

 © 2019 Oksana Shadura, Federico Carminati and Anatoliy Petrenko. This open access article is distributed under a Creative

Commons Attribution (CC-BY) 3.0 license.

 Journal of Computer Science

Original Research Paper

Performance Optimization of Physics Simulations Through

Genetic Algorithms

1,2
Oksana Shadura,

2
Federico Carminati and

1
Anatoliy Petrenko

1National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kiev, Ukraine
2CERN, Geneve, Switzerland

Article history

Received: 21-09-2018

Revised: 08-12-2018

Accepted: 7-01-2019

Corresponding Author:

Oksana Shadura

CERN, Geneve, Switzerland
Email: oksana.shadura@cern.ch
 ksu.shadura@gmail.com

Abstract: The GeantV R&D approach is revisiting the standard particle

transport simulation approach to be able to benefit from “Single Instruction,

Multiple Data” (SIMD) computational architectures or extremely parallel

systems like coprocessors and GPUs. The goal of this work is to develop a

mechanism for optimizing the programs used for High-Energy Physics

(HEP) particle transport simulations using a “black-box” optimization

approach. Taking in account that genetic algorithms are among the most

widely used “black-box” optimization methods, we analyzed a simplified

model that allows precise mathematical definition and description of the

genetic algorithm. The work done in this article is focused on the studies of

evolutionary algorithms and particularly on stochastic optimization

algorithms and unsupervised machine learning methods for the

optimization of the parameters of the GeantV applications.

Keywords: Genetic Algorithms, Multi-Objective Optimization, Black-Box

Optimization, Simulation of Transport of Particles

Introduction

In the past years, simulation toolkit for transport

particles through matter Geant4 (Agostinelli et al., 2003)

has been the main application for full detector simulation

in High Energy Physics (HEP). The complex design of

Geant4, with deep class structure hierarchies and calling

stacks, makes it less than optimally efficient when

running on the latest computer architectures. In order to

resolve this situation, in 2013 the simulation project

GeantV (Amadio et al., 2016) was started. The

connected R&D work included the implementation of

instruction level parallelism for increased performance

by leveraging Single Instruction Multiple Data (SIMD)

code and improving data locality. For these reasons the

new software applications was designed to be able to run

on parallel as well as SIMD architectures and efficiently

use system caches (Shadura and Carminati, 2016).

GeantV expects to achieve significant improvement for

event throughput to be ready for the larger simulated

data samples needed by the High-Luminosity Large

Hardron Collider (LHC).

General idea of work is about tuning of performance

of complex High Energy Physics simulations such as

GeantV. It depends on a large number of parameters that

are complex to tune by hand. Stochastic optimization

indicates a process of function minimization or

maximization employing algorithms of random

optimization. Even assuming that we use a set of

efficient genetic algorithms for the optimization of a

“black-box” Multi-Objective Problem (MOP) with a

computationally expensive fitness function, we still face

the problem of finding operators providing efficient

convergence to the optimal Pareto Front. The genetic

algorithms selected for this work are the Non-Dominant

Sorting Genetic Algorithms - NSGA-II (Deb et al.,

2002) and NSGA-III (Deb and Jain, 2014).

During research was identified a set of indicators that

are relevant for the evaluation of GeantV performance.

Our selection is: Run time, peak memory consumption

during application run and other model-specific dependent

indicators, such as the number of instructions or other

performance measurements. Introducing extra operators

for the genetic algorithm is an attempt to remove noise

from the dataset and introduce a procedure to improve the

genetic algorithm convergence to the “true Pareto front.”

Optimal individuals selected among the set of the

interesting parameters populate this front. This set of

parameters is used to apply an orthogonal transformation

and maximize variance to discover strong patterns in data.
The objective of this work is to inquire whether

unsupervised machine learning methods are useful as

Oksana Shadura et al. / Journal of Computer Science 2019, 15 (1): 57.66

DOI: 10.3844/jcssp.2019.57.66

58

injected “operators” in genetic algorithms and if, thanks

to them, it is possible to speed up the process of finding

a Pareto front.

Materials and Methods

During the work on optimization of computing

performance of HEP simulation applications, we

consider particle transport simulation as a heuristic

parametric model with expensive evaluations in terms of

consumption of computing resources and a complex

fitness landscape that will be optimized by use of

stochastic search algorithms.

