

 © 2019 Nasro Min-Allah. This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0

license.

 Journal of Computer Science

Original Research Paper

Integrating Lowest Priority Approach with Largest Point

Scheme for Faster Feasibility Analysis

Nasro Min-Allah

Department of Computer Science, College of Computer Science and Information Technology,

Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia

Article history

Received: 13-03-2019
Revised: 16-04-2019
Accepted: 23-04-2019

Email: nabdullatief@iau.edu.sa

Abstract: Recently many solutions have been proposed to lower the

computational cost of feasibility analysis for real-time systems. The

computational cost of feasibility tests can be lowered by strategies such as

lowering the number of scheduling points needed during analysis, starting

feasibility analysis from lowest priority, or starting schedulability tests for a

task with larger scheduling point. All these techniques significantly reduce

the computation time of feasibility analysis for fixed priority systems. The

computation time of such tests can be further reduced by combining various

solutions for efficient feasibility analysis of periodic task sets. In this work,

we integrate both lowest priority first with largest points first solution to

derive a faster feasibility analysis test for fixed priority system. Our

experimental evaluations suggest that the proposed technique significantly

lowers the computational cost of the test when system utilization is in the

range of 80% or when the ratio between the task period of a lower priority

task and the highest priority task is large.

Keyword: Real-Time Systems, Operating System, Fixed-Priority

Scheduling, Feasibility Analysis

Introduction

One of the main component of an operating system is

multitasking that enables running multiple tasks on the

same computer system. In multitasking systems, a

scheduler run process tasks based on some criteria such

first come first out, shortest job first or round robin etc.

All these solutions have pros and cons and no single

scheduling policy is applicable to a diverse set of

applications (Liu and Layland, 1973; Leung and

Whitehead, 1982; George et al., 1996; Min-Allah, 2019;

Bini and Buttazzo, 2004; 2001). These techniques are

good for general tasks where the motivation is full

utilization of re- sources or achieving higher throughput.

However, aforementioned techniques can not be used of

real-time system due to specific nature of tasks where

timing constrains must be guaranteed under any possible

circumstances.
In operating systems, scheduling can be classified

into two main types of preemptive and non-preemptive

classes. Under preemptive class, an executing task is

preempted whenever another task with higher priority

arrives while non-preemptive policy puts no such

restriction and let the executing task to its completion.

Form system utilization perspective, preemptive

scheduling is preferred over non-preemptive counterpart.

Various scheduling techniques have been proposed for

real-time system (Liu and Layland, 1973; Leung and

Whitehead, 1982; George et al., 1996; Katcher et al.,

1993; Lehoczky et al., 1989; Bini and Buttazzo, 2001;

Han and Tyan, 1997; Kuo et al., 2003; Audsley et al.,

1993; Sjodin and Hansson, 1998) that ensures the timing

requirements are met by prioritizing task executions

running on the system. For instance, Rate Monotonic

Scheduling (RMS) (Liu and Layland, 1973) strategy

assigns priority by task activation rate while Deadline

Monotonic Scheduling (DMS) (Leung and Whitehead,

1982) algorithm assigns priorities based on tasks

deadlines. Both RMS and DMS are static priority

assignment algorithm due to its static priority allocation

to individual tasks which never changes at run time. The

main limitation of such techniques is poor CPU

utilization, especially with existing inexact conditions.

To encounter this limitation, a dynamic scheduling

algorithm known as Earliest Deadline First (EDF) was

also derived in (Liu and Layland, 1973) where tasks

priorities are given from the perspective of deadlines.

With EDF, there is no need to define off-line priorities as

Nasro Min-Allah / Journal of Computer Science 2019, 15 (4): 550.557

DOI: 10.3844/jcssp.2019.550.557

551

it keeps changing at run time. The closer is the deadline,

the higher is a task priority and so on. When it comes to

predictability, static scheduling are more predictable due

to its fixed priority assignment which can easily identify

that which particular periodic task will miss the deadline

when the system becomes overloaded.

