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Abstract: Recently many solutions have been proposed to lower the 

computational cost of feasibility analysis for real-time systems. The 

computational cost of feasibility tests can be lowered by strategies such as 

lowering the number of scheduling points needed during analysis, starting 

feasibility analysis from lowest priority, or starting schedulability tests for a 

task with larger scheduling point. All these techniques significantly reduce 

the computation time of feasibility analysis for fixed priority systems. The 

computation time of such tests can be further reduced by combining various 

solutions for efficient feasibility analysis of periodic task sets. In this work, 

we integrate both lowest priority first with largest points first solution to 

derive a faster feasibility analysis test for fixed priority system. Our 

experimental evaluations suggest that the proposed technique significantly 

lowers the computational cost of the test when system utilization is in the 

range of 80% or when the ratio between the task period of a lower priority 

task and the highest priority task is large. 

 

Keyword: Real-Time Systems, Operating System, Fixed-Priority 
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Introduction 

One of the main component of an operating system is 

multitasking that enables running multiple tasks on the 

same computer system. In multitasking systems, a 

scheduler run process tasks based on some criteria such 

first come first out, shortest job first or round robin etc. 

All these solutions have pros and cons and no single 

scheduling policy is applicable to a diverse set of 

applications (Liu and Layland, 1973; Leung and 

Whitehead, 1982; George et al., 1996; Min-Allah, 2019; 

Bini and Buttazzo, 2004; 2001). These techniques are 

good for general tasks where the motivation is full 

utilization of re- sources or achieving higher throughput. 

However, aforementioned techniques can not be used of 

real-time system due to specific nature of tasks where 

timing constrains must be guaranteed under any possible 

circumstances. 
In operating systems, scheduling can be classified 

into two main types of preemptive and non-preemptive 

classes. Under preemptive class, an executing task is 

preempted whenever another task with higher priority 

arrives while non-preemptive policy puts no such 

restriction and let the executing task to its completion. 

Form system utilization perspective, preemptive 

scheduling is preferred over non-preemptive counterpart. 

Various scheduling techniques have been proposed for 

real-time system (Liu and Layland, 1973; Leung and 

Whitehead, 1982; George et al., 1996; Katcher et al., 

1993; Lehoczky et al., 1989; Bini and Buttazzo, 2001; 

Han and Tyan, 1997; Kuo et al., 2003; Audsley et al., 

1993; Sjodin and Hansson, 1998) that ensures the timing 

requirements are met by prioritizing task executions 

running on the system. For instance, Rate Monotonic 

Scheduling (RMS) (Liu and Layland, 1973) strategy 

assigns priority by task activation rate while Deadline 

Monotonic Scheduling (DMS) (Leung and Whitehead, 

1982) algorithm assigns priorities based on tasks 

deadlines. Both RMS and DMS are static priority 

assignment algorithm due to its static priority allocation 

to individual tasks which never changes at run time. The 

main limitation of such techniques is poor CPU 

utilization, especially with existing inexact conditions. 

To encounter this limitation, a dynamic scheduling 

algorithm known as Earliest Deadline First (EDF) was 

also derived in (Liu and Layland, 1973) where tasks 

priorities are given from the perspective of deadlines. 

With EDF, there is no need to define off-line priorities as 
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it keeps changing at run time. The closer is the deadline, 

the higher is a task priority and so on. When it comes to 

predictability, static scheduling are more predictable due 

to its fixed priority assignment which can easily identify 

that which particular periodic task will miss the deadline 

when the system becomes overloaded. 

