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Abstract: Modern compilers provide several code transformations, which are 

automatic program transformations applied with the goal of improving the 

program performance. In this article, we investigate how standard compiler 

code transformations, performed at the compiler intermediate representation, 

affect such representation and consequently the performance. Our research 

targets clang/LLVM, a popular compiler infrastructure. Our experimental 

evaluation demonstrates how several code transformations change the 

intermediate representation and consequently improve the target code’s 

performance in terms of runtime. 
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Introduction 

The process of code generation, performed by 
compilers, is divided into two major phases (Aho et al., 
2006; Sebesta, 2009; Scott, 2009). The first, analysis, 
analyzes the source code to verify its correctness 
according to the rules defined by the programming 
language. The second, synthesis, transforms the source 
code in the target code. In general, each phase can be 
subdivided into several sub-phases, where the number of 
phases will depend on the compiler. 

Although the number of phases of modern compilers 

is different, they have in common a code optimization 

phase (Muchnick, 1997). This phase aims to change the 

structure of the source code to improve the target code’s 

performance; however without changing the semantics. 
Modern compilers have several Transformation 

Algorithms (TA), which are well-known as optimizations; 

although this does not mean that any TA will improve the 

quality of the target code. Loss of performance may occur 

because the characteristics of the source code do not fit the 

characteristics by which a TA was proposed. For example, 

constant folding, whose objective is to evaluate 

continuous expressions in compilation time, will be useful 

when the code provides such expressions. 
It is important to note that compilers are designed 

to be generic. In other words, compilers are designed 

to generate efficient target code for any source code. 

Therefore, compilers should be prepared to improve 

the quality of any source code. In this context, it is 

essential to which to apply, during the compilation 

process, will be efficient. 
Of course, a question could arise. Why do I need to 

choose TAs instead of applying all TAs available? It is 

necessary to choose TAs for two reasons. First, as 

mentioned previously, the characteristics of the source code 

may not correspond to the characteristics expected by the 

TA. Second, although it is expected that a TA improve the 

quality of the source code the reverse may occur. An 

example is the use of inline, which replaces a function call 

by your body. Such transformation can lead to code 

explosion, which in turn can lead to misuse of the cache; 

consequently degrading the target code’s performance. 
In this context, this article aims to analyze the behavior 

of several TAs applied by the compiler clang/LLVM, at 

the Intermediate Representation (IR) level and thus 

understand the relationship between TAs, IR and target 

code’s performance. 
The contributions of this article are as follows: 

 

1. We present a detailed analysis of how TAs modify 

the IR 
2. We present the relationship between TAs and target 

code’s performance 
 

Our experimental evaluation demonstrates that although 

several TAs change the IR, a few are effective in improving 

the target code’s performance in terms of reducing its 

runtime. In addition, the evaluation demonstrates that a 

reduction in runtime is directly proportional to the reduction 

in the number of memory instructions. 
The rest of this article is organized as follows. Section 2 

presents related work in the context of code transformation 

algorithms’ impact. Section 3 provides some hints on 

code transformation algorithms. Section 4 describes the 

experimental setup and outlines the methodology used in 

all experiments. The next three sections, Section 5, 6  and 
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7, presents our findings. Section 8 remarks about the 

presented work and future work. 

Related Work 

Seng and Tullsen (2003) examine the effect of TA s on 

energy usage and power consumption, in the context of 

the Intel Pentium 4 processor. The authors evaluate the 

compiler optimization levels, besides three 

optimizations, namely, loop unrolling, loop vectorization 

and inline. They demonstrate that enabling TAs leads to 

reduce energy consumption; although such reduction 

comes from a reduction in program runtime. 
Eyerman et al. (2008) evaluate the performance impact 

of TAs on superscalar processors. Similar to Seng and 

Tullsen (2003), Eyerman et al. (2008) also evaluates the 

compiler optimization levels, besides several individual 

TAs. The results indicate TAs have different performance 

impact on in-order versus out-of-order processors. 
Ibrahim et al. (2009) evaluate the influence of the 

compiler optimization levels on the energy and power 

consumption, but in the context of embedded software. 

They demonstrate high compiler optimization levels 

reduce the runtime, however, increasing power 

consumption. In addition, they demonstrate TAs may 

decrease both memory references and data cache miss 

rate, increasing IPC, as well. However, such behavior 

consequently increases power consumption. 
Foleiss et al. (2011) evaluate the effect of TAs on code 

size, in the context of code generation targeting small 

footprint and low energy consumption. The goal of this 

research is to identify which TAs are heavily related, in 

respect to code size reduction. They demonstrate single 

TA does not lead to interesting results and it is necessary 

to combine several TAs to generate small code. 
Instead of evaluating TAs, Lee et al. (2012) propose a 

compiler optimization strategy to reduce cache power with 

victim cache. Their proposal improves performance, 

besides reducing power consumption by minimizing 

accesses to the L2 cache, miss rate and miss penalty. To 

achieve this goal, they propose an approach which analyzes 

an application, perform scheduling and then insert the 

instrumentation instructions in the code to control victim 

cache. They demonstrate compiler optimizations can 

improve performance related to cache access. 
Dong et al. (2015) study how TAs influence traditional 

symbolic execution. They focus on clang/LLVM’s TAs, 
trying to understant how different TAs influence the 
performance of symbolic execution across different 
program classes. They demonstrate that applying some 
TAs in a pre-defined order leads to a slowdown. As a 

result, they indicate TAs should be chosen carefully when 
performing symbolic execution. 

Hariri et al. (2016) study how TAs affect the cost and 

results of mutation testing performed at the compiler 

intermediate representation. They demonstrate that using 

high compiler optimization levels, the total number of 

mutants generated is higher than at a low compiler 

optimization level. This means mutation testing can use 

very high compiler optimization levels. 
Yuan et al. (2018) evaluate the TAs effect on system- 

level near field EMI. They demonstrate that different TAs 

have large EMI impact for the same program. 
As can be observed in this section, these researches 

differ from our research because our goal is to understand 

the relationship between TAs, IR and target code’s 

performance and not only evaluating the TAs impact on 

performance. 