To determine, weather a given real-time system

meets its associated timing constraints, feasibility

analysis is a must for any intended scheduling algorithm

to be used for scheduling periodic tasks. For RMS and

DMS, there exist two types of feasibility analysis tests, i-

Inexact and ii-Exact condition. Inexact-conditions (Liu

and Layland, 1973; Kuo and Mok, 1991; Bini and

Buttazzo, 2001) are very fast while exact- conditions

(Lehoczky et al., 1989; Alrashed, 2018; Audsley et al.,

1993; Bini and Buttazzo, 2004) are slow from

implementation point of view. On the contrary, exact-

conditions result in better system utilization as compared

to inexact conditions. Such systems were also studied

from the perspective of liner optation problem using

constraint formula and disjunctive constraints (Chen et

al., 2017; Lyu et al., 2018). In this paper, we extend the

work done in (Min-Allah, 2019) with lowest priority first

approach for preemptive scheduling. Though there exist

feasibility analysis techniques (Audsley et al., 1993;

Sjodin and Hansson, 1998) that are superior to the

scheduling points alternatives but those solutions are

based on analysis of task response time and thus out of

the scope of this paper. This work aims to integrate two

recently developed approaches namely lowest priority

first approach (Min-Allah et al., 2013) and largest point

first (Min-Allah, 2019) to study its impact on the

schedulability analysis of periodic task set.

Recently, various solutions were presented to lower

the computation cost of exact- conditions (Alrashed,

2018; Min-Allah and Khan, 2011; Bini and Buttazzo,

2004; Joseph and Pandya, 1986; Leung and Whitehead,

1982; Min-Allah, 2019; Alrashed et al., 2016; Min-

Allah et al., 2013; Sjodin and Hansson, 1998).

Feasibility study was discussed in (Alrashed, 2018) by

sorting tasks set while a hybrid technique was presented

in (Min-Allah and Khan, 2011). Scheduling points were

restricted to a subset in (Bini and Buttazzo, 2004).

Similarly, feasibility was determined with lowest priority

first approach in (Min-Allah et al., 2013). A hybrid test

was established in (Min-Allah and Khan, 2011) by using

both exact and inexact conditions. Recently, the feasibility

of a task set was analyzed by using a largest point in the

set of candidate scheduling points in (Min-Allah, 2019). In

this work, we integrate the lowest priority first fashion at

task set level and use the largest point strategy when

schedulability is concerned with a single task. Our

technique can be classified under exact class of feasibility

analysis as the complexity is pseudo-polynomial. Our

experimental results show significant improvement in run

time when compared to related solutions.

To maintain a good flow in the work, we divide the
paper into 4 Sections. Section 2 discusses related work
and the system model to be used for establishing the test.
Details of our improved test are given in Section 3 while
experimental results are shown in Section 4. We
highlight conclusion and potential future research
directions in Section 5.

Background Work and System Model

In this work, we assume a real time systems which is

a collection of independent periodic tasks. A periodic

task τi in the task set is represented by the three essential

parameters ci, pi and di. Parameter ci represents the CPU

execution time needed for an instance (job) of a task

before its next instance arrives. Similarly, pi denotes the

task period where jobs of τi are released periodically

after pi intervals, while di shows the task deadline. For

the successful completion, each instance must receive ci

units of CPU slots before its respective deadline di. We

assume the first jobs of each task is released at t = 0.

The scheduling algorithm used is RMS and task set

consist of n tasks, while the underlying system has a

single processor system.
To answer the feasibility of the aforementioned task

model with RMS on uni-processor system, feasibility
tests are performed and many tests are available in real-
time systems literature. As discussed in Section 1,
feasibility tests are of two types i.e., inexact and exact
tests. In this context inexact test is a sufficient condition
while exact test is both necessary and sufficient
conditions. The first inexact condition for RMS was
derived in (Liu and Layland, 1973) as: A periodic task
system of independent tasks is RMS feasible if:

()1/

1

2 1

n

ni

i i

c
n

p
=

≤ −∑ (1)

In the above expression, it can be seen that Inequality

1 puts a bound on system utilization of ln(n) when n
approaches ∞. Since the introduction of preemptive real-
time systems scheduling theory and corresponding

feasibility condition in 1973 (Liu and Layland, 1973) for
periodic tasks under a simple periodic task set, many
solutions have been presented by relaxing the limitations
of the task set such as making task periods harmonic etc.
Extending the work done in (Liu and Layland, 1973),
authors in (Bini and Buttazzo, 2001) derived an inexact

condition with higher acceptance ratio: A periodic task
system of independent tasks is RMS feasible if:

1

1 2

n

i

i i

c

p
=

+ ≤

∏ (2)

Both Inequality 1 and 2 are general condition under

inexact class and hence determine the RMS feasibility of

Nasro Min-Allah / Journal of Computer Science 2019, 15 (4): 550.557

DOI: 10.3844/jcssp.2019.550.557

552

the system when feasibility conditions are true, however

nothing can be said when conditions are false. It can be

noted that full utilization of the system can not be fully

achieved with inexact conditions. To have a higher

system utilization more tests were proposed in (Kuo and

Mok, 1991; Katcher et al., 1993; Han and Tyan, 1997).

For instance, to achieve up to 100%, authors in (Kuo and

Mok, 1991) tuned task periods to harmonic which is a

restricted case but the test is of polynomial complexity

and can be used in online systems.

On the other hand, exact conditions are both

necessary and sufficient conditions (Lehoczky et al.,

1989; Min-Allah and Khan, 2011; Alrashed, 2018;

Sjodin and Hansson, 1998; Joseph and Pandya, 1986;

Audsley et al., 1993; Bini and Buttazzo, 2004) and can

result in higher utilization but the complexity associated

is pseudo-polynomial. These solution test feasibility of

each task one by one answer system feasibility as true or

false. The role of workload is of primary interest to

this class and has been discussed in related literature

(Khan and Min-Allah, 2012; Min-Allah et al., 2012;

Kolodziej et al., 2011; Min-Allah et al., 2010).

Task τi gets the desired CPU time at any time t, when

a job from the higher priority task in the system, in

addition to the computation time of the task τi, is

assigned CPU time at or before the time t. For simplicity,

time can be assumed as an integer number and

computation time of a task depends on the system speed

i.e., a task that takes 2 ms on a CPU having 2 GHz speed

can tentatively take 2 ms when running at 1 GHz. It is

worth noting that task periods are equal to task deadlines

in implicit deadline model which is applicable in this

work. For testing RM schedulability of an individual

task τi at a time t, the cumulative execution demand is

constituted by ci as well as the total CPU demand of all

the higher priority periodic tasks starting from τi-1 up to

τ1. This is due to the fact that the processor can only be

given to a low priority task when there does not exist any

high priority task. Therefore, the maximum workload on

CPU at time t can be written as:

()
1

1

i

i i j

j j

t
w t c c

p

−

=

= +

∑ (3)

In a periodic task set, a task τi is schedulable in the

time interval [0, pi] when:

()()
0

min
i

i i
t p

l w t t
< ≤

= ≤ (4)

The above inequality shows that a task τi fulfills the

required execution requirements at or before time t ∈

[0, pi], iff the entire request from all i-1 higher priority

tasks and computation time of τi, is provided at t. The

problem is that t is a continuous variable and there exist

infinite numbers of candidate scheduling points to be

tested for a task τi.

Entire system τ is RMS feasible iff:

()
1 0

max min 1
i

i

i n t p

w t
L

t< ≤ < ≤

= ≤

 (5)

Lehoczky et al. (1989), provided a solution where in

finite number of points in the time interval [0, pi] was

rationally restricted to a set of candidate points where

computational load changes due to arrival of high priority

tasks. Lehoczky et al. (1989) showed that wi(t) remains

constant, except at finite number of points, where tasks are

released, called RMS scheduling points. The

aforementioned work, ignored the task periods of tasks

that have priority lower than taui as those tasks can not be

allocated CPU slots as long as τi or any higher priority

tasks needs CPU time. In this paper, we use schedulability

and feasibility inter-changeable.

Let:

{ }| 1,..., ; 1,..., /
i l i l

S ap l i a p p = = = (6)

For checking schedulability of a single task,

Lehoczky et al. (1989) determined if an individual task τi

is schedulable with RMS:

Theorem 2.1. (Lehoczky et al., 1989)

Given a set of n periodic tasks τ1,…, τn, τi can be

feasibly scheduled for all tasks phasings using RM iff:

()
min 1

i

i

i
t S

w t
l

t∈

= ≤ (7)

The periodic task set τ is RMS schedulable on a

single CPU system iff:

()
1 0

max min 1
i

i

i n t p

w t
L

t≤ ≤ < ≤

= ≤

 (8)