To determine, weather a given real-time system 

meets its associated timing constraints, feasibility 

analysis is a must for any intended scheduling algorithm 

to be used for scheduling periodic tasks. For RMS and 

DMS, there exist two types of feasibility analysis tests, i-

Inexact and ii-Exact condition. Inexact-conditions (Liu 

and Layland, 1973; Kuo and Mok, 1991; Bini and 

Buttazzo, 2001) are very fast while exact- conditions 

(Lehoczky et al., 1989; Alrashed, 2018; Audsley et al., 

1993; Bini and Buttazzo, 2004) are slow from 

implementation point of view. On the contrary, exact-

conditions result in better system utilization as compared 

to inexact conditions. Such systems were also studied 

from the perspective of liner optation problem using 

constraint formula and disjunctive constraints (Chen et 

al., 2017; Lyu et al., 2018). In this paper, we extend the 

work done in (Min-Allah, 2019) with lowest priority first 

approach for preemptive scheduling. Though there exist 

feasibility analysis techniques (Audsley et al., 1993; 

Sjodin and Hansson, 1998) that are superior to the 

scheduling points alternatives but those solutions are 

based on analysis of task response time and thus out of 

the scope of this paper. This work aims to integrate two 

recently developed approaches namely lowest priority 

first approach (Min-Allah et al., 2013) and largest point 

first (Min-Allah, 2019) to study its impact on the 

schedulability analysis of periodic task set. 

Recently, various solutions were presented to lower 

the computation cost of exact- conditions (Alrashed, 

2018; Min-Allah and Khan, 2011; Bini and Buttazzo, 

2004; Joseph and Pandya, 1986; Leung and Whitehead, 

1982; Min-Allah, 2019; Alrashed et al., 2016; Min-

Allah et al., 2013;  Sjodin and Hansson, 1998). 

Feasibility study was discussed in (Alrashed, 2018) by 

sorting tasks set while a hybrid technique was presented 

in (Min-Allah and Khan, 2011). Scheduling points were 

restricted to a subset in (Bini and Buttazzo, 2004). 

Similarly, feasibility was determined with lowest priority 

first approach in (Min-Allah et al., 2013). A hybrid test 

was established in (Min-Allah and Khan, 2011) by using 

both exact and inexact conditions. Recently, the feasibility 

of a task set was analyzed by using a largest point in the 

set of candidate scheduling points in (Min-Allah, 2019). In 

this work, we integrate the lowest priority first fashion at 

task set level and use the largest point strategy when 

schedulability is concerned with a single task. Our 

technique can be classified under exact class of feasibility 

analysis as the complexity is pseudo-polynomial. Our 

experimental results show significant improvement in run 

time when compared to related solutions. 

To maintain a good flow in the work, we divide the 
paper into 4 Sections. Section 2 discusses related work 
and the system model to be used for establishing the test. 
Details of our improved test are given in Section 3 while 
experimental results are shown in Section 4. We 
highlight conclusion and potential future research 
directions in Section 5. 

Background Work and System Model 

In this work, we assume a real time systems which is 

a collection of independent periodic tasks. A periodic 

task τi in the task set is represented by the three essential 

parameters ci, pi and di. Parameter ci represents the CPU 

execution time needed for an instance (job) of a task 

before its next instance arrives. Similarly, pi denotes the 

task period where jobs of τi are released periodically 

after pi intervals, while di shows the task deadline. For 

the successful completion, each instance must receive ci 

units of CPU slots before its respective deadline di. We 

assume the first jobs of each task is released at t = 0. 

The scheduling algorithm used is RMS and task set 

consist of n tasks, while the underlying system has a 

single processor system. 
To answer the feasibility of the aforementioned task 

model with RMS on uni-processor system, feasibility 
tests are performed and many tests are available in real-
time systems literature. As discussed in Section 1, 
feasibility tests are of two types i.e., inexact and exact 
tests. In this context inexact test is a sufficient condition 
while exact test is both necessary and sufficient 
conditions. The first inexact condition for RMS was 
derived in (Liu and Layland, 1973) as: A periodic task 
system of independent tasks is RMS feasible if: 
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In the above expression, it can be seen that Inequality 

