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Introduction 

The simply typed lambda calculus enriched with the 

let-expression is the core of most functional 

programming languages like ML (Harper, 2011) and 

Haskell (Thompson, 2011). One of the key properties of 

this type system is that it supports parametric 

polymorphism that allows a part of a program to be used 

with different types in different situations. It was first 

studied by Hindley (1969) in the field of combinatory 

logic and later independently by Milner (1978). This 

type system is often referred to as ML-style or Hindley-

Milner type system. One of the key properties of this 

type system is that every well-typed term has a most 

general type. The computation of the most general type 

is called principal type. Algorithm W is a well-known 

type inference algorithm in the literature for the Hindley-

Milner type system (Milner, 1978; Damas, 1985; Damas 

and Milner, 1982; Urban and Nipkow, 2009). The 

algorithm is based on Robinson’s unification Algorithm 

(Robinson, 1965). In this study, the calculus �letmx is 

introduced as an extension of the Hindley-Milner type 

system to include a multi-abstraction, a simultaneous 

application and an explicit simultaneous substitution. 

The multi-abstraction; ( )1
, ,

n
x xµ … .M abstracts a 

sequence of variables x1,…,xn in M. The simultaneous 

application; M•(|N1,…,Nn|) applies all the arguments 
N1,…,Nn to M simultaneously. The explicit simultaneous 

substitution, M<x1,…,xn: = N1,…,Nn> has a number of 

substitutions rather than one substitution. It has the 

advantage of performing all of the substitutions, 

: :1 ,
i i
x N i n< = > ≤ ≤ in parallel which reduces reduction 

steps and consequently decreases programs execution 

time. The multi-abstraction of �letmx calculus resembles 

in some sense the simultaneous abstraction defined by 

Ruhrberg (1996) but it has the advantage of saving the 

usual α-equivalence between all terms. The author 

introduced a simple simultaneous calculus where the 

usual lambda-abstraction over a single variable is 

replaced by abstraction over a set of variables, terms are 

applied to records assigning terms to variables. This 

system overcomes the strict ordering requirements of the 

standard �-calculus, as a consequence of the un-ordered 

variables, the system partially lost the α-equivalence. 
The �letmx calculus can be used to represent contexts; 

terms with some holes. For example, writing [.] for a 
hole, the term (�y.[.]) is a context. The distinctive feature 
of contexts is filling its hole with a term, in which some 
free variables may get captured and become bound. For 
example, if the hole of the context (�y.[.]) is filled with 
the term x+y, the term (�y.x+y) is obtained in which the 
variable y becomes bound by �y. This feature is called 
variable capturing or capturing substitution. Capturing-
substitution is different from the usual capture-avoiding 
substitution of the lambda calculus which avoids variable 
capturing by applying the α-conversion rule when it is 
necessary. The main problem in computing with 
contexts, in the framework of the lambda calculus, is 
when the β- reduction is directly performed on contexts, 
some terms may be lost. To see this problem, consider 
the context �x.(�y.[.])(2+z), if the hole of this context is 
filled with the term x+y, the term �x.(�y.x+y)(2+z) is 
obtained. By β-reducing this term, we get the term 
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�x.x+(2+z). On the other hand, if the β-reduction is first 
performed in the term �x.(�y.[.])(2+z), we get the term 
�x.[.]. Then, by filling the hole of this term by the term 
x+y we get different result �x.x+y. That is, the β-
reduction and filling holes are not consistent and 
consequently the confluence property is lost. It is 
remarkable that, the correct result is �x.x+(2+z). The 
term 2+z is lost when the β-reduction is performed 
before filling the hole. 

This problem can be solved by using �letmx terms to 

represent the context �x.(�y.[.])(2+z) as: 
 

( )( ), y (2 )λx. λy. X x z• +  

 
where, the hole is represented by the variable X applied 

to the sequence of variables x, y using the new 

simultaneous application •. The type of the variable X is 

( )1 2
, ,τ τ υ⇒ where the type variables τ1, τ2 are the types 

of the variables x and y respectively (the variables 

intended to get captured after filling the hole). To fill the 

hole of the term ( (| , |))(2 )λx. λy. X x y z• +  with the term 

x+y, the new multi-abstraction term µ(x,y).x+y is 

substituted for X in this term, to get: 
 

( ( ( , ). ) (| x, y |)) (2 )λx. λy. µ x y x y z+ • +  

 
The underline subterm can be reduced by the 

reduction rules of �letmx to the term x+y. Therefore, the 

above term is reduced to �x.(�y.x + y)(2+z), which can 

farther be reduced to �x.x+(2+z) as required. 

On the other hand, if the β-reduction is first performed 

in the term λx.(λy. X•(|x, y|))(2+z), we get the term: 
 

λx.X•(|x, (2 + z)|) 
 

The term 2+z is stored in the variable y, of (|x, y|), in 

case if the β-reduction is performed before filling the hole. 

Filling the hole of this term with the term x+y is then 

achieved by substituting the new abstraction µ(x,y).x+y 

for X to get: 

 

( ) ( ).( , . ) (| x, |)x x y x y 2  zλ µ + • +  

 
The underline subterm can be reduced by the reduction 

rules of �letmx to the term x+(2+z). Therefore, the above term 

is reduced to the term �x.x+(2+z) as required. In this 

representation, hole filling and β-reduction commute, that is 

the formalization is confluent. 
Note that, the order of the variables in the 

simultaneous application as well as in the multi-
abstraction are given according to their lexicographic 
order, e.g.,: 
 

( ) ( )

( ) ( )2 1 1 2 1 2

. . . ( , , ). | , , | and

. . ( , ). | , |

z x y x y z M x y z

x x x x M x x

•

•

λ λ λ µ

λ λ µ
 

There is also another problem in computing with 

context. Consider the context �x.[.]. If the hole of this 

context is filled with x we get the term �x.x. This term is 

α-equivalent to �y.y. It is desired to find a representation 

of a context which is α-equivalent to �x.[.] and which 

is at the same time when filled with x becomes �y.y. 

This is achieved by using �letmx terms to represent the 

context �x.[.] as �x.(X•(|x|)) which is α-equivalent to 

�y.(X•(|y|)). Filling the hole in each of these two 
contexts with the variable x is achieved by