It is clear from the above set that all elements in the

set of scheduling point sets are task periods of higher

priority tasks while low priority task periods do not

contribute any point to the said set. Having such set of

potential points that is constituted by task periods, RMS

schedulability of τi is checked by:

Theorem 2.2. (Lehoczky et al., 1989)

A periodic tasks set τ1,…, τn, τi can be feasibly

scheduled on a uni-processor system using fixed priority

scheduling algorithm for all tasks phasings iff:

Nasro Min-Allah / Journal of Computer Science 2019, 15 (4): 550.557

DOI: 10.3844/jcssp.2019.550.557

553

()
min 1

i

i

i
t S

w t
l

t∈

= ≤ (9)

Many authors extended the work done in Lehoczky

et al. (1989) by proposing feasibility test with lower

computational cost.

Improved RMS Feasibility Test

Traditionally, highest priority first approach is used

to determine feasibility of the task set and starts testing

schedulability with highest priority task in the task set.

This policy continues till the lowest priority task is

determined RM schedulability, which answers the RMS

schedulability of the entire task set positively. Recently,

an interesting approach was explored in (Min-Allah et al.,

2013) that check system feasibility from the perspective

of lowest priority first approach with:

Theorem 3.1. (Min-Allah et al., 2013)

A periodic task set τ is always RM schedulable if the

lowest priority task τn is schedulable at some point t∈ϒ

such that
i

S φϒ = ≠∩ , ∀i, 1≤ i ≤ n.

This observation is justified as it is very likely that if

a system in infeasible it is due to lower priority task in

case of RMS. Similarly, Min-Allah (2019) discussed that

it is a rational approach to check RMS schedulability of

a task at higher points.

Corollary 3.1. (Min-Allah, 2019)

A system consisting of n periodic tasks given in the

descending priority order τ1, τ2…, τn, τi can be feasibly

scheduled for all tasks phasings using RM iff:

()
1

max min 1
i

i

i n t O

w t

t≤ ≤ ′∈

≤

 (10)

where,
i

O′ is a set of scheduling points in descending

order and hence the first element is the largest task

period. We show that by combining both Theorem 3.1

and Corollary 3.1, the computation cost can be lowered

significantly. First of all, we order the entire task with

descending order so that the first half element represents

the lowest priority tasks and the last element denotes the

task with smallest period and hence highest priority is

as-signed to this task. As we know, the task priorities

and periods are inversely proportional, a higher priority

task has to be completed in a smaller time window as

compared to lower priority tasks. In preemptive

scheduling, a lower priority task can be preempted

multiple times in the interest of a higher priority task.

This is the reason that preemptive scheduling under

RMS promises higher system utilization. On the

contrary, non-preemptive scheduling is straight forward

and easy to code. We ignore the preemption cost in this

work. In next step, we obtain a set of candidate

scheduling points denoted by
i

O′ and start feasibility of a

task τi with largest scheduling points. Such arrangements

help in lowering the computational cost of the overall

system. The values of task periods also inuence

feasibility analysis at task level and the same is true

when the computational cost of individual tasks are very

small. We first sort the task set in reverse order and then

check feasibility with lowest priority task first and so on.

Again this solution can answer task set infeasibility

much early as the lowest priority tasks is generally the

one which is always unschedulable with RMS when the

task set is infeasible. This combination results in

lowering the computational cost of the feasibility tests

under RM scheduling on single CPU system. We

represent our work in the following corollary:

Corollary 3.2.

Given a set of n periodic tasks in ascending priority

order τn, τn-1…, τ1, τi, can be feasibly scheduled for all

tasks phasings using RMS iff:

()
()

: ,...,1 min 1
i

i

t O

w t
i n

t′∈

∀ ≤

 (11)

Proof

It can be directly followed by Theorem 3.1 and

Corollary 3.1.
It can be seen from Corollary 3.2 that parameters of

the task set are intact while feasibility is tested in lowest
priority fashion. On the task level, RMS schedulability is
determined at scheduling points

i
O′ in a set where the

first element is task period of the task τi. The entire task
set is RMS schedulability when all the tasks in the task
set are declared schedulable. The original task set has
been arranged in such a way that the last element denotes
the task with highest priority which is always schedulable.
Our technique work efficiently for both cases when
system utilization is low or when the task set becomes
infeasible with presence of unschedulable tasks. With low
utilization, our test find schedulability of a task at higher
points and hence converges early while in case of
overloaded system, the integration of lowest priority first
approach determines system infeasibility much faster.
This approach is exact condition for RMS feasibility
analysis and when a task set feasibility is determined by
any exact condition, Corollary 3.2 never fails.