1 puts a bound on system utilization of ln(n) when n 
approaches ∞. Since the introduction of preemptive real-
time systems scheduling theory and corresponding 

feasibility condition in 1973 (Liu and Layland, 1973) for 
periodic tasks under a simple periodic task set, many 
solutions have been presented by relaxing the limitations 
of the task set such as making task periods harmonic etc. 
Extending the work done in (Liu and Layland, 1973), 
authors in (Bini and Buttazzo, 2001) derived an inexact 

condition with higher acceptance ratio: A periodic task 
system of independent tasks is RMS feasible if: 
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Both Inequality 1 and 2 are general condition under 

inexact class and hence determine the RMS feasibility of 
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the system when feasibility conditions are true, however 

nothing can be said when conditions are false. It can be 

noted that full utilization of the system can not be fully 

achieved with inexact conditions. To have a higher 

system utilization more tests were proposed in (Kuo and 

Mok, 1991; Katcher et al., 1993; Han and Tyan, 1997). 

For instance, to achieve up to 100%, authors in (Kuo and 

Mok, 1991) tuned task periods to harmonic which is a 

restricted case but the test is of polynomial complexity 

and can be used in online systems. 

On the other hand, exact conditions are both 

necessary and sufficient conditions (Lehoczky et al., 

1989; Min-Allah and Khan, 2011; Alrashed, 2018; 

Sjodin and Hansson, 1998; Joseph and Pandya, 1986; 

Audsley et al., 1993; Bini and Buttazzo, 2004) and can 

result in higher utilization but the complexity associated 

is pseudo-polynomial. These solution test feasibility of 

each task one by one answer system feasibility as true or 

false. The role of workload is of primary interest to 

this class and has been discussed in related literature 

(Khan and Min-Allah, 2012; Min-Allah et al., 2012; 

Kolodziej et al., 2011; Min-Allah et al., 2010). 

Task τi gets the desired CPU time at any time t, when 

a job from the higher priority task in the system, in 

addition to the computation time of the task τi, is 

assigned CPU time at or before the time t. For simplicity, 

time can be assumed as an integer number and 

computation time of a task depends on the system speed 

i.e., a task that takes 2 ms on a CPU having 2 GHz speed 

can tentatively take 2 ms when running at 1 GHz. It is 

worth noting that task periods are equal to task deadlines 

in implicit deadline model which is applicable in this 

work. For testing RM schedulability of an individual 

task τi at a time t, the cumulative execution demand is 

constituted by ci as well as the total CPU demand of all 

the higher priority periodic tasks starting from τi-1 up to 

τ1. This is due to the fact that the processor can only be 

given to a low priority task when there does not exist any 

high priority task. Therefore, the maximum workload on 

CPU at time t can be written as: 
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In a periodic task set, a task τi is schedulable in the 

time interval [0, pi] when: 
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The above inequality shows that a task τi fulfills the 

required execution requirements at or before time t ∈ 

[0, pi], iff the entire request from all i-1 higher priority 

tasks and computation time of τi, is provided at t. The 

problem is that t is a continuous variable and there exist 

infinite numbers of candidate scheduling points to be 

tested for a task τi. 

Entire system τ is RMS feasible iff: 
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Lehoczky et al. (1989), provided a solution where in 

finite number of points in the time interval [0, pi] was 

rationally restricted to a set of candidate points where 

computational load changes due to arrival of high priority 

tasks. Lehoczky et al. (1989) showed that wi(t) remains 

constant, except at finite number of points, where tasks are 

released, called RMS scheduling points. The 

aforementioned work, ignored the task periods of tasks 

that have priority lower than taui as those tasks can not be 

allocated CPU slots as long as τi or any higher priority 

tasks needs CPU time. In this paper, we use schedulability 

and feasibility inter-changeable. 