Code Transformation Algorithms 

Modern compilers (Aho et al., 2006) provide several 

code transformations (Muchnick, 1997), which can be 

turned on or off during target code generation, to 

improve the target code quality. However, it is a difficult 

task to discover what transformations should be turned 

on or off. To address this issue, compiler developers 

provide several code transformation sequences, well-

known as compiler optimization levels. 
A compiler optimization level is composed of analysis 

and transformation algorithms. The former analyzes the 

code and adds instrumentation on it. The later transforms 

the code hoping to improve the performance. 
The clang/LLVM compiler provides three levels for 

runtime performance, as follows: 
 

O1: This level applies transformations which optimize 

quickly 
O2: This level applies transformations practically 

certain to produce better performance 
O3: This level applies transformations likely to have a 

beneficial effect 
 

Table 1 Presents the analysis and transformations 

algorithms existing in clang/LLVM compiler, which are 

applied at compiler IR level. 
The sequences of the three clang/LLVM optimization 

levels represent the order of application, of each analysis 

and/or transformation algorithm. 
It is important to realize that some algorithms are 

repeated. This happens for one out of two reasons, a 

specific transformation needs a specific analysis or some 

transformations open space for another. 
The clang/LLVM optimization levels comprise 130, 

142 and 143 algorithms, respectively for O1, O2 and O3. 

However, only 64 different algorithms are used, 19 

analysis and 45 transformations. 
It is possible to realize that O1, O2 and O3 are actually 

clang/LLVM optimization levels. The level O2 removes 

always-inline from O1 and adds mldst-motion, constmerge, 

elim-avail-extern, globaldce, gvn, inline, mldst-motion and 

slp-vectorizer. 
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Table 1: Clang/LLVM  Analysis/Transformations 
O1 targetlibinfo tti tbaa scoped-noalias assumption-cache-tracker forceattrs inferattrs ipsccp globalopt domtree mem2reg 

deadargelim basicaa aa domtree instcombine simplifycfg basiccg globals-aa prune-eh always-inline functionattrs domtree sroa 

early-cse lazy-value-info jump-threading correlated-propagation simplifycfg basicaa aa domtree instcombine tailcallelim 

simplifycfg reassociate domtree loops loop-simplify lcssa loop-rotate basicaa aa licm loop-unswitch simplifycfg basicaa aa 

domtree instcombine loops scalar-evolution loop-simplify lcssa indvars aa loop-idiom loop- deletion loop-unroll basicaa aa 

memdep memcpyopt sccp domtree demanded-bits bdce basicaa aa instcombine lazy- value-info jump-threading correlated-

propagation domtree basicaa aa memdep dse loops loop-simplify lcssa aa licm adce simplifycfg basicaa aa domtree 

instcombine barrier basiccg rpo-functionattrs basiccg globals-aa float2int domtree loops loop-simplify lcssa loop-rotate 

branch-prob block-freq scalar-evolution basicaa aa loop-accesses demanded-bits loop- vectorize instcombine simplifycfg 

basicaa aa domtree instcombine loops loop-simplify lcssa scalar-evolution loop-unroll basicaa aa instcombine loop-simplify 

lcssa aa licm scalar-evolution alignment-from-assumptions strip-dead-prototypes verify 
O2 targetlibinfo tti tbaa scoped-noalias assumption-cache-tracker forceattrs inferattrs ipsccp globalopt domtree mem2reg 

deadargelim basicaa aa domtree instcombine simplifycfg basiccg globals-aa prune-eh inline functionattrs domtree sroa 

early-cse lazy-value-info jump-threading correlated-propagation simplifycfg basicaa aa domtree instcombine tailcallelim 

simplifycfg reassociate domtree loops loop-simplify lcssa loop-rotate basicaa aa licm loop-unswitch simplifycfg basicaa aa 

domtree instcombine loops scalar-evolution loop-simplify lcssa indvars aa loop-idiom loop-deletion loop-unroll basicaa aa 

mldst-motion aa memdep gvn basicaa aa memdep memcpyopt sccp domtree demanded-bits bdce basicaa aa instcombine 

lazy-value-info jump-threading correlated-propagation domtree basicaa aa memdep dse loops loop-simplify lcssa aa licm adce 

simplifycfg basicaa aa domtree instcombine barrier basiccg rpo-functionattrs elim-avail-extern basiccg globals-aa float2int 

domtree loops loop-simplify lcssa loop-rotate branch-prob block-freq scalar-evolution basicaa    aa loop-accesses 

demanded-bits loop-vectorize instcombine scalar-evolution aa slp-vectorizer simplifycfg basicaa aa domtree instcombine 

loops loop-simplify lcssa scalar-evolution loop-unroll basicaa aa instcombine loop-simplify lcssa aa licm scalar-evolution 

alignment-from-assumptions strip-dead-prototypes globaldce constmerge verify 
O3 targetlibinfo tti tbaa scoped-noalias assumption-cache-tracker forceattrs inferattrs ipsccp globalopt domtree mem2reg 

deadargelim basicaa aa domtree instcombine simplifycfg basiccg globals-aa prune-eh inline functionattrs argpromotion 

domtree sroa early-cse lazy-value-info jump-threading correlated-propagation simplifycfg basicaa aa domtree instcombine 

tailcallelim simplifycfg reassociate domtree loops loop-simplify lcssa loop-rotate basicaa aa licm loop- unswitch 

simplifycfg basicaa aa domtree instcombine loops scalar-evolution loop-simplify lcssa indvars aa loop-idiom loop-deletion 

loop-unroll basicaa aa mldst-motion aa memdep gvn basicaa aa memdep memcpyopt sccp domtree demanded-bits bdce 

basicaa aa instcombine lazy-value-info jump-threading correlated-propagation domtree basicaa aa memdep dse loops loop-

simplify lcssa aa licm adce simplifycfg basicaa aa domtree instcombine barrier basiccg rpo-functionattrs elim-avail-extern 

basiccg globals-aa float2int domtree loops loop-simplify lcssa loop-rotate branch-prob block-freq scalar-evolution basicaa aa 