Experimental Results

We now show the experimental evaluation of

Corollary 3.2 and compare our results with previous

techniques. In our experiments, we use uniform

distribution for obtaining task execution requirements and

Nasro Min-Allah / Journal of Computer Science 2019, 15 (4): 550.557

DOI: 10.3844/jcssp.2019.550.557

554

task periods. A similar analysis is done in (Min-Allah,

2019) but the focus in that work was on highest priority

first while we study in feasibility problem using lowest

priority first counterpart. Detailed aspects of our

analysis an be made by using the scientifically model

(Gonzlez-Briones et al., 2018) but to align with

previous literature, we follow the approach used in

(Min-Allah, 2019). We run each experiment 300 times

and plot the average values in Fig. 1. First we

calculated task period pi and then ci were obtained in

range [1, pi]. We compare our results with Theorem 3.1

and the approach used in Corollary 3.1 as these are

closely related techniques. We use a sample size of 10-

100 where we generate task set starting from 10 tasks

and then increase the size by adding 10 more tasks. We

plot normalized values for the execution time of each

test under various system utilization. We represent

Theorem 3.1 by Lowest Approach (LA), Corollary 3.1

by Largest Point (LP) and Corollary 3.2 by Lowest

Approach with Largest Point (LALP).

Fig. 1: Run times at 80% system utilization when P
n
 = P1 = 1000

Fig. 2: Run times at 90% system utilization when P
n
 = P1 = 1000

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

E
x
ec

u
ti

o
n
 t

im
e

(n
o
rm

al
iz

ed
)

10 20 30 40 50 60 70 80 90 100

Size of task set

LP

LA

LALP

 1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

10 20 30 40 50 60 70 80 90 100

Size of task set

E
x
ec

u
ti

o
n
 t

im
e

(n
o
rm

al
iz

ed
)

LP

LA

LALP

Nasro Min-Allah / Journal of Computer Science 2019, 15 (4): 550.557

DOI: 10.3844/jcssp.2019.550.557

555

Fig. 3: Run times at 80% system utilization when P
n
 = P1 = 100000

Fig. 4: Run times at 90% system utilization when P
n
 = P1 = 100000

In our first experiments, we kept the keep the ratio of

shortest and largest task percoid as 1000 in Fig. 1 and 2

and then the ratio was increased to 100000 in Fig. 3 and 4.

For each figure, we assigned system utilization as 80%

against Fig. 1 and 3 and also 90% utilization for Fig. 2 and

4. Below 70% it is understood that the task set if RMS

feasible and hence we test our technique under appropriate

system utilization. It can be see that when utilization is

low in Fig. 1, the LA is almost similar to LP.

While LALP is superior to both LA and LP. This

behaviour is due to the fact that all the task are

schedulable at such lower utilization and hence both LP

and LA are going to check feasibility of all points.

Similarly, the performance of all techniques degrades at

higher utilization of 90% in Fig. 2. On the other hand, all

techniques are promising when system utilization is 80%

in Fig. 3 and the values for task periods are high. This

situation is due to the fact that more the probability of

missing deadline by lower priority tasks is very low. The

runtime will become even lower for LP and LALP when

utilization is increased but this is not due to the

feasibility of the task set rather the task set will become

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

E
x
ec

u
ti

o
n
 T

im
e

(n
o
rm

al
iz

ed
)

10 20 30 40 50 60 70 80 90 100

Size of task set

LP

LA

LALP

 1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

E
x
ec

u
ti

o
n
 t

im
e

(n
o
rm

al
iz

ed
)

10 20 30 40 50 60 70 80 90 100

Size of task set

LP

LA

LALP

Nasro Min-Allah / Journal of Computer Science 2019, 15 (4): 550.557

DOI: 10.3844/jcssp.2019.550.557

556

infeasible and hence both LP and LALP will terminate

early. LALP outclasses both counterparts in Fig. 3 as

only few points are needed to test system RMS

feasibility with such large task periods. The results

obtained for lower utilization and higher period ration

are promising for LALP. The same trend continues in

Fig. 4 but utilization now inuences the run time of

feasibility tests as the cumulative demand is higher at

utilization of 90% and many lower priority task can

miss the deadline. This situation is understandable as

task infeasibility is determined much early with LA and

LALP as compared to LP. The improvement due to

LALP is due to lesser number of inequalities to be

tested with Corollary 3.2 which is the main

contribution of this work.