Let: 
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For checking schedulability of a single task, 

Lehoczky et al. (1989) determined if an individual task τi 

is schedulable with RMS: 

Theorem 2.1. (Lehoczky et al., 1989)  

Given a set of n periodic tasks τ1,…, τn, τi can be 

feasibly scheduled for all tasks phasings using RM iff: 

 

( )
min 1

i

i

i
t S

w t
l

t∈

= ≤   (7) 

 

The periodic task set τ is RMS schedulable on a 

single CPU system iff: 
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It is clear from the above set that all elements in the 

set of scheduling point sets are task periods of higher 

priority tasks while low priority task periods do not 

contribute any point to the said set. Having such set of 

potential points that is constituted by task periods, RMS 

schedulability of τi is checked by: 

Theorem 2.2. (Lehoczky et al., 1989) 

A periodic tasks set τ1,…, τn, τi can be feasibly 

scheduled on a uni-processor system using fixed priority 

scheduling algorithm for all tasks phasings iff: 
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Many authors extended the work done in Lehoczky 

et al. (1989) by proposing feasibility test with lower 

computational cost. 

Improved RMS Feasibility Test 

Traditionally, highest priority first approach is used 

to determine feasibility of the task set and starts testing 

schedulability with highest priority task in the task set. 

This policy continues till the lowest priority task is 

determined RM schedulability, which answers the RMS 

schedulability of the entire task set positively. Recently, 

an interesting approach was explored in (Min-Allah et al., 

2013) that check system feasibility from the perspective 

of lowest priority first approach with: 

Theorem 3.1. (Min-Allah et al., 2013) 

A periodic task set τ is always RM schedulable if the 

lowest priority task τn is schedulable at some point t∈ϒ 

such that 
i

S φϒ = ≠∩ , ∀i, 1≤ i ≤ n. 

This observation is justified as it is very likely that if 

a system in infeasible it is due to lower priority task in 

case of RMS. Similarly, Min-Allah (2019) discussed that 

it is a rational approach to check RMS schedulability of 

a task at higher points. 

Corollary 3.1. (Min-Allah, 2019) 

A system consisting of n periodic tasks given in the 

descending priority order τ1, τ2…, τn, τi can be feasibly 

scheduled for all tasks phasings using RM iff: 
 

( )
1

max min 1
i

i

i n t O

w t

t≤ ≤ ′∈

  
≤ 

  
  (10) 

 

where, 
i

O′ is a set of scheduling points in descending 

order and hence the first element is the largest task 

period. We show that by combining both Theorem 3.1 

and Corollary 3.1, the computation cost can be lowered 

significantly. First of all, we order the entire task with 

descending order so that the first half element represents 

the lowest priority tasks and the last element denotes the 

task with smallest period and hence highest priority is 

as-signed to this task. As we know, the task priorities 

and periods are inversely proportional, a higher priority 

task has to be completed in a smaller time window as 

compared to lower priority tasks. In preemptive 

scheduling, a lower priority task can be preempted 

multiple times in the interest of a higher priority task. 

This is the reason that preemptive scheduling under 

RMS promises higher system utilization. On the 

contrary, non-preemptive scheduling is straight forward 

and easy to code. We ignore the preemption cost in this 

work. In next step, we obtain a set of candidate 

scheduling points denoted by 
i

O′ and start feasibility of a 

task τi with largest scheduling points. Such arrangements 

help in lowering the computational cost of the overall 

system. The values of task periods also inuence 

feasibility analysis at task level and the same is true 

when the computational cost of individual tasks are very 

small. We first sort the task set in reverse order and then 

check feasibility with lowest priority task first and so on. 

Again this solution can answer task set infeasibility 

much early as the lowest priority tasks is generally the 

one which is always unschedulable with RMS when the 

task set is infeasible. This combination results in 

lowering the computational cost of the feasibility tests 

under RM scheduling on single CPU system. We 

represent our work in the following corollary: 

Corollary 3.2. 