As a result, this article is part of a research work on

the optimization of high-energy physics simulations

interpreted as multi-objective computing applications

performance optimization problems. To test our ideas on

a simpler application, we will try to optimize the

performance of the Deb-Thiele-Laumanns-Zitzler

(DTLZ) benchmarks (Deb et al., 2005) and of a

simplified simulation benchmark. The goal is to improve

convergence to the “true Pareto front” while using a

combination of genetic algorithms and methods from

unsupervised machine learning.
Considering that genetic algorithms are among the

most widely used evolutionary algorithms, we tried to
analyze a simplified model that allows precise
mathematical definition and description of the genetic
algorithm, i.e., the “Simple model of Genetic Algorithm”
(SGA) (Vose, 1999) used for the investigation of the
typical evolutionary system, describing the genetic
algorithm as an example of dynamical system with a
precise mathematical definitions.

In this approach, genetic algorithm is defined by
Markov chains, which are represented by stochastic
models with a sets of sequential events, where the
probability of each new event depends on the state of the
previous event. The states of the evolutionary system are
populations of genetic individuals, while transitions
between the various states are handled by a set of genetic
operators: Selection, crossover and mutation (Rowe,
2007). These operators are operating in the space of:

()1 2
Λ , ,...,

t

m
p p p= (1)

of the population’s vectors.

The mutation operation is an interesting evolutionary-

inspired mechanism that expresses the connection of the

Markov chain (through fully connected matrix)and

ensures that it has an exclusive equilibrium distribution

over populations, which means that the Markov chain

converges to the stationary distribution.

In case of Markov chains, the probability of

generation of a particular population will depend only on

the previous genetic generation and some extraneous

affecting factors.

A Markov chain is defined by a transition matrix
,q p
T� �

from the population p
�

 to q
�

, where the vector describing

the population is defined as:

(){ }1 2 1
, , , , 0 1, 1 ,

mt

m
p p p p p p

α α
α =

= … ≤ ≤ =∑
�

 (2)

and the vector component p
α
 is the probability of the

appearance of the α-th individual in the genetic

population. In the sample space Ω = {1,2,3..N} we have

a population of m different types of individuals. We will

provide a full description of the genetic operators in

terms of dynamic system in the next section together

with the implementation of a new unsupervised machine

learning genetic operator.

Here, we introduce the basic definitions used in the

theory of genetic algorithms and dynamic systems. A

dynamic system is a model in which a function describes

the time dependence of the evolution of a point in

a geometrical space. Dynamic systems can describe the

evolution of individuals in the space of finite dimension,

members of a populations of fixed size m, where m is

number of measurements during the experiment. While

defining genetic algorithms as a discrete dynamical system,

we can discover mathematical entities such as fixed points,

which are elements of the function's domain that are

mapped to themselves by the function. These objects are

not only relevant in the investigation of simple genetic

algorithms, but in general for all optimization problems

(Shadura and Carminati, 2016).

The investigation of the convergence properties of

the SGA as evolution schema was explored in (Rudolph,

1997). Schmitt and Rothlauf (2001) it has been shown

that the convergence rate of the genetic algorithm is

determined by the second largest eigenvalue of the

transition matrix
,q p
T� � .

For Markov chains, it is very complex to determine

the process of evolution along an appropriate direction

leading to a faster convergence to equilibrium.

Principal Component Analysis (PCA) could be

defined as a procedure that is able to inspect the

genetic algorithm population’s sensitivity and the

correlations between parameters of the input data

matrix and the generated population. For this reason,

we want to introduce a PCA operator providing such

functionality, using inverse PCA noise reduction.

Theory of PCA and UPCA-based Operator

in GA

Before embarking in the optimization of the GeantV

simulation, we need to identify a list of optimization

parameters significant for the computing performance.

These are user defined parameters such as the number of

Oksana Shadura et al. / Journal of Computer Science 2019, 15 (1): 57.66

DOI: 10.3844/jcssp.2019.57.66

59

threads used in simulation or the size of the vectors of

transported particles etc. These can be described via a

data matrix of size m × n:

{ } (){ } { }
,

ˆ ,
i i

X X x x
α α α

= = =

� �

 (3)

where, (){ }()1 ,1
i

x x m i n
α α

α≤ ≤ ≤ ≤=
� �

 is the α-th

individual of the population. In this matrix, the index i

indicates the GeantV tuning parameters (i = 1,…,n) and

the index α indicates the number of measurements of the

fitness function for the given set of performance

indicators (α = 1,…,m for m measurements).Comparing

the definition in terms of GA, the matrix is described

through m -samples of data in a n-dimensional space,

where n is the size of the individual and m is the number

of individuals in the generation.