loop-accesses demanded-bits loop-vectorize instcombine scalar-evolution aa slp-vectorizer simplifycfg basicaa aa domtree 

instcombine loops loop-simplify lcssa scalar-evolution loop-unroll basicaa aa instcombine loop-simplify lcssa aa licm scalar-

evolution alignment-from-assumptions strip-dead-prototypes globaldce constmerge verify 
O1 aa adce alignment-from-assumptions always-inline argpromotion assumption-cache-tracker barrier basicaa basiccg bdce 

block-freq branch-prob constmerge correlated-propagation deadargelim demanded-bits domtree dse early-cse 
U elim-avail-extern float2int functionattrs globals-aa globaldce globalopt gvn indvars inferattrs inline instcombine ipsccp 
O2 jump-threading lazy-value-info lcssa licm loop-accesses loop-deletion loop-idiom loop-rotate loop-simplify loop-unroll 
U loop-unswitch loop-vectorize loops mem2reg memcpyopt memdep mldst-motion prune-eh reassociate rpo-functionattrs 
O3 scalar-evolution sccp scoped-noalias simplifycfg slp-vectorizer sroa strip-dead-prototypes tailcallelim targetlibinfo tbaa tti 

verify 

An. 
aa basicaa basiccg block-freq branch-prob demanded-bits domtree functionattrs globals-aa inferattrs lazy-value-info loops 

memdep rpo-functionattrs scoped-noalias targetlibinfo tbaa tti verify 
Tr. adce alignment-from-assumptions always-inline argpromotion assumption-cache-tracker barrier bdce constmerge 

correlated-propagation deadargelim dse early-cse elim-avail-extern float2int globaldce globalopt gvn indvars inline 

instcombine ipsccp jump-threading lcssa licm loop-accesses loop-deletion loop-idiom loop-rotate loop-simplify loop- 

unroll loop-unswitch loop-vectorize mem2reg memcpyopt mldst-motion prune-eh reassociate scalar-evolution sccp 

simplifycfg slp-vectorizer sroa sroa strip-dead-prototypes tailcallelim 
Rep. aa(13,16,16)1 basicaa(10,11,11) basiccg(2,2,2) correlated-propagation(1,1,1) demanded-bits(1,1,1) domtree(10,10,10) 

globals-aa(1,1,1) instcombine(7,7,7) jump-threading(1,1,1) lazy-value-info(1,1,1) lcssa(5,5,5) licm(1,2,2) loop-

rotate(1,1,1) loop-simplify(5,5,5) loop-unroll(1,1,1) loops(4,4,4) memdep(1,2,2) scalar-evolution(3,4,4) simplifycfg(5,5,5) 
1X(a,b,c) = X: analysis/transformation algorithm, a: O1 repetitions, b: O2 repetitions, c: O3:repetitions
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In turn, the level O3 adds to the sequence O2 
argpromotion. As can be seen in Table 1, the repetition of 
some algorithms follows the same pattern for the levels O2 
and O3. In addition, these levels increase the repetitions of 
the aa, basicaa, licm, memdep and scalar-evolution 
algorithms when compared to the level O1. 

Details about each TA can be found at www.llvm.org. 

Methodology 

To analyze the behavior of TAs, we perform 
several experiments. In addition to describing how the 
experiments are performed, this section describes the 
experimental setup and outlines the methodology used 
in all experiments. 

Hardware and Software 
 
 Hardware Intel: Core i7-3770 processor with a 

frequency of 3.40GHz, 8 MB cache and 8 GB of RAM 
 Operating system: Debian 4.9.110-3 with kernel 

4.9.0-8- amd. 
 Compilation system: We use clang/LLVM (Lattner 

and Adve, 2004; Team, 2019). 
 Code transformation: We evaluate the TAs: 

[O1UO2 UO3] 
 Benchmarks: SPEC CPU2006 Benchmark suite 

(Henning, 2006; Corporation, 2019), with train 
dataset 

 

Evaluating the TA Impact at the IR 

To fulfill the goal of this research, we evaluate the TA 

impact at the IR using two different features. They are: 
 

1. a CFG-based features and 
2. a DNA-based features 
 

The features are collected at compile time, after the 
compiler applies a TA, by modules we implemented for 
this purpose. 

In our experiments, each program is compiled using a 
single TA, besides compiling without using a TA. In this 
way, it is possible to evaluate the transformations 
performed at the IR level. 

In addition, we evaluate the TA impact at the IR in 

terms of performance, collecting the program runtime. 

The CFG-Based Features 

The Control Flow Graph (CFG) features are a subset 

of the features proposed by Namolaru et al. (2010), 

which are numeric features extracted from relationships 

between the program entities.  The importance of these 

features is due to Namolaru et al. (2010) prove their 

influence on parameterizing code-generating systems, to 

generate good target code. 
We use a subset of the aforementioned features because 

some features are related to instructions’ programs. We 

will evaluate the instructions’ programs, however, using 

different features. 
Table 2 shows the CFG-based features extracted from 

the IR and used during the analysis. 

The DNA-based Features 

The DNA-based features characterize each 

instruction of the IR as a gene, which composes a DNA. 
DNA has a great advantage as program features, it 

captures all of the program’s structures and encodes all of 

its instructions simultaneously. 
The clang/LLVM IR is composed of 57 instructions. 

Thus, we have 57 different genes. These genes is 

presented in Table 3. 
The genes can be grouped into eight groups, as 

follows: 
 

 Terminator instructions: A, B, C, D, E, F, G 
 Binary operations: H, I, J, K, L, M, N, O, P, Q, R, S 
 Bitwise operations: T, U, V, X, W, Y 
 Vector instructions: Z, a, b 
 Aggregate instructions: c, d 
 Memory instructions: e, f, g, h, i, j, k 
 Conversion instructions: l, m, n, o, p, q, r, s, t, u, v, 

x, w; and 
 Other instructions: y, z, 0, 1, 2, 3, 4 
 

Metrics to Evaluate CFG-based Features 

Our evaluation uses the following metrics: diversity, 

decreasing value, increasing value, removal, adding and 

rate of change. 
An important issue to be considered is the diversity 

of programs. This is an important metric because if there 

were no diversity, it would be difficult to understand 

how TAs perform in programs with distant structures. In 

fact, in the absence of diversity would be necessary to 

change the set of programs. 
Decreasing and increasing value, removal and 

adding evaluate how a TA changes a feature. As a 
result, it is possible to understand what modifications 
are made to the CFG. In addition, we want to evaluate 
the rate of change in the CFG. 

