
 

 
 © 2019 Oksana Shadura, Federico Carminati and Anatoliy Petrenko. This open access article is distributed under a Creative 

Commons Attribution (CC-BY) 3.0 license. 

 Journal of Computer Science 

 

  

Original Research Paper 

Performance Optimization of Physics Simulations Through 

Genetic Algorithms 
 

1,2
Oksana Shadura, 

2
Federico Carminati and 

1
Anatoliy Petrenko

 

 
1National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kiev, Ukraine 
2CERN, Geneve, Switzerland 

 
Article history 

Received: 21-09-2018 

Revised: 08-12-2018 

Accepted: 7-01-2019 

 

Corresponding Author: 

Oksana Shadura  

CERN, Geneve, Switzerland 
Email: oksana.shadura@cern.ch 
            ksu.shadura@gmail.com 

Abstract: The GeantV R&D approach is revisiting the standard particle 

transport simulation approach to be able to benefit from “Single Instruction, 

Multiple Data” (SIMD) computational architectures or extremely parallel 

systems like coprocessors and GPUs. The goal of this work is to develop a 

mechanism for optimizing the programs used for High-Energy Physics 

(HEP) particle transport simulations using a “black-box” optimization 

approach. Taking in account that genetic algorithms are among the most 

widely used “black-box” optimization methods, we analyzed a simplified 

model that allows precise mathematical definition and description of the 

genetic algorithm. The work done in this article is focused on the studies of 

evolutionary algorithms and particularly on stochastic optimization 

algorithms and unsupervised machine learning methods for the 

optimization of the parameters of the GeantV applications.  

 

Keywords: Genetic Algorithms, Multi-Objective Optimization, Black-Box 
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Introduction 

In the past years, simulation toolkit for transport 

particles through matter Geant4 (Agostinelli et al., 2003) 

has been the main application for full detector simulation 

in High Energy Physics (HEP). The complex design of 

Geant4, with deep class structure hierarchies and calling 

stacks, makes it less than optimally efficient when 

running on the latest computer architectures. In order to 

resolve this situation, in 2013 the simulation project 

GeantV (Amadio et al., 2016) was started. The 

connected R&D work included the implementation of 

instruction level parallelism for increased performance 

by leveraging Single Instruction Multiple Data (SIMD) 

code and improving data locality. For these reasons the 

new software applications was designed to be able to run 

on parallel as well as SIMD architectures and efficiently 

use system caches (Shadura and Carminati, 2016). 

GeantV expects to achieve significant improvement for 

event throughput to be ready for the larger simulated 

data samples needed by the High-Luminosity Large 

Hardron Collider (LHC).  

General idea of work is about tuning of performance 

of complex High Energy Physics simulations such as 

GeantV. It depends on a large number of parameters that 

are complex to tune by hand. Stochastic optimization 

indicates a process of function minimization or 

maximization employing algorithms of random 

optimization. Even assuming that we use a set of 

efficient genetic algorithms for the optimization of a 

“black-box” Multi-Objective Problem (MOP) with a 

computationally expensive fitness function, we still face 

the problem of finding operators providing efficient 

convergence to the optimal Pareto Front. The genetic 

algorithms selected for this work are the Non-Dominant 

Sorting Genetic Algorithms - NSGA-II (Deb et al., 

2002) and NSGA-III (Deb and Jain, 2014). 

During research was identified a set of indicators that 

are relevant for the evaluation of GeantV performance. 

Our selection is: Run time, peak memory consumption 

during application run and other model-specific dependent 

indicators, such as the number of instructions or other 

performance measurements. Introducing extra operators 

for the genetic algorithm is an attempt to remove noise 

from the dataset and introduce a procedure to improve the 

genetic algorithm convergence to the “true Pareto front.” 

Optimal individuals selected among the set of the 

interesting parameters populate this front. This set of 

parameters is used to apply an orthogonal transformation 

and maximize variance to discover strong patterns in data. 
The objective of this work is to inquire whether 

unsupervised machine learning methods are useful as 
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injected “operators” in genetic algorithms and if, thanks 

to them, it is possible to speed up the process of finding 

a Pareto front. 