Principle Component Analysis (PCA) is used for data

analysis via covariance matrix to diminish complex data

set to a lower dimensionality, applying PCA to a

centered data matrix.

In this section, we apply PCA to an uncentered data

matrix. We will reference to it as “Uncentred PCA”

(UPCA) and we will prove that it is particularly useful in

the case of transformations on constrained genetic

algorithms populations, as it is the case for a set of

GeantV parameters. A discussion of the relations

between centered and uncentered data matrix can be

found in the work of Cadima and Jolliffe (2009).

As ¨mentioned in the previous section, m-samples of

data from an n-dimensional space are elements of the

data matrix X̂ of size m × n (m is the number of

individuals in the generation and n is the size of the

individual, which is equivalent to the dimension of a

vector of genes x
�

 = {xi}(1≤i≤n).

Using the uncentered data matrix X̂ size m × n,

defined in (3) we can write the matrix of non-central

second moments for UPCA:

ˆ .ˆ
1

ˆt

t
XT X

m
= ⋅ (4)

if
j

w

�

 are eigenvectors of the matrix T̂ with the

corresponding eigenvalues tj:

ˆ ,1 .

j j j
w tT w j n⋅ = ≤ ≤
� �

 (5)

They satisfy the orthonormality condition:

,

,1 , .
t

i j i j
w w i j nδ⋅ = ≤ ≤
� �

 (6)

Then:

ˆ ,

t

j j j
w T w t⋅ ⋅ =

� �

 (7)

and for the matrix { } ()
,i j j i j

W w w= =

�

 we have the

orthogonality condition:

ˆˆ ˆ .

t

W W I⋅ = (8)

 From (7) we have:

, ,

ˆ ˆ ,ˆ .ˆ ∆
t

i j i i j
TW W t δ⋅ ⋅ = ∆ = (9)

(){ } { }t

j j j
wx

α
α

θθ = = ⋅

�

� �

is j-th uncentered principal

component, here α = 1,…,m. If we define

{ } (){ }
,

Θ
j j jα

α

θ θ= =

�

 then:

, , ,

Θ ,1 ,
j i i j

X W m
α α

α= ≤ ≤ (10)

which from (8) and (9) satisfies the condition:

, , , ,

Θ Θ ∆ .
t

i j i j i i j
m mt

α α
δ= = (11)

We do not have a clear description of the relationship

between the matrix eigenvalues tj and the variance of the

j-th uncentered principal component (σθ,j)
2
 as for the

PCA case. In our case this property is not fundamental

for using the PCA algorithm in the GA. We apply

instead the “eigenvalue control parameter”

approximation (Cadima and Jolliffe, 2009). In simple

terms, it is the ability to use the PCA algorithm for the

Singular Value Decomposition (SVD) representation of

the data matrix X̂ (Amadio et al., 2017).

If we define the matrix
,

Θ
iα

ɶ as:

1/ 2 1/2 1/ 2

, , , , ,Θ Θ ∆ ,∆ .
j i i j i j i i j

m t
α α

δ= =
ɶ (12)

from (11) and (12) we obtain:

, , ,

Θ Θ .
t

i j i jα α
δ=ɶ ɶ

Using (12), (11) and (7) we see that { },

Θ
j jα
θ=

�ɶɶ is the

matrix of the eigenvectors ()j
α

θɶ of the matrix ˆ ˆ t

XK X= ⋅
ɶ

of size m × m:

() () ()
, , ,

.

t

j k k j j jK X X tα β α β
β β α

θ θ θ= =
ɶ ɶ ɶɶ

From (10) we can derive the representation for the

data matrix X̂ :

, , ,

Θ ,
t

i j j i
X W

α α
= (13)

Oksana Shadura et al. / Journal of Computer Science 2019, 15 (1): 57.66

DOI: 10.3844/jcssp.2019.57.66

60

and the SVD representation of the data matrix is then

obtained:

1/ 2

, , , ,Θ ∆ .
t

i k k j j iX m W
α α

=
ɶ (14)

In the case when the matrix of non-central second

moments T̂ has the (n-q) smallest eigenvalues such that

tj << 1, q +1≤j≤n, we can use the “eigenvalue control

parameter” approximation of the data matrix and

approximate it by the output data matrix
, j

X
α

ɶ of rank q:

()

1/ 2

, , , ,

1/ 2 1/2

1 ,1 1, , ,

Θ

Θ ... Θ ,

t

i k k j j i

t t

i q q q i

X m W

m t W t W

α α

α α

=

=

∆

+ +

ɶ ɶɶ

ɶ ɶ
 (15)

 where, the eigenvalue matrix
,k j∆ɶ has rank q(tq+1 = tq+2 =

⋅⋅⋅ = tn = 0). This approximation is the analog of the

Hotelling transformation (Hotelling, 1936).

We can estimate the mean square error ηq for the

approximation (15):

()
2

, ,

1 1

2

, ,

1 1 1 1

1

1 1
Θ .

m n

q i i

i

n nm n
t

k k k i k

i k q k q

X X
mn

m t W t
mn n

α α

α

α

α

η

= =

= = = + = +

= −

= =

∑∑

∑∑ ∑ ∑

ɶ

ɶ

The minimum error is achieved if the matrix T̂ has

the (n-q) smallest eigenvalues such that tj << 1, q

+1≤j≤n.

At this point having already defined the UPCA

operator, we need to describe the genetic algorithm

model for the injection of the operator we introduced

earlier. Recalling ideas presented in (Vose, 1999) and

described in the previous section, we will develop the

optimization process (Amadio et al., 2017).

 The GA operators are operating in the space Λ = (p1,

p2,⋅⋅⋅, pm)
t
 of the population’s vectors.

The genetic operator ()G p
α

�

 is defined by the

probability of generating an individual α (starting from

the previous population p
�

). We define a map G: Λ→Λ,

where () ()
Ω

G p G p
α

α∈

=∏
� �

 and ()G p ∈Λ
�

is an heuristic

function and Ω is the sample space. The map G is

equivalent to the composition of selection, mutation and

crossover maps. The genetic selection operator:

() ()
Ω

: ,F

F p F p
α

α∈

Λ→Λ

=∏
� �

defines the probability of a genetic individual of type α

(when the process of selection is applied to p∈Λ
�

). A

selection operator selects genetic individuals from the

current population via the performance indicators,

{ } m

f f R
α

= ∈

�

, f
α
 = f(α), α∈Ω:

()
()

,

t

dia

pf

g f p
F p

⋅

=

⋅

�

�

�

�

where, ()diag f
�

 is a diagonal matrix.

The mutation operator

: Λ Λ,U →

is an m × m matrix with the (α,β)-th entry u
α,β >0 for all

α, β and u
α,β indicates the probability of individual β∈Ω

mutating into α∈Ω. ()U p
α

⋅

�

is the probability for an

individual (type α) to appear after the mutation process

is applied to the population p
�

 (Amadio et al., 2017).

The crossover operator is defined as:

() ()1

: ,

ˆ ˆ,...,
t t

m

C

C p p C p p C p= ⋅ ⋅

Λ → Λ

⋅ ⋅
� � � � �

where,
1
,..ˆ ˆ.,

m
C C is a sequence of symmetric non-negative

N × N real-valued matrices. ()C p
α

�

 expresses

probability that an individual α appears after the

crossover process is applied to the population p
�

.

() ()

: ,

.G p C U F p

G

=

Λ→Λ

� �

� �

 (16)

Having defined G, we can express the stochastic

transition matrix, based on the probability of

transformation of the population p
�

 into q
�

:

()()
()

, Ω
!

!

mq

q p

G p
T m

mq

α

α

α

α

∈

= ∏� �

�

 (17)

where, ()G p
α

�

 define probability of the appearance of

individual α in the next generation and mq
α

is the number

of individuals α in the population q
�

 with size m .

We can improve the convergence rate of genetic

algorithms (how fast genetic algorithms are converging

to the optimum per generation) by adding a new genetic

operator P based on UPCA procedure. We will call this

procedure “UPCA noise cleanup operator and we will

introduce it in the genetic algorithm’s map

() ()P
p P C U F pG =

� �

� � � .