Conclusion and Future Work

We exploited i-lowest priority first approach at the

task set level and ii-largest point technique at the task

level for an improved feasibility test. This combination

lowered the computational cost of the RM feasibility

test. Two existing solutions were combined to obtain an

efficient feasibility test that determines rate monotonic

schedulability of the task set on a uni-processor system.

Feasibility of tasks were checked with lowest priority first

approach and for an individual task, schedulability was

analyzed by starting with larger points and so on. Our

experimental results showed that proposed technique

significantly lowered the computational cost as compared

to existing alternatives. Our technique has the advantage

to check system feasibility much faster in general and in

particular for RMS infeasible task sets on the single

processor system. As a future work, it will be interesting

to use hybrid approach for answering a subset of tasks

with an inexact condition and check schedulability of the

remaining tasks with the solution sketched in this paper.

Acknowledgment

The author would like to extend sincere thanks to the

anonymous referees and colleagues at the College of

Computer Science and Information Technology, Imam

Abdulrahman Bin Faisal University, for their valuable

suggestions while revising this paper.

Author’s Contributions

A feasibility test is obtained by combining the largest

point approach at the task level while starting feasibility

of the overall task set with lowest priority.

The solution concludes RMS feasibility at lowered

computational cost as compared to existing counterparts.

The test suggests promising results when system

utilization is low or when the ratio between any two

tasks periods is high.

Ethics

The experimental and theoretical results reported in

work were obtained keeping in view the standard ethics

practices employed in scientific research.

References

Alrashed, S., 2018. An improved hybrid test for

feasibility analysis of periodic tasks. ICIC Express

Lett., 12: 759-766. DOI: 10.24507/icicel.12.08.759

Alrashed, S., J. Alhiyafi, A. Shafi and N. Min-Allah,

2016. An efficient schedulability condition for non-

preemptive real-time systems at common scheduling

points. J. Super Comput., 72: 4651-4661.

 DOI: 10.1007/s11227-016-1751-6

Audsley, N.C., A. Burns, K. Tindell and A. Wellings,

1993. Applying new scheduling theory to static

priority preemptive scheduling. Software Eng. J., 8:

284-292. DOI: 10.1049/sej.1993.0034

Bini, E. and G. Buttazzo, 2001. A hyperbolic bound for

the rate monotonic algorithm. Proceedings of the 13th

Euromicro Conference on Real-Time Systems, Jun.
13-15, IEEE Xplore Press, Delft, The Netherlands,

pp: 59-66. DOI: 10.1109/EMRTS.2001.934000

Bini, E. and G.C. Buttazzo, 2004. Schedulability analysis

of periodic fixed priority systems. IEEE Trans.

Comput., 53: 1462-1473. DOI: 10.1109/TC.2004.103

Chen, L., Y. Lyu, C. Wang, J. Wu and C. Zhang et al.,

2017. Solving linear optimization over arithmetic

constraint formula. J. Global Optimiz., 69: 69-102.

DOI: 10.1007/s10898-017-0499-8

George, L., N. Riverre and M. Spuri, 1996. Preemptive

and non-preemptive real-time uniprocessor

scheduling. Research Report 2966, INRIA, France.

Gonzlez-Briones, A., J. Prieto, F. De La Prieta, E.

Herrera-Viedma and J. Corchado, 2018. Energy

optimization using a case-based reasoning strategy.

Sensors, 18: 865-865. DOI: 10.3390/s18030865
Han, C.C. and H.Y. Tyan, 1997. A better polynomial-

time schedulability test for real-time fixed-priority
scheduling algorithms. Proceedings of the 18th
IEEE Real-Time Systems Symposium, Dec. 2-5,
IEEE Xplore Press, San Francisco, CA, USA, pp:
36-45. DOI: 10.1109/REAL.1997.641267

Joseph, M. and P. Pandya, 1986. Finding response times

in a real-time system. Comput. J., 29: 390-395.