Given a set of n periodic tasks in ascending priority 

order τn, τn-1…, τ1, τi, can be feasibly scheduled for all 

tasks phasings using RMS iff: 
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Proof 

It can be directly followed by Theorem 3.1 and 

Corollary 3.1. 
It can be seen from Corollary 3.2 that parameters of 

the task set are intact while feasibility is tested in lowest 
priority fashion. On the task level, RMS schedulability is 
determined at scheduling points 

i
O′  in a set where the 

first element is task period of the task τi. The entire task 
set is RMS schedulability when all the tasks in the task 
set are declared schedulable. The original task set has 
been arranged in such a way that the last element denotes 
the task with highest priority which is always schedulable. 
Our technique work efficiently for both cases when 
system utilization is low or when the task set becomes 
infeasible with presence of unschedulable tasks. With low 
utilization, our test find schedulability of a task at higher 
points and hence converges early while in case of 
overloaded system, the integration of lowest priority first 
approach determines system infeasibility much faster. 
This approach is exact condition for RMS feasibility 
analysis and when a task set feasibility is determined by 
any exact condition, Corollary 3.2 never fails. 

Experimental Results 

We now show the experimental evaluation of 

Corollary 3.2 and compare our results with previous 

techniques. In our experiments, we use uniform 

distribution for obtaining task execution requirements and 
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task periods. A similar analysis is done in (Min-Allah, 

2019) but the focus in that work was on highest priority 

first while we study in feasibility problem using lowest 

priority first counterpart. Detailed aspects of our 

analysis an be made by using the scientifically model 

(Gonzlez-Briones et al., 2018) but to align with 

previous literature, we follow the approach used in 

(Min-Allah, 2019). We run each experiment 300 times 

and plot the average values in Fig. 1. First we 

calculated task period pi and then ci were obtained in 

range [1, pi]. We compare our results with Theorem 3.1 

and the approach used in Corollary 3.1 as these are 

closely related techniques. We use a sample size of 10-

100 where we generate task set starting from 10 tasks 

and then increase the size by adding 10 more tasks. We 

plot normalized values for the execution time of each 

test under various system utilization. We represent 

Theorem 3.1 by Lowest Approach (LA), Corollary 3.1 

by Largest Point (LP) and Corollary 3.2 by Lowest 

Approach with Largest Point (LALP). 

 

 
 

Fig. 1: Run times at 80% system utilization when P
n
 = P1 = 1000 

 

 
 

Fig. 2: Run times at 90% system utilization when P
n
 = P1 = 1000 
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Fig. 3: Run times at 80% system utilization when P
n
 = P1 = 100000 

 

 
 

Fig. 4: Run times at 90% system utilization when P
n
 = P1 = 100000 
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infeasible and hence both LP and LALP will terminate 

early. LALP outclasses both counterparts in Fig. 3 as 

only few points are needed to test system RMS 

feasibility with such large task periods. The results 

obtained for lower utilization and higher period ration 

are promising for LALP. The same trend continues in 

Fig. 4 but utilization now inuences the run time of 

feasibility tests as the cumulative demand is higher at 

utilization of 90% and many lower priority task can 

miss the deadline. This situation is understandable as 

task infeasibility is determined much early with LA and 

LALP as compared to LP. The improvement due to 

LALP is due to lesser number of inequalities to be 

tested with Corollary 3.2 which is the main 

contribution of this work. 

Conclusion and Future Work 

We exploited i-lowest priority first approach at the 

task set level and ii-largest point technique at the task 

level for an improved feasibility test. This combination 

lowered the computational cost of the RM feasibility 

test. Two existing solutions were combined to obtain an 

efficient feasibility test that determines rate monotonic 

schedulability of the task set on a uni-processor system. 

Feasibility of tasks were checked with lowest priority first 

approach and for an individual task, schedulability was 

analyzed by starting with larger points and so on. Our 

experimental results showed that proposed technique 

significantly lowered the computational cost as compared 

to existing alternatives. Our technique has the advantage 

to check system feasibility much faster in general and in 

particular for RMS infeasible task sets on the single 

processor system. As a future work, it will be interesting 

to use hybrid approach for answering a subset of tasks 

with an inexact condition and check schedulability of the 

remaining tasks with the solution sketched in this paper. 
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