Oksana Shadura et al. / Journal of Computer Science 2019, 15 (1): 57.66

DOI: 10.3844/jcssp.2019.57.66

61

Since we have a similar setup as it is done in the SGA

case (Schmitt and Rothlauf, 2001), we can observe that a

genetic algorithm convergence rate is defined by the

eigenvalues that follow the highest one. That’s why we

had to apply the proposed operator P on the earlier

eigenvalues.

An interesting observation is that the eigenvector with

the largest eigenvalues defines a subspace of solutions for

multi-objective problem populating Pareto front.

In the next section we will assess whether using an

iterative procedure for an uncentered data matrix allows

us to reach the subspace of optimal solutions faster than

with a centered matrix. We will perform this test for the

standard benchmarking problems used to validate

performance of genetic algorithms.

Testing of the UPCA-Improved Genetic

Algorithm on NSGA-II and DTLZ

Benchmarks

We use NSGA-II (Allison et al., 2006) as a part of

our testing setup since it is one of the most popular

genetic algorithms. It is based on fast non-dominance

sorting for generated populations and provides an

impressive convergence rate to the optimal Pareto set.

The genetic algorithm population is initialized and it

is afterwards sorted into a group of fronts using the non-

domination principle. The first front is treated as a

completely non-dominant set and the individuals of the

first front are dominating the individuals of the second

front only and so on until the last front. For each

individual, in each front, a rank value is assigned based

on the front to which they belong to. Individuals in the

first front are given a rank value of one, while

individuals in the second front are assigned a rank value

of two and so on. In addition to the rank value, an

additional parameter called crowding distance is

calculated for each individual (Shadura, 2017). The

crowding distance is a measure of how close an individual

is to its neighbors. Larger average value of crowding

distances indicates significant population diversity.

NSGA-III (Deb et al., 2005) has a different algorithm

schema, built on the idea of improved reference points

selection and using an already defined set of reference

points to assure diversity for the population.

The main problem of genetic algorithms is an

absence of operators that enhance the convergence to a

global model optimum. We present an improved

algorithm (Fig. 1) based on the combination of NSGA-II

and the UPCA operator defined in the previous section.

The DTLZ benchmarks (Vose, 1999) are a set of

numerical multi-objective problems, used for

comparison/validation of GA algorithms. We present the

comparison of NSGA-II without and with the UPCA

noise cleanup operator applied to DTLZ.

In Fig. 2 and 3 we present the tuning parameter

distribution together with the mean and standard

deviation values with and without the UPCA operator. In

Fig. 3 and 5 the PCA-based noise-cleanup procedure is

used, while in Fig. 2 and 4 it is not. We can observe a

significant improvement of the convergence speed to the

ideal values of the parameters in the first case when we

use the UPCA operator. Figure 5 shows the first images

of an early Pareto front.

Fig. 1: Updated NSGA-II algorithm used in GeantV

2M×N

Rank-12 Rank-3

Rank-3
M×N

Selection

UPCA NDS

Crossover,

Mutation

Transition matrix
Transition matrix

Oksana Shadura et al. / Journal of Computer Science 2019, 15 (1): 57.66

DOI: 10.3844/jcssp.2019.57.66

62

Fig. 2: Distribution of genetic population in the 20th generation of NSGA-II for DTLZ2 problem

Fig. 3: Distribution of the genetic population at the 20th generation for NSGA-II with UPCA operator for DTLZ2 problem

Population distribution
PopDist20

Entries 24000

Mean 0.4814

Std Dev 0.1823 250

200

150

100

50

0

z

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

TGenes/bins

PopDist20

Entries 12000

Mean 0.482

Std Dev 0.1369

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

TGenes/bins

120

100

80

60

40

20

0

z

Population distribution

Oksana Shadura et al. / Journal of Computer Science 2019, 15 (1): 57.66

DOI: 10.3844/jcssp.2019.57.66

63

Fig. 4: Visualization of the Pareto Front for the 20th generation of NSGA-II for DTLZ2 problem

Fig. 5: Visualization of the Pareto Front at the 40th generation of NSGA-II with UPCA operator for DTLZ2 problem