 DOI: 10.1093/comjnl/29.5.390

Katcher, D.I., H. Arakawa and J.K. Strosnider, 1993.

Engineering and analysis of fixed priority

schedulers. IEEE Trans. Software Eng., 19: 920-934.

DOI: 10.1109/32.241774

Khan, S.U. and N. Min-Allah, 2012. A goal programming

based energy efficient resource allocation in data

centers. J. Supercomput., 61: 502-519.

 DOI: 10.1007/s11227-011-0611-7

Nasro Min-Allah / Journal of Computer Science 2019, 15 (4): 550.557

DOI: 10.3844/jcssp.2019.550.557

557

Kolodziej, J., S.U. Khan, L. Wang, N. Min-Allah and S.A.

Madani et al., 2011. An application of Markov jump

process model for activity-based indoor mobility

prediction in wireless networks. Proceedings of the

Frontiers Information Technology, Dec. 19-21, IEEE
Xplore Press, Islamabad, Pakistan, pp: 51-56.

 DOI: 10.1109/FIT.2011.17

Kuo, T.W. and A.K. Mok, 1991. Load adjustment in

adaptive real-time systems. Proceedings of the IEEE

Real-Time Systems Symposium, Dec. 4-6, IEEE
Xplore Press, San Antonio, TX, USA, pp: 160-171.

DOI: 10.1109/REAL.1991.160369

Kuo, T.W., L.P. Chang, Y.H. Liu and K.J. Lin, 2003.

Efficient online schedulability tests for real-time

systems. IEEE Trans. Software Eng., 29: 734-751.

DOI: 10.1109/TSE.2003.1223647
Lehoczky, J.P., L. Sha and Y. Ding, 1989. The rate

monotonic scheduling algorithm: Exact
characterization and average case behavior.
Proceedings of the IEEE Real-Time System
Symposium, Dec. 5-7, IEEE Xplore Press, Santa
Monica, CA, USA, pp: 166-171.

 DOI: 10.1109/REAL.1989.63567
Leung, J.Y.T. and J. Whitehead, 1982. On the

complexity of fixed-priority scheduling of periodic,
real-time tasks. Perf. Eval., 2: 237-250.

 DOI: 10.1016/0166-5316(82)90024-4

Liu, C.L. and J.W. Layland, 1973. Scheduling

algorithms for multiprogramming in a hard real-time

environment. J. ACM, 20: 40-61.

 DOI: 10.1145/321738.321743

Lyu, Y., L. Chen, C. Zhang, D. Qu and N. Min-Allah et al.,

2018. An interleaved depth-first search method for the

linear optimization problem with disjunctive

constraints. J. Global Optimiz., 70: 737-756.

 DOI: 10.1007/s10898-017-0602-1

Min-Allah, N. and S.U. Khan, 2011. A hybrid test for

faster feasibility analysis of periodic tasks. Int. J.

Innovative Comput. Inform. Control.

Min-Allah, N., 2019. Effect of ordered set on feasibility

analysis of static priority system. J. Supercomput.

DOI: 10.1007/s11227-018-02742-0

Min-Allah, N., I. Ali, J. Xing and Y. Wang, 2010.

Utilization bound for periodic task set with

composite deadline. Comput. Electrical Eng., 36:

1101-1109.

 DOI: 10.1016/j.compeleceng.2010.04.003

Min-Allah, N., S.U. Khan, N. Ghani, J. Li and L.

Wang et al., 2012. A comparative study of rate

monotonic schedulability tests. J. Supercomput.,

59: 1419-1430. DOI: 10.1007/s11227-011-0554-z

Min-Allah, N., S.U. Khan, X. Wang and A.Y. Zomaya,

2013. Lowest priority first based feasibility analysis

of real-time systems. J. Parallel Distributed

Comput., 73: 1066-1075.

 DOI: 10.1016/j.jpdc.2013.03.016

Sjodin, M. and H. Hansson, 1998. Improved response-

time analysis calculations. Proceedings of the 19th

IEEE Real-Time Systems Symposium, Dec. 4-4,
IEEE Xplore Press, Madrid, Spain, pp: 399-409.

DOI: 10.1109/REAL.1998.739773