Metrics to Evaluate DNA-based Features 

We use a DNA-approach to evaluate the changes 
made into the IR. For this purpose, we use the algorithm 
proposed by Needleman and Wunsch (1970). 

Needleman and Wunsch propose an optimal global 

alignment algorithm to find similarities between two 

biological sequences. The iterative algorithm considers 

all possible pair combinations that can be constructed 

from two amino-acid sequences. As a result, the 

algorithm returns a score which indicates the similarity 

between two amino-acid sequences.
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Table 2: CFG-based features 
(F01) phi-nodes in BBs 
(F02) edges in the control flow graph 
(F03) critical edges in the control flow graph (F04) BBs 
(F05) BBs with a single pred (F06) BBs with a single succ 
(F07) BBs with a single pred and a single succ (F08) BBs with a single pred and two succs (F09) BBs with two pred 
(F10) BBs with two succs 
(F11) BBs with two pred and one succ (F12) BBs with two pred and two succs (F13) BBs with more than two preds (F14) BBs with 

more than two succs (F15) BBs with more than two succs and 
more than two preds 
(F16) BBs with number of insts greater than 500 (F17) BBs with number of insts in [15, 500] (F18) BBs with number of insts less 

than 15 (F19) BBs with no phi-nodes 
(F20) BBs with less than three phi-nodes (F21) BBs with more than three phi-nodes 
(F22) average of instructions per basic block 
BBs = basic blocks 
pred = predecessor, preds =  predecessors 
succ = successor, succs = successors 
insts = instructions 

 

Table 3: DNA-based features 
Instruction Gene Instruction Gene 
Br A InsertValue d 
Switch B Load e 
IndirectBr C Store f 
Ret D Alloca g 
Invoke E Fence h 
Resume F AtomicRMW i 
Unreachable G AtomicCmpXchg j 
Add H GetElementPtr k 
Sub I Trunc l 
Mul J Zext m 
Udiv K Sext n 
Sdiv L UIToFP o 
Urem M SIToFP p 
Srem N PtrToInt q 
Fadd O IntToPtr r 
Fsub P BitCast s 
Fmul Q AddrSpace t 
Fdiv R FPTrunc u 
Frem S FPExt v 
Shl T FPToUI x 
LShr U FPToSI w 
Ashr V Icmp y 
And X FCmp z 
Or W Select 0 
Xor Y VAArg 1 
ExtractElement Z LandingPad 2 
InsertElement a PHI 3 
ShuffleVector b Call 4 
ExtractValue c 

 

Based on the results provided by this aforementioned 

algorithm, we use the following metrics: matches, 

mismatches and indels. 
Matches indicate how many genes, from two DNA 

sequences, are similar. Mismatches indicate the otherwise. 

Finally, indels indicate how many gaps there are in DNA(s). 
In addition, we evaluate the diversity of programs. 

However, from a different perspective of view. 

Metric to Evaluate Performance 

We also evaluate the performance of each TA, in terms 

of the target code’s runtime. The performance metric 

measures the improvement of the target code when the 

system applies a TA during target code generation, over 

the target code without applying a TA. Such metric 

(improvement) is measured as follows: 
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Collecting Data 

The results are based on the arithmetic average of five 

executions. In addition, the machine workload was as 

minimal as possible. 

Evaluating the CFG-Based Features 

Diversity 

According to CFG-based features, the programs are 

clustering as shown in Fig. 1. 
Two programs stand out, PERLBENCH and GCC. The 

former is next to a cluster consisting of 3 programs. While 

the latter stands out among all other programs. Also, if we 

formed only 2 clusters, one would be formed by GCC while 

the other programs would form the second cluster. 
There is an imbalance between the five clusters, 

concerning the number of programs that compose them. 

Only two clusters comprise 70% of the programs, i.e. 12 

programs. However, even in the face of such imbalance, 

there is diversity among such programs. 

Our Findings 

Tables 4 and 5 indicate the changes made by a TA 

in each CFG-based feature, the number of programs 

affect by a TA (#P) and the average rate of change 

performed in a feature’s value (Avg). The changes are 

indicated as follows: 
 
1. Decreasing value (↓) 

2. Increasing value (↑) 

3. Removal (-) 

4. Adding (+) and 

5. No modification (=) 
 

As  an  example,  the entry = indicates  the feature 
F01 had different behaviors for different programs, when 
the programs were compiled applying adce. In other 

words, for the feature F01 three different situations 

occurred depending on the program. 
Tables 4 and 5 shows results for 30 TAs, out of 64 

available in [O1 O2 O3], because only 30 TAs cause 

changes in the CFG-based features. 
Based on CFG-based features, TAs can be classified 

into two groups: (1) those that are weakly influenced by 

the code structure and (2) those that are heavily influenced 

by the code structure. 
A TA of the first group is one that can be applied 

indiscriminately in any program, which will cause 

changes in its CFG. This occurs with 9 TAs: early-cse, 

gvn, inline, instcombine, jump-threading, loop-rotate, 

mem2reg, simplifycfg and sroa. 

On the other hand, a TA of the second group should be 
chosen according to the structure of the program. This is 
necessary due to such TA need specific structures to cause a 
transformation in the program’s CFG. Therefore, 9 TAs 
(14%) change the CFG-based features of the entire universe 
of evaluated programs, 21 TAs (33%) change the CFG-
based features of a sub-set of evaluated programs, while 34 
TAs (53%) do not affect any program evaluated. 

Few TAs add or remove features. Only 6 TAs add 

features: Gvn, inline, jump-threading, mem2reg, sroa and 

tailcallelim. 
The removal of features only occurs in the application 

of 4 TAs: simplifycfg, early-cse, mem2reg and sroa. 
The TAs mem2reg and sroa are special cases. Such 

TAs can change, increase, or reduce the value of a feature, 
as well as remove or add features. 

Observing the rate of change in the value of a feature is 
possible grouping the TAs into six distinct groups, they are: 
 

 rate > 200%: mem2reg and sroa 
 60% < rate < 90%: gvn               and instcombine 
 10% < rate < 40%: jump-threading, loop-rotate and 

simplifycfg 
 7% < rate < 9%: early-cse and inline 
 1% < rate < 2%: indvars, licm, 

loop-deletion, loop-idiom, 
loop-unroll, loop-unswitch and 
loop-vectorize; and 

 rate <1%: adce, bdce, correlated-propagation, 

dse, globalopt, ipsccp, lcssa 
 loop-simplify, memcpyopt, 
 prune-eh, reassociate, sccp, slp-vectorizer and 

tailcallelim 
 

A few TAs change the CFG-based features 

considerably. Depending on the rate used, we can only 

consider two or four TAs. In this context, five TAs has a 

modest effect on the CFG-based features. On the other 

hand, 47% has a small effect (almost insignificant) on the 

CFG-based features. 
An important issue to be evaluated is how much such 

changes in the CFG, of a particular program, affect 

performance. This issue will be assessed after. 
The results indicate compiler users should know the 

structure of your program and the characteristics of a 
particular TA, to choose which TAs apply to your code. 
As mentioned before, in an attempt to minimize such 
probe compiler developers provide various compiler 
optimizations levels. In this way, the user does not need to 
choose what TAs to apply, instead, he/she can just use 
a pre-defined TA sequence. However, several 
researches in the literature indicate the best approach, in 
search for performance, is to create a specific sequence 
for each program (Tartara  and Crespi Reghizzi, 2013; 
De Lima et al., 2013a; 2013b; Queiroz Junior and da 
Silva, 2015; Siraichi et al., 2016; Filho et al., 2018).
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Table 4: Results for CFG-based features (Part I) 
 Features 
 ------------------------------------------------------------------------------------------------ 
Transformation F01 F02 F03 F04 F05 F06 F07 F08 F09 F10 F11 #P jAvgj 
Adce = = = = = = = = = = = 7 0.81 
Bdce = = = = = = = = = = = 7 0.81 
Correlated-propagation = = = = = = = = = = = 1 0.08 
Dse = = = = = = = = = = = 7 0.04 
early-cse = = = = = = = = = = = 17 7.91 
globalopt = = = = = = = = = = = 2 0.05 
gvn    =    = = = = = 17 64.40 
indvars =  = = = = = = = = = = 16 1.07 
inline =    =    = =   = 17 8.54 
instcombine  = = = = = = = = = = 17 88.71 
ipsccp = = = = = = = = = = = 11 0.06 
jump-threading        = =  =  = 17 30.42 
lcssa = = = = = = = = = = = 4 0.58 
licm =  = = = = = = = = = = 16 1.09 
loop-deletion = = = = = = = = = = = 16 1.07 
loop-idiom = = = = = = = = = = = 16 1.07 
loop-rotate =    = = = =   = 17 10.88 
loop-simplify = = = = = = = = = = = 16 0.98 
loop-unroll = = = = = = = = = = = 16 1.02 
loop-unswitch = = = = = = = = = = = 16 1.07l 
oop-vectorize = = = = = = = = = = = 16 1.07 
mem2reg  = = = = = = = = = = 17 222.72 
memcpyopt = = = = = = = = = = = 2 0.01 
prune-eh = = = = = = = = = = =  5 0.64 
reassociate = = = = = = = = = = = 14 0.63 
sccp = = = = = = = = = = = 3 0.01 
simplifycfg =-      = =   = 17 21.42 
slp-vectorizer = = = = = = = = = = = 1 0.03 
sroa  = = = = = = = = = = 17 225.13 
tailcallelim = = = = = = = = = = = 8 0.26 
 
Table 5: Results for CFG-based features (Part II) 
 Features 
 ---------------------------------------------------------------------------------------------- 
Transformation F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 #P |Avg| 
adce = = = = = = = = = = = 7 0.81 
bdce = = = = = = = = = = = 7 0.81 
correlated-propagation = = = = = = = = = = = 1 0.08 
dse = = = = = = = = = = = 7 0.04 
early-cse = = = = =-   = = = = 17 7.91 
globalopt = = = = = = = = = = = 2 0.05 
gvn = =  = = = =    =+ = 17 64.40 
indvars =  = = = = = = = = = = 16 1.07 
inline = =  = = =+ =    = = 17 8.54 
instcombine = = = = =    = = = 17 88.71 
ipsccp = = = = = = = = = = = 11 0.06 
jump-threading =   = = =     =+  17 30.42 
lcssa = = = = = = = = = = = 4 0.58 
licm = = = = = = = = = = = 16 1.09 
loop-deletion = = = = = = = = = = = 16 1.07 
loop-idiom = = = = = = = = = = = 16 1.07 
loop-rotate = = = = =     = = 17 10.88 
loop-simplify = = = = = = = = = = = 16 0.98 
loop-unroll = = = = = = = = = = = 16 1.02 
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Table 5: Continue 
loop-unswitch = = = = = = = = = = = 16 1.07l 
oop-vectorize = = = = = = = = = = = 16 1.07 
mem2reg = = = = =-     +  17 222.72 
memcpyopt = = = = = = = = = = = 2 0.01 
prune-eh = = = = = = = = = = =  5 0.64 
reassociate = = = = = = = = = = = 14 0.63 
sccp = = = = = = = = = = = 3 0.01 
simplifycfg =  = = =     =  17 21.42 
slp-vectorizer = = = = = = = = = = = 1 0.03 
sroa = = = = =-     +  17 225.13 
tailcallelim = = = = = = = = = + = 8 0.26 
 