Results with GeantV Simulation Code

An important step to evaluate if this kind of

optimization is applicable to GeantV, is to have an

efficient test suite, that can cover different use-cases,

providing proper coverage of functionality and including

interactions between the GeantV core and other sub

modules: Physics, geometry and etc. We choose the

Y1/Y2/Y3
h3y20

Entries 2000

Mean x 0.5129
Mean y 0.6449

Mean z 0.6434

Std Dev x 0.2695
Std Dev y 0.255

Std Dev z 0.2393
1

0.9

\0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1

1
0.9 0.8 0.7

0.6
0.5 0.4

0.3 0.2
0.1

0 1
0.9

0.8
0.7
0.6
0.5

0.4
0.3
0.2
0.1

0

0.1

0.8

0.4 0.5
0.6

0.7

0.1

Y1/Y2/Y3

h3y20

Entries 1000

Mean x 0.5359
Mean y 0.5357

Mean z 0.5286

Std Dev x 0.2869
Std Dev y 0.27

Std Dev z 0.2766

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0.2

0.9
1

0 0.4 0.2 0.3 0.5 0.6 0.7 0.8 0.9 1

0.3

Oksana Shadura et al. / Journal of Computer Science 2019, 15 (1): 57.66

DOI: 10.3844/jcssp.2019.57.66

64

GeantV NoviceExampleN03

(https://gitlab.cern.ch/geant/GeantV.git) (Fig. 8.).

The first results for ExampleN03, which represent a

sampling calorimeter with Pb absorber layers and liquid

Ar detection gaps are shown in Fig. 6 and 7. All

Electromagnetic (EM) processes and decay are simulated

with specific production cuts for γ, e+, e- (used for

shower studies).

The output of the simulation is the detector response

that includes: Energy deposit and track length both in the

detecting gaps and in the inert plates (absorber).

Implementing PCA operator in the genetic

algorithm’s library, used for tuning GeantV, helped to

increase the speed of convergence of genetic algorithm

by a factor two, allowing to quickly reach the “early”

Pareto front. Early results prove that thanks to the

stochastic tuning, the performance of the GeantV

example on a Core i7-67000 machine, improves by 18%.

On an Intel(R) Xeon(R) CPU E5-2695 the CPU time is

reduced by 34%, providing a more stable memory

consumption and reducing the overall run time of the

batch by up to 27% (Shadura and Carminati, 2016).

Fig. 6: Comparison of number of performance indicators for optimized and non optimized GeantV simulation

Fig. 7: Comparison of number primaries events for optimized and non optimized GeantV simulations

1600

1400

1200

1000

800

600

400

200

0

×
1
0
0
0
0

Non optimized Algorithm

Optimized Algorithm

Number of idle

CPU cycles
Number

of cycles

Number of

instructions

Number of

branches

160

155

150

145

140

135

T
h
o
u
s
a
n
d
s

Non optimized Algorithm

Optimized Algorithm

Number of primaries events/second

Oksana Shadura et al. / Journal of Computer Science 2019, 15 (1): 57.66

DOI: 10.3844/jcssp.2019.57.66

65

Fig. 8: Shower simulation example in the selected test case

We have of course carefully verified that the physics

output does not change by applying stochastic tuning

algorithms. Users will be able to collect data on the

performance of their system and tune it while running

simulation jobs.

In this study we demonstrated a proof of concept

tuning of the performance of a complex multithreaded,

highly vectorized application (GeantV) using

evolutionary computation/genetic algorithms. This opens

the possibility to use the same method to tune complex

applications on supercomputers and High Performance

Computing (HPC) clusters. It could also help to analyze

the performance of compute-intensive jobs, running in

heterogeneous environments, with the objective of

reaching better scalability.

Conclusion

The work we presented is focused on the stochastic

optimization of highly parallelized applications for

simulation of radiation transport in complex detectors.

During the work we introduced a new genetic operator

able to speedup convergence of the algorithm to the

true Pareto Front.

We have shown that the idea of merging the classical

implementation of evolutionary algorithms with

unsupervised machine learning methods can create a

powerful symbiosis that can efficiently tune the

performance of complex algorithms depending on a large

number of correlated parameters and it could be easily

implemented in any framework. The “mutation” of

genetic algorithm coupled with principal component

analysis helps us to get faster convergence rate using

simple noise cleanup techniques based on an

orthonormal transformation strategy. The performance

enhancement reached with this tuning for particle

transport simulations can significantly help to economize

computing resources, improve scheduling strategies and

provide energy economy for computing resources.

Acknowledgment

The authors would like to thank the CERN for their

support in writing this article.

Author’s Contributions

All authors equally contributed in this work.

Ethics

This article is original and contains unpublished

material. The authors confirm that are no conflict of

interest involved.

References

Agostinelli, S., J. Allison, K.A. Amako, J. Apostolakis

and H. Araujo et al., 2003. GEANT4 - a simulation

toolkit. Nuclear Instruments Meth. Phys. Res., 506:

250-303. DOI: 10.1016/S0168-9002(03)01368-8

Allison, J., K. Amako, J. Apostolakis, H. Araujo and P.

Arce Dubois et al., 2006. Geant4 developments and

applications. IEEE Trans. Nuclear Sci., 53: 270-278.

DOI: 10.1109/TNS.2006.869826

Oksana Shadura et al. / Journal of Computer Science 2019, 15 (1): 57.66

DOI: 10.3844/jcssp.2019.57.66

66

Amadio, G., A. Ananya, J. Apostolakis, A. Arora and M.

Bandieramonte et al., 2016. GeantV: from CPU to

accelerators. J. Phys., 762: 012019-012019.

Amadio, G., J. Apostolakis, M. Bandieramonte, S.P.

Behera and R. Brun et al., 2017. Stochastic

optimization of GeantV code by use of genetic

algorithms. J. Phys.: Conf. Series, 898: 042026-

042026. DOI: 10.1088/1742-6596/898/4/042026

Cadima, J. and I. Jolliffe, 2009. On relationships

between uncentred and column-centred principal

component analysis. Pak. J. Stat., 25: 473-503.

Deb, K. and H. Jain, 2014. An evolutionary many-

objective optimization algorithm using reference-

point-based nondominated sorting approach, part I:

Solving problems with box constraints. IEEE Trans.

Evolut. Comput., 18: 577-601.

 DOI: 10.1109/TEVC.2013.2281535

Deb, K., A. Pratap, S. Agarwal and T. Meyarivan, 2002.

A fast and elitist multiobjective genetic algorithm:

NSGA-II. IEEE Trans. Evolut. Comput., 6: 182-197.

DOI: 10.1109/4235.996017

Deb, K., L. Thiele, M. Laumanns and E. Zitzler, 2005.

Scalable Test Problems for Evolutionary

Multiobjective Optimization. In: Evolutionary

Multiobjective Optimization, Abraham, A., L.

Jain and R. Goldberg (Eds.), Springer, London,

pp: 105-145.

Hotelling, H., 1936. Relations between two sets of

variates. Biometrika, 28: 321-377.

 DOI: 10.2307/2333955

Rowe, J.E., 2007. Genetic algorithm theory. Proceedings

of the 9th Annual Conference Companion on

Genetic and Evolutionary Computation, Jul. 07-11,

ACM, London, UK, pp: 3585-3608.

 DOI: 10.1145/1274000.1274125

Rudolph, G., 1997. Convergence Properties of

Evolutionary Algorithms. 1st Edn., Kovac, ISBN-0:

3860645544, pp: 286.

Schmitt, F. and F. Rothlauf, 2001. On the importance of

the second largest eigenvalue on the convergence

rate of genetic algorithms. Proceedings of the 3rd

Annual Conference on Genetic and Evolutionary

Computation, Jul. 07-11, Morgan Kaufmann

Publishers Inc., pp: 559-564.
Shadura, O. and F. Carminati, 2016. Stochastic

performance tuning of complex simulation applications

using unsupervised machine learning. Proceedings of

the IEEE Symposium Series on Computational

Intelligence, Dec. 6-9, IEEE Xplore Press, Athens,

Greece, pp: 1-8. DOI: 10.1109/SSCI.2016.7850200

Shadura, O., 2017. Performance tuning and monitoring

using genetic optimization techniques. GeantV

Spring Sprint.

Vose, M.D., 1999. The Simple Genetic Algorithm:

Foundations and Theory. 1st Edn., MIT Press,

Cambridge, ISBN-10: 026222058X, pp: 251.