Materials and Methods 

During the work on optimization of computing 

performance of HEP simulation applications, we 

consider particle transport simulation as a heuristic 

parametric model with expensive evaluations in terms of 

consumption of computing resources and a complex 

fitness landscape that will be optimized by use of 

stochastic search algorithms.  

As a result, this article is part of a research work on 

the optimization of high-energy physics simulations 

interpreted as multi-objective computing applications 

performance optimization problems. To test our ideas on 

a simpler application, we will try to optimize the 

performance of the Deb-Thiele-Laumanns-Zitzler 

(DTLZ) benchmarks (Deb et al., 2005) and of a 

simplified simulation benchmark. The goal is to improve 

convergence to the “true Pareto front” while using a 

combination of genetic algorithms and methods from 

unsupervised machine learning. 
Considering that genetic algorithms are among the 

most widely used evolutionary algorithms, we tried to 
analyze a simplified model that allows precise 
mathematical definition and description of the genetic 
algorithm, i.e., the “Simple model of Genetic Algorithm” 
(SGA) (Vose, 1999) used for the investigation of the 
typical evolutionary system, describing the genetic 
algorithm as an example of dynamical system with a 
precise mathematical definitions. 

In this approach, genetic algorithm is defined by 
Markov chains, which are represented by stochastic 
models with a sets of sequential events, where the 
probability of each new event depends on the state of the 
previous event. The states of the evolutionary system are 
populations of genetic individuals, while transitions 
between the various states are handled by a set of genetic 
operators: Selection, crossover and mutation (Rowe, 
2007). These operators are operating in the space of: 
 

( )1 2
Λ , ,...,

t

m
p p p=  (1) 

 

of the population’s vectors. 

The mutation operation is an interesting evolutionary- 

inspired mechanism that expresses the connection of the 

Markov chain (through fully connected matrix)and 

ensures that it has an exclusive equilibrium distribution 

over populations, which means that the Markov chain 

converges to the stationary distribution.  

In case of Markov chains, the probability of 

generation of a particular population will depend only on 

the previous genetic generation and some extraneous 

affecting factors. 

A Markov chain is defined by a transition matrix 
,q p
T� �  

from the population p
�

 to q
�

, where the vector describing 

the population is defined as: 

 

( ){ }1 2 1
, , , , 0 1, 1 ,

mt

m
p p p p p p

α α
α =

= … ≤ ≤ =∑
�

  (2) 

 

and the vector component p
α
 is the probability of the 

appearance of the α-th individual in the genetic 

population. In the sample space Ω = {1,2,3..N} we have 

a population of m different types of individuals. We will 

provide a full description of the genetic operators in 

terms of dynamic system in the next section together 

with the implementation of a new unsupervised machine 

learning genetic operator.  

Here, we introduce the basic definitions used in the 

theory of genetic algorithms and dynamic systems. A 

dynamic system is a model in which a function describes 

the time dependence of the evolution of a point in 

a geometrical space. Dynamic systems can describe the 

evolution of individuals in the space of finite dimension, 

members of a populations of fixed size m, where m is 

number of measurements during the experiment. While 

defining genetic algorithms as a discrete dynamical system, 

we can discover mathematical entities such as fixed points, 

which are elements of the function's domain that are 

mapped to themselves by the function. These objects are 

not only relevant in the investigation of simple genetic 

algorithms, but in general for all optimization problems 

(Shadura and Carminati, 2016). 

The investigation of the convergence properties of 

the SGA as evolution schema was explored in (Rudolph, 

1997). Schmitt and Rothlauf (2001) it has been shown 

that the convergence rate of the genetic algorithm is 

determined by the second largest eigenvalue of the 

transition matrix 
,q p
T� � . 

For Markov chains, it is very complex to determine 

the process of evolution along an appropriate direction 

leading to a faster convergence to equilibrium. 

Principal Component Analysis (PCA) could be 

defined as a procedure that is able to inspect the 

genetic algorithm population’s sensitivity and the 

correlations between parameters of the input data 

matrix and the generated population. For this reason, 

we want to introduce a PCA operator providing such 

functionality, using inverse PCA noise reduction. 

Theory of PCA and UPCA-based Operator 

in GA 

Before embarking in the optimization of the GeantV 

simulation, we need to identify a list of optimization 

parameters significant for the computing performance. 

These are user defined parameters such as the number of 
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threads used in simulation or the size of the vectors of 

transported particles etc. These can be described via a 

data matrix of size m × n: 
 

{ } ( ){ } { }
,

ˆ ,
i i

X X x x
α α α

= = =

� �

 (3) 

 

where, ( ){ }( )1 ,1
i

x x m i n
α α

α≤ ≤ ≤ ≤=
� �

 is the α-th 

individual of the population. In this matrix, the index i 

indicates the GeantV tuning parameters (i = 1,…,n) and 

the index α indicates the number of measurements of the 

fitness function for the given set of performance 

indicators (α = 1,…,m for m measurements).Comparing 

the definition in terms of GA, the matrix is described 

through m -samples of data in a n-dimensional space, 

where n is the size of the individual and m is the number 

of individuals in the generation. 

Principle Component Analysis (PCA) is used for data 

analysis via covariance matrix to diminish complex data 

set to a lower dimensionality, applying PCA to a 

centered data matrix.  

In this section, we apply PCA to an uncentered data 

matrix. We will reference to it as “Uncentred PCA” 

(UPCA) and we will prove that it is particularly useful in 

the case of transformations on constrained genetic 

algorithms populations, as it is the case for a set of 

GeantV parameters. A discussion of the relations 

between centered and uncentered data matrix can be 

found in the work of Cadima and Jolliffe (2009).  

As ¨mentioned in the previous section, m-samples of 

data from an n-dimensional space are elements of the 

data matrix X̂  of size m × n (m is the number of 

individuals in the generation and n is the size of the 

individual, which is equivalent to the dimension of a 

vector of genes x
�

 = {xi}(1≤i≤n). 

Using the uncentered data matrix X̂  size m × n, 

defined in (3) we can write the matrix of non-central 

second moments for UPCA: 
 

ˆ .ˆ
1

ˆt

t
XT X

m
= ⋅  (4) 

 

if 
j

w

�

 are eigenvectors of the matrix T̂ with the 

corresponding eigenvalues tj: 
 
ˆ ,1 .

j j j
w tT w j n⋅ = ≤ ≤
� �

 (5) 

 
They satisfy the orthonormality condition: 

 

,

,1 , .
t

i j i j
w w i j nδ⋅ = ≤ ≤
� �

 (6) 

 
Then: 

 
ˆ ,

t

j j j
w T w t⋅ ⋅ =

� �

 (7) 

and for the matrix { } ( )
,i j j i j

W w w= =

�

 we have the 

orthogonality condition: 

 
ˆˆ ˆ .

t

W W I⋅ =  (8) 

 

 From (7) we have: 
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ˆ ˆ ,ˆ .ˆ ∆
t

i j i i j
TW W t δ⋅ ⋅ = ∆ =  (9) 
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wx

α
α
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�
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is j-th uncentered principal 

component, here α = 1,…,m. If we define 

{ } ( ){ }
,

Θ
j j jα

α

θ θ= =

�

 then: 

 

, , ,

Θ ,1 ,
j i i j

X W m
α α

α= ≤ ≤  (10) 

 

which from (8) and (9) satisfies the condition: 

 

, , , ,

Θ Θ ∆ .
t

i j i j i i j
m mt

α α
δ= =  (11) 

 

We do not have a clear description of the relationship 

between the matrix eigenvalues tj and the variance of the 

j-th uncentered principal component (σθ,j)
2
 as for the 

PCA case. In our case this property is not fundamental 

for using the PCA algorithm in the GA. We apply 

instead the “eigenvalue control parameter” 

approximation (Cadima and Jolliffe, 2009). In simple 

terms, it is the ability to use the PCA algorithm for the 

Singular Value Decomposition (SVD) representation of 

the data matrix X̂  (Amadio et al., 2017). 

If we define the matrix 
,

Θ
iα

ɶ as: 

 
1/ 2 1/2 1/ 2

, , , , ,Θ Θ ∆ ,∆ .
j i i j i j i i j

m t
α α

δ= =
ɶ  (12) 

 

from (11) and (12) we obtain: 

 

, , ,

Θ Θ .
t

i j i jα α
δ=ɶ ɶ  

 

Using (12), (11) and (7) we see that { },

Θ
j jα
θ=

�ɶɶ  is the 

matrix of the eigenvectors ( )j
α

θɶ  of the matrix ˆ ˆ t

XK X= ⋅
ɶ  

of size m × m: 

 

( ) ( ) ( )
, , ,

.

t

j k k j j jK X X tα β α β
β β α

θ θ θ= =
ɶ ɶ ɶɶ  

 

From (10) we can derive the representation for the 

data matrix X̂ : 

 

, , ,

Θ ,
t

i j j i
X W

α α
=  (13) 
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and the SVD representation of the data matrix is then 

obtained: 

 
1/ 2

, , , ,Θ ∆ .
t

i k k j j iX m W
α α

=
ɶ  (14) 

 

In the case when the matrix of non-central second 

moments T̂  has the (n-q) smallest eigenvalues such that 

tj << 1, q +1≤j≤n, we can use the “eigenvalue control 

parameter” approximation of the data matrix and 

approximate it by the output data matrix 
, j

X
α

ɶ  of rank q: 

 

( )

1/ 2

, , , ,

1/ 2 1/2

1 ,1 1, , ,

Θ

Θ ... Θ ,

t

i k k j j i

t t

i q q q i

X m W

m t W t W

α α

α α

=

=

∆

+ +

ɶ ɶɶ

ɶ ɶ
 (15) 

 

 where, the eigenvalue matrix 
,k j∆ɶ  has rank q(tq+1 = tq+2 = 

⋅⋅⋅ = tn = 0). This approximation is the analog of the 

Hotelling transformation (Hotelling, 1936). 

We can estimate the mean square error ηq for the 

approximation (15):  
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2
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1
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t
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α
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ɶ
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The minimum error is achieved if the matrix T̂  has 

the (n-q) smallest eigenvalues such that tj << 1, q 

+1≤j≤n. 

At this point having already defined the UPCA 

operator, we need to describe the genetic algorithm 

model for the injection of the operator we introduced 

earlier. Recalling ideas presented in (Vose, 1999) and 

described in the previous section, we will develop the 

optimization process (Amadio et al., 2017). 

 The GA operators are operating in the space Λ = (p1, 

p2,⋅⋅⋅, pm)
t
 of the population’s vectors. 

The genetic operator ( )G p
α

�

 is defined by the 

probability of generating an individual α  (starting from 

the previous population p
�

). We define a map G: Λ→Λ, 

where ( ) ( )
Ω

G p G p
α

α∈

=∏
� �

 and ( )G p ∈Λ
�

is an heuristic 

function and Ω is the sample space. The map G is 

equivalent to the composition of selection, mutation and 

crossover maps. The genetic selection operator: 

 

( ) ( )
Ω

: ,F

F p F p
α

α∈

Λ→Λ

=∏
� �  

 

defines the probability of a genetic individual of type α 

(when the process of selection is applied to p∈Λ
�

). A 

selection operator selects genetic individuals from the 

current population via the performance indicators, 

{ } m

f f R
α

= ∈

�

, f
α
 = f(α), α∈Ω: 

 

( )
( )

,

t

dia

pf

g f p
F p

⋅

=

⋅

�

�

�

�

 

 

where, ( )diag f
�

 is a diagonal matrix. 

The mutation operator 

 

: Λ Λ,U →  

 

is an m × m matrix with the (α,β)-th entry u
α,β >0 for all 

α, β and u
α,β indicates the probability of individual β∈Ω 

mutating into α∈Ω. ( )U p
α

⋅

�

is the probability for an 

individual (type α) to appear after the mutation process 

is applied to the population p
�

 (Amadio et al., 2017). 

The crossover operator is defined as: 

 

( ) ( )1

: ,

ˆ ˆ,...,
t t

m

C

C p p C p p C p= ⋅ ⋅

Λ → Λ

⋅ ⋅
� � � � �

 

 

where, 
1
,..ˆ ˆ.,

m
C C  is a sequence of symmetric non-negative 

N × N  real-valued matrices. ( )C p
α

�

 expresses 

probability that an individual α appears after the 

crossover process is applied to the population p
�

. 

 

( ) ( )

: ,

.G p C U F p

G

=

Λ→Λ

� �

� �

  (16) 

 

Having defined G, we can express the stochastic 

transition matrix, based on the probability of 

transformation of the population p
�

 into q
�

:  

 

( )( )
( )

, Ω
!

!

mq

q p

G p
T m

mq

α

α

α

α

∈

= ∏� �

�

 (17) 

 

where, ( )G p
α

�

 define probability of the appearance of 

individual α in the next generation and mq
α

is the number 

of individuals α in the population q
�

 with size m . 

We can improve the convergence rate of genetic 

algorithms (how fast genetic algorithms are converging 

to the optimum per generation) by adding a new genetic 

operator P based on UPCA procedure. We will call this 

procedure “UPCA noise cleanup operator and we will 

introduce it in the genetic algorithm’s map 

( ) ( )P
p P C U F pG =

� �

� � � .  



Oksana Shadura et al. / Journal of Computer Science 2019, 15 (1): 57.66 

DOI: 10.3844/jcssp.2019.57.66 

 

61 

Since we have a similar setup as it is done in the SGA 

case (Schmitt and Rothlauf, 2001), we can observe that a 

genetic algorithm convergence rate is defined by the 

eigenvalues that follow the highest one. That’s why we 

had to apply the proposed operator P on the earlier 

eigenvalues.  

An interesting observation is that the eigenvector with 

the largest eigenvalues defines a subspace of solutions for 

multi-objective problem populating Pareto front.  

In the next section we will assess whether using an 

iterative procedure for an uncentered data matrix allows 

us to reach the subspace of optimal solutions faster than 

with a centered matrix. We will perform this test for the 

standard benchmarking problems used to validate 

performance of genetic algorithms.  

Testing of the UPCA-Improved Genetic 

Algorithm on NSGA-II and DTLZ 

Benchmarks 

We use NSGA-II (Allison et al., 2006) as a part of 

our testing setup since it is one of the most popular 

genetic algorithms. It is based on fast non-dominance 

sorting for generated populations and provides an 

impressive convergence rate to the optimal Pareto set. 

The genetic algorithm population is initialized and it 

is afterwards sorted into a group of fronts using the non-

domination principle. The first front is treated as a 

completely non-dominant set and the individuals of the 

first front are dominating the individuals of the second 

front only and so on until the last front. For each 

individual, in each front, a rank value is assigned based 

on the front to which they belong to. Individuals in the 

first front are given a rank value of one, while 

individuals in the second front are assigned a rank value 

of two and so on. In addition to the rank value, an 

additional parameter called crowding distance is 

calculated for each individual (Shadura, 2017). The 

crowding distance is a measure of how close an individual 

is to its neighbors. Larger average value of crowding 

distances indicates significant population diversity. 

NSGA-III (Deb et al., 2005) has a different algorithm 

schema, built on the idea of improved reference points 

selection and using an already defined set of reference 

points to assure diversity for the population. 

The main problem of genetic algorithms is an 

absence of operators that enhance the convergence to a 

global model optimum. We present an improved 

algorithm (Fig. 1) based on the combination of NSGA-II 

and the UPCA operator defined in the previous section. 

The DTLZ benchmarks (Vose, 1999) are a set of 

numerical multi-objective problems, used for 

comparison/validation of GA algorithms. We present the 

comparison of NSGA-II without and with the UPCA 

noise cleanup operator applied to DTLZ.  