Table 6: Results for DNA-based features 
Indels 
------------------------------------- 
Transformation DNA Matches Mismatches Insertions Removals #Programs 
Adc 186916.14 186355.0 28.79 0.0 532.36 14 
Bdce 186916.14 186354.0 28.79 0.0 533.36 14 
correlated-propagation 1037375.0 1037371.0 0.0 0.0 4.0 1 
dse 198823.85 198679.92 0.62 0.0 143.31 13 
early-cse 155068.35 134456.71 854.71 10.59 19756.94 17 
globalopt 199072.83 199063.42 0.08 12.58 9.33 12 
gvn 155068.35 140944.0 4765.06 2804.76 9359.29 17 
indvars 164382.81 164378.56 3.06 161.44 1.19 16 
inline 155068.35 154760.53 307.06 61356.47 0.76 17 
instcombine 155068.35 125791.06 13555.65 2367.88 15721.65 17 
ipsccp 169402.47 169166.53 5.93 0.0 230.0 15 
jump-threading 155068.35 149717.24 638.41 730.12 4712.71 17 
lcssa 122665.00 122665.0 0.0 11.0 0.0 4 
licm 164382.81 163978.44 68.19 467.13 336.19 16 
loop-deletion 164382.81 164378.63 3.06 161.38 1.13 16 
loop-idiom 164382.81 164378.63 3.06 161.38 1.13 16 
loop-rotate 155068.35 153331.82 1512.82 3645.71 223.71 17 
loop-simplify 164382.81 164378.63 3.06 158.63 1.13 16 
loop-unroll 164382.81 164376.5 3.13 163.31 3.19 16 
loop-unswitch 164382.81 164378.63 3.06 161.38 1.13 16 
loop-vectorize 164382.81 164378.63 3.06 161.38 1.13 16 
mem2reg 155068.35 98811.94 12866.29 537.29 43390.12 17 
memcpyopt 227864.67 227805.67 37.22 0.0 21.78 9 
prune-eh 115949.60 115321.4 401.4 345.2 226.8 5 
reassociate 155068.35 154425.53 82.65 62.0 560.18 17 
sccp 184486.23 184329.38 9.38 0.0 147.46 13 
simplifycfg 155068.35 146342.76 2375.76 771.71 6349.82 17 
slp-vectorizer 122814.00 122741.0 56.0 92.5 17.0 4 
sroa 155068.35 98244.53 12977.41 559.47 43846.41 17 
tailcallelim 248673.00 248663.13 0.38 18.88 9.5 8 
 
Table 7: The patterns 
Transformation Exchange Insertion Removal 
Adce MT MM CT OT - T M C O 
Bdce MT MM CT OT -  I M C O 
correlated-propagation - - O 
dse MM OT  - T B M C O 
early-cse TC TB TM TO BB BO BM BI B)C T B I M C O T B I A M C O 
 BT IT IB IC II IM IO MB MC 
 MM MO MI MT CI CO CM CB 
 CC CT OT OB OC OO OM 
Globalopt MM M C O M O 
gvn TA TC TB TI TM TO TT BC BB T B I A M C O T B I A M C O 
 BO BM BI BT IC IM II IT IO 
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Table 7: Continue 
 AT AO MA MB MC MM MO MI 
 MT CI CO CM CB CC CA CT OT 
 OB OC OA OO OM OI 
indvars TT T C O C O 
inline TC TB TM TO TT BO BM BC IT T B I A M C O T O 
 IC MO MT MM MC CO CM CC 
 OT OB OC OO OM 
instcombine TC TB TI TM TO TT BC BB BO T B I M C O T B I A M C O 
 BMBI BT IB II IMIO IT IC AT 
 AM MB MC MM MO MI MT CI 
 CO CMCB CC CA CT OT OB OC 
 OO OM OI 
ipsccp TM TO BO MT MO OT - T B I M C O 
jump-threading TA TB TI TM TC TO TT BM BT T B I A M C O T B I A M C O 
 IC IMIO AOMBMMMOMIMT 
 )C C)O C)M O)T O)C O)O O)M O)I 
lcssa - O - 
licm TM TC TO TT BB BM AM MB T I M C O T B I M C O 
 MM MO MI MT MC CA CO CM 
 T OT OO OM OC 
loop-deletion TT T O O 
loop-idiom TT T O O 
loop-rotate TM TO TT IT MC MM MO MI 
 MT CT OT OO OM OI T B I M C O T M O 
loop-simplify TT T O O 
loop-unroll TT OT T M C O T M C O 
loop-unswitch TT T O O 
loop-vectorize TT T O O 
mem2reg TC TB TI TM TO TT BC BB BA T B I M C O T B I A M C O 
 BO BMBI BT IB II I)MIO I)T IC 
 AT AO MA MB MC MM MO MI 
 MT CI CO CM CB CC CT OT OB 
 OC OO OM OI 
memcpyopt MM M)O MC CO OM  M C O 
prune-eh TM TC TO TT AT AO MO MT T M C O T A M C O 
 CO CT OT OO OM 
reassociate TB TO BC BB BO BM IB IM MB B I M T B I M C O 
 C MM MO MI MT CB CT OT 
 OB 
sccp BT IT MT MO CT O  T T B I M C O 
simplifycfg TC TB TI TM TO TT BB BO BM T B I A M C O  T B I A M C O 
 T BC IT IM II IO IC AT AM 
 AO AA AC MA MB MC MM MO 
 MI MT CI CO CM CC CT OT OB 
 OC OA OO OM OI 
slp-vectorizer BM BV MB MC MM MV CM OC B V M C B M C 
 OM 
Sroa TA TC TB TI TM TO TT BC BB T B I A M C O T B I A M C O 
 BA BO BM BI BV BT IB II I)M 
 IO IT IC AT AM AO AC MB MC 
 MM MO MI MT MV MA CI CO 
 CMCB CC CA CV CT OV OT OB 
 OC OA OM OO OI 
tailcallelim TT T O O 
T = terminator, B = binary, I = bitwise, V = vector, A = aggregate, M = memory, C = conversion, O = other 
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Table 8: The improvements 
 General   Only Improvement 
 -------------------------------------------- -------------------------------------- 
Transformation Min Avg Max Min Avg Max #Programs 
O1 - - - 18.76 73.52 165.27 17 
O2 - - - 16.89 95.02 194.38 17 
O3 - - - 17.09 94.20 192.13 17 
adce -10.48 -3.02 2.19 0.18 1.06 2.19 3 
bdce -9.20 -3.30 1.31 1.03 1.20 1.31 3 
correlated-propagation -10.17 -3.33 0.94 0.73 0.84 0.94 3 
dse -10.01 -3.62 3.03 0.59 1.81 3.03 2 
early-cse -3.54 0.64 9.67 0.01 2.50 9.67 11 
globalopt -12.60 -4.02 4.03 0.27 1.74 4.03 3 
gvn -3.31 4.23 23.40 0.01 7.13 23.40 11 
indvars -11.05 -3.92 4.54 1.17 2.35 4.54 3 
inline -11.23 0.09 18.35 0.61 10.43 18.35 6 
instcombine -9.76 3.00 14.00 0.28 6.11 14.00 12 
ipsccp -9.61 -4.07 4.25 0.44 1.71 4.25 3 
jump-threading -10.73 -3.54 5.44 0.04 2.60 5.44 4 
lcssa -13.42 -4.92 4.88 4.88 4.88 4.88 1 
licm -10.77 -4.54 5.11 1.01 2.87 5.11 3 
loop-deletion -10.02 -4.46 4.55 1.03 2.30 4.55 3 
loop-idiom -11.34 -4.19 4.55 0.14 1.83 4.55 3 
loop-rotate -8.86 -2.64 5.58 0.26 2.21 5.58 6 
loop-simplify -10.29 -4.65 3.72 0.75 2.24 3.72 2 
loop-unroll -10.68 -4.43 3.75 1.12 2.44 3.75 2 
loop-unswitch -12.34 -4.81 2.97 0.80 1.89 2.97 2 
loop-vectorize -14.54 -5.44 3.24 3.24 3.24 3.24 1 
mem2reg 16.06 55.25 116.14 16.06 55.25 116.14 17 
memcpyopt -14.48 -4.92 3.78 0.38 2.08 3.78 2 
prune-eh -11.83 -4.43 1.13 0.59 0.92 1.13 3 
reassociate -13.46 -5.17 1.72 0.19 0.95 1.72 2 
sccp -10.57 -3.54 1.51 0.13 1.01 1.51 3 
simplifycfg -11.06 -3.94 1.7 0.09 0.83 1.70 4 
slp-vectorizer -10.66 -3.15 2.42 0.29 1.41 2.42 4 
sroa 16.42 57.17 125.44 16.42 57.17 125.44 17 
tailcallelim -11.17 -3.28 3.34 0.14 1.89 3.34 5 
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Fig. 3: The distribuition of instructions 
 

Evaluating the DNA-Based Features 

Diversity 

Again, we will go into the diversity between 

programs, however, according to the instructions that 

compose it. Figure 2 displays the clusters of programs. 
Clustering the programs based on DNA-based 

features (their instructions) follows the same distribution 
of clustering based on CFG-based features. 
PERLBENCH and GCC are the two programs highlight, 
the clusters remain unbalanced and only two clusters 
comprise 70% of the programs. However, there are two 
changes related to smaller clusters. First, H264REF 
forms a cluster with GOBMK and not with POVRAY. 

Second, SOPLEX forms a cluster with HMMER and not 
with NAMD. 

An Overview of the Programs 

A representation based on IR instructions makes it 
possible to analyze the distribution of the instructions that 
compose the programs. Figure 3 shows the distribution of 
instructions according to their classes, without using a TA. 

The composition of the programs is dominated by 

memory instructions. These instructions consume from 

46.91% to 73.38% of total instructions. The second class 

that dominates most programs (15 in the case) is the 

terminator instructions, with a percentage ranging from 

10.81% to 21.03%. Only the programs LBM and NAMD 
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have the second dominant class the binary operations, 

whose percentages are 33.80% and 11.24%, respectively. 
Excluding LBM and NAMD, binary instructions do 

not compose more than 10% of all instructions. This 

pattern is followed by the conversion and other 

instructions. The other classes do not consume more than 

4% of the instructions. 
TAs that reduce the number of memory 

instructions have great potential in improving the 

performance of programs. 

Our Findings 

Table 6 presents the results obtained using the DNA- 

based features. This table displays the length of the DNA 

(without using a TA during target code generation), the 

number of matches, mismatches and indels, besides the 

number of programs affected by the TA. As in the 

previous section, only the results for those TAs that affect 

programs are displayed. 
Twenty three (23) TAs, out of 30, have the ability to 

exchange, insert or remove instructions. The other seven 

(adce, bdce, correlated-propagation, dse, ipsccp, 

memcpyopt and sccp) do not have the ability to insert 

instructions. 
Related to the change rate in a DNA, some TAs stand 

out among others. The TAs gvn, instcombine, mem2reg 

and sroa have a superior potential in exchanging 

instructions when compared with other TAs. Regarding the 

insertion of instructions, no TA compares to inline. This 

was already expected, by the nature of this transformation 

that exchanges a function call for its body. 
In terms of IR change rate, it is difficult to determine 

which would be an ideal rate without analyzing the classes 

of the instructions and consequently the correspondent 

machine instructions (assembly). Remember each 

assembly instruction has a cost, which is determined in 

clock cycles. In this way, to improve program 

performance (reduce its runtime) the ideal is to reduce the 

number of assembly instructions in the target code and 

preferably reduce those instructions that have a high cost 

(memory access instructions). This indicates that although 

Table 6 presents theoretically low rates, these can have a 

significant impact on the performance of the target code. 

This will be shown in the next section. 
Regardless of the change rate, our goal is understand 

how TAs affect IR. In this context, we can notice that 

different TAs operate in different degrees, but usually 

always performing three distinct actions (remove, insert 

and exchange). It is also clear, from the results, although 

TAs have the potential to do three distinct actions, one 

action always dominates the others. This means, TAs are 

classified as follows: 

1. TAs whose predominant action is to insert 

instructions: global-opt, ind-vars, inline, lcssa, licm 

loop-deletion, loop-idiom, loop-rotate, loop-simplify 

loop-unroll, loop-unswitch loop-vectorize, slp-

vectorizer and tailcallelim 

2. TAs whose predominant action is to remove 

instructions: adce, bdce correlated-propagation, dse 

early-cse, gvn, instcombine, ipsccp, jump-threading, 

mem2reg, reassociate, sccp, simplifycfg and sroa 

3. TAs whose predominant action is to exchange 

instructions: memcpyopt and prune-eh 

 

Several TAs affect most programs, only four TAs 

impact less than 50% of the programs (correlated-

propagation, lcssa, prune-eh and slp-vectorizer). 
Comparing the results obtained by the two different 

features, it is possible to notice a difference in the number 

of programs affected by some TA. Analyzing the 

instructions that compose a program, it is possible to 

realize a greater amount of TAs affects the programs and 

not the amount specified by an analysis based only on the 

CFG of the program. 
The analysis based on DNA-based features indicates 

adce, bdce affect 82% and not only 4% of the evaluated 

programs; globalopt affects 71% and not 12%;  ipsccp 

affects 88% and not 65%; memcpyopt affects 53% and not 

12%; reassociate affects 100% and not 82%; sccp affects 

76% and not 18%; and slp-vectorizer affects 24% and not 

5%. This is due to the CFG-based features is a macro 

representation, compared to the DNA-based features. 
Table 7 shows the patterns in the transformation of a 

DNA. In this table, the second column presents the source 

and target class in an instruction exchange.  The third  and 

fourth columns display the classes of the instructions, 

which are inserted and removed. 
Several TAs operate on several classes of 

instructions, such as early-cse, gvn, 

inline, instcombine, jump-threading, licm, loop-rotate, 

mem2reg, reassociate, simplifycfg and sroa. Only sroa 

operates with all classes of instructions. In addition, a 

few TAs follow the same pattern, namely, loop-

deletion loop-idiom, loop-simplify loop-unswitch, 

loop-vectorize and tailcallelim. These are the TAs 

with the smallest scope of action. 
Two TAs handle vector instructions, slp-vectorize, as 

expected, as well as sroa. However, while sroa only 

exchange some instructions for vector instructions, slp-

vectorize changes vector instructions as well as inserts 

new vector instructions in the IR. 

Improvement 

Finally, the last question analyzed is the performance 

of the TAs related to reducing the program runtime.
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Fig. 4: The distribution of instruction 
 

This analysis is essential to corroborate the results 

presented in the previous sections. 
Table 8 shows the improvement performed by each 

TA and the three compiler optimization levels. This table 

presents minimum, maximum and average improvement, 

besides presents the same metrics considering only 

programs which have performance gain. 
Several TAs (25) cause an average loss of performance. 

On the other hand, considering only the TAs which have 

achieved a performance gain, the scenario is different. In 

this case, the average performance gain is up to 3%, but for 

no more than 4 programs. Inline is an exception to this case. 

Although, inline does not achieve an average performance 

considering the total programs, inline achieves a 

performance gain of 10.43%, when it is considered the 

programs that achieve performance gain. 
It is evident that although several TAs change the 

characteristics of the IR, such changes may have an 

undesired effect. As mentioned before, although such 

algorithms are considered optimizations there is no 

guarantee of performance gain. Due to this fact, some 

researchers prefer to use the term transformation rather 

than optimization. 
The most effective TAs are early-cse, gvn, instcombine, 

mem2reg and sroa, both in terms of performance gain 

achieved and field of activity. The average performance 

gain achieved by the first three TAs reaches  4.23%  

overall. Whereas for the subset of programs with 

performance gain, the average gain reaches 7.30% for a 

universe of 12 out of 17 programs. 
The two excellent TAs are mem2reg and sroa. These 

two can achieve a better performance gain than all other 

TAs and are capable of improving the performance of all 

programs in the universe of the programs evaluated. For 

mem2reg and sroa the performance gain reaches 57.17% 

in the overall average. 
The compiler optimization levels achieve performance 

gain for all programs, because they are formed by a 

sequence of TAs. For the universe of TAs evaluated, the 

performance gain is very far from that achieved by a 

compiler optimization level, except for mem2reg and sroa. 
The distances between the average performance 

obtained by mem2reg and the compiler optimizations 

levels are 24.81%, 41.85%, 41.35%, respectively for O1, 

O2 and O3 and the distances for sroa are 22.24%, 39.83%, 

39.31%, respectively for O1, O2 and O3. 
An important issue is to clarify what led early-cse, 

gvn, instcombine, mem2reg and sroa to perform better 

than the other TAs. In order to clarify this fact, Fig. 4 

presents the decomposition of the instructions that 

compose the programs, for these five TAs. 
The performance gain obtained by these TAs was due to 

the reduction of memory instructions. Such reduction 

follows a ratio of 4.10%, 5.30%, 6.15%, 24.22% and 

24.32%, respectively for early-cse, gvn, instcombine, 

mem2reg and sroa. The other classes of instructions had an 

increase, which is more accentuated for mem2reg and sroa. 

Conclusion 

Modern compilers provide several code 

transformation algorithms to be applied to the source 

code, during target code generation, which goal is to 

improve the quality of the target code. Such 

algorithms transform the code structure, usually at the 

intermediate representation level, without altering the 

semantics of the program. 
Although the goal of a transformation is to improve the 

quality of the target code, in practice this does not always 

occur. In fact, a particular transformation can degrade  the 

performance of a program. This phenomenon is due to the 

changes made in the program negatively affect the 

components of the hardware in question, such as the 

misuse of memory. 
In this article, we show how several code 

transformation algorithms modify the structure of the 

program, at the intermediate representation level. In 

addition, we show code transformation algorithms have a 
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direct impact on the reduction of program runtime, when 

instructions are removed from the target code, mainly 

memory instructions. 
As future work, we plan to create a model to infer 

what code transformation algorithm the compiler 

should enable during target code generation, based on 

our findings in this article. 
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