simulation, Sept. 9-11, IEEE Xplore Press,

Karlsruhe, Germany, pp: 142-149.

 DOI: 10.1109/PATMOS.2013.6662167
Dong, S., O. Olivo, L. Zhang and S. Khurshid, 2015.

Studying the influence of standard compiler

optimizations on symbolic execution. Proceedings

of the International Symposium Software Reliability

Engineering, Nov. 2-5, IEEE Xplore Press,

Gaithersbury, MD, USA, pp: 205-215.

 DOI: 10.1109/ISSRE.2015.7381814

Eyerman, S., L. Eeckhout and J.E. Smith, 2008.

Studying compiler optimizations on superscalar

processors through interval analysis. Proceedings of

the 3rd International Conference High Performance

Embedded Architectures Compilers, (EAC’08),

Berlin, Heidelberg, pp: 114-129.
Filho, J.F., L.G.A. Rodriguez and A.F. da Silva, 2018. Yet

another intelligent code-generating system: A flexible

and low-cost solution. J. Comput. Sci. Technol., 33:

940-965. DOI: 10.1007/s11390-018-1867-7
Foleiss, J.H., A.F.D. Silva and L.B. Ruiz, 2011. The

effect of combining compiler optimizations on code

size. Proceedings of the 30th International

Conference Chilean Computer Science Society,

Nov. 9-11, IEEE Xplore Press, Curico, Chile, pp:

187-194. DOI: 10.1109/SCCC.2011.25
Hariri, F., A. Shi, H. Converse, S. Khurshid and D.

Marinov, 2016. Evaluating the effects of compiler

optimizations on mutation testing at the compiler IR

level. Proceedings of the 27th International

Symposium Software Reliability Engineering, Oct.

23-27, IEEE Xplore Press, Ottawa, ON, Canada, pp:

105-115. DOI: 10.1109/ISSRE.2016.51
Henning, J.L., 2006. Spec cpu2006 benchmark

descriptions. SIGARCH Comput. Archit. News, 34:

1-17. DOI: 10.1145/1186736.1186737
Ibrahim, M.E.A., M. Rupp and S.E. Habib, 2009.

Compiler-based optimizations impact on embedded
software power consumption. Proceedings of the
Joint IEEE North- East Workshop Circuits Systems
TAISA Conference, Jun. 28-Jul. 1, IEEE Xplore
Press, Toulouse, France pp: 1-4.

 DOI: 10.1109/NEWCAS.2009.5290480
Lattner, C. and V. Adve, 2004. LLVM: A compilation

framework for lifelong program analysis and

transformation. Proceedings of the International

Symposium Code Generation Optimization, Mar.

20-24, IEEE Xplore Press, USA, pp: 75-86.

 DOI: 10.1109/CGO.2004.1281665
Lee, C., J. Chang and R. Chang, 2012. Compiler

optimization to reduce cache power with victim
cache. Proceedings of the 9th International
Conference Ubiquitous Intelligence Computing
Autonomic Trusted Computing, Sept. 4-7, IEEE
Xplore Press, Fukuoka, Japan, pp: 841-844.

 DOI: 10.1109/UIC-ATC.2012.36
Muchnick, S.S., 1997. Advanced compiler design and

implementation. Morgan Kaufmann Publishers Inc.,

San Francisco, CA, USA.
Namolaru, M., A. Cohen, G. Fursin, A. Zaks and A.

Freund, 2010. Practical aggregation of semantical

program properties for machine learning based

optimization. Proceedings of the International

Conference Compilers, Architectures Synthesis

Embedded Systems, Oct. 24-29, Scottsdale, AZ, USA.

ACM, pp: 197-206. DOI: 10.1145/1878921.1878951

Anderson Faustino da Silva and Leonardo Deganello de Souza / Journal of Computer Science 2019, 15 (11): 1678.1693
DOI: 10.3844/jcssp.2019.1678.1693

1693

Needleman, S.B. and C.D. Wunsch, 1970. A general

method applicable to the search for similarities in

the amino acid sequence of two proteins. J.

Molecular Biol., 48: 443-453.

 DOI: 10.1016/0022- 2836(70)90057-4
Queiroz Junior, N.L. and A.F. da Silva, 2015. Finding

good compiler optimization sets - a case-based

reasoning approach. Proceedings of the 17th

International Conference Enterprise Information

Systems, (EIS’15), Barcelona, Spain, pp: 504-515.

DOI: 10.5220/0005380605040515
Scott, M.L., 2009. Programming language pragmatics.

Morgan Kaufmann Publishers, San Francisco,

CA, USA.

Sebesta, R.W., 2009. Concepts of programming languages.

Addison Wesley, San Francisco, CA, USA.
Seng, J.S. and D.M. Tullsen, 2003. The effect of

compiler optimizations on Pentium 4 power

consumption. Proceedings of the Seventh Workshop

Interaction Between Compilers Computer

Architectures, Feb. 8-8, IEEE Xplore Press,

Anaheim, CA, USA, pp: 51-56.

 DOI: 10.1109/INTERA.2003.1192355

Siraichi, M.Y., C. Tonetti and A.F. da Silva, 2016. A

design space exploration of compiler optimizations

guided by hot functions. Proceedings of the

International Conference Chilean Computer Science

Society, Oct. 10-14, IEEE Xplore press, Valparaiso,

Chile, pp: 1-12. DOI: 10.1109/SCCC.2016.7836038

Tartara, M. and S. Crespi Reghizzi, 2013. Continuous

learning of compiler heuristics. ACM Trans.

Architecture Code Optimzation, 9: 1-46.

 DOI: 10.1145/2400682.2400705
Team, L., 2019. The llvm compiler infrastructure.
Yuan, S., P. Lin, C. Su and T.H Chen, 2018. Compiler

options effect on system-level near field EMI.

Proceedings of the International Symposium

Electromagnetic Compatibility Asia-Pacific

Symposium Electromagnetic Compatibility, May

14-18, IEEE Xplore Press, Singapore, Singapore,

pp: 848-851. DOI: 10.1109/ISEMC.2018.8393901