In Fig. 2 and 3 we present the tuning parameter 

distribution together with the mean and standard 

deviation values with and without the UPCA operator. In 

Fig. 3 and 5 the PCA-based noise-cleanup procedure is 

used, while in Fig. 2 and 4 it is not. We can observe a 

significant improvement of the convergence speed to the 

ideal values of the parameters in the first case when we 

use the UPCA operator. Figure 5 shows the first images 

of an early Pareto front.  

 

 
 

Fig. 1: Updated NSGA-II algorithm used in GeantV 
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Fig. 2: Distribution of genetic population in the 20th generation of NSGA-II for DTLZ2 problem 

 

 
 

Fig. 3: Distribution of the genetic population at the 20th generation for NSGA-II with UPCA operator for DTLZ2 problem 
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Fig. 4: Visualization of the Pareto Front for the 20th generation of NSGA-II for DTLZ2 problem 

 

 
 

Fig. 5: Visualization of the Pareto Front at the 40th generation of NSGA-II with UPCA operator for DTLZ2 problem 
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GeantV NoviceExampleN03 

(https://gitlab.cern.ch/geant/GeantV.git) (Fig. 8.). 

The first results for ExampleN03, which represent a 

sampling calorimeter with Pb absorber layers and liquid 

Ar detection gaps are shown in Fig. 6 and 7. All 

Electromagnetic (EM) processes and decay are simulated 

with specific production cuts for γ, e+, e- (used for 

shower studies). 

The output of the simulation is the detector response 

that includes: Energy deposit and track length both in the 

detecting gaps and in the inert plates (absorber). 

Implementing PCA operator in the genetic 

algorithm’s library, used for tuning GeantV, helped to 

increase the speed of convergence of genetic algorithm 

by a factor two, allowing to quickly reach the “early” 

Pareto front. Early results prove that thanks to the 

stochastic tuning, the performance of the GeantV 

example on a Core i7-67000 machine, improves by 18%. 

On an Intel(R) Xeon(R) CPU E5-2695 the CPU time is 

reduced by 34%, providing a more stable memory 

consumption and reducing the overall run time of the 

batch by up to 27% (Shadura and Carminati, 2016). 

 

 
 

Fig. 6: Comparison of number of performance indicators for optimized and non optimized GeantV simulation 
 

 
 

Fig. 7: Comparison of number primaries events for optimized and non optimized GeantV simulations 
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Fig. 8: Shower simulation example in the selected test case 

 

We have of course carefully verified that the physics 

output does not change by applying stochastic tuning 

algorithms. Users will be able to collect data on the 

performance of their system and tune it while running 

simulation jobs.  

In this study we demonstrated a proof of concept 

tuning of the performance of a complex multithreaded, 

highly vectorized application (GeantV) using 

evolutionary computation/genetic algorithms. This opens 

the possibility to use the same method to tune complex 

applications on supercomputers and High Performance 

Computing (HPC) clusters. It could also help to analyze 

the performance of compute-intensive jobs, running in 

heterogeneous environments, with the objective of 

reaching better scalability. 

Conclusion 

The work we presented is focused on the stochastic 

optimization of highly parallelized applications for 

simulation of radiation transport in complex detectors. 

During the work we introduced a new genetic operator 

able to speedup convergence of the algorithm to the 

true Pareto Front. 

We have shown that the idea of merging the classical 

implementation of evolutionary algorithms with 

unsupervised machine learning methods can create a 

powerful symbiosis that can efficiently tune the 

performance of complex algorithms depending on a large 

number of correlated parameters and it could be easily 

implemented in any framework. The “mutation” of 

genetic algorithm coupled with principal component 

analysis helps us to get faster convergence rate using 

simple noise cleanup techniques based on an 

orthonormal transformation strategy. The performance 

enhancement reached with this tuning for particle 

transport simulations can significantly help to economize 

computing resources, improve scheduling strategies and 

provide energy economy for computing resources. 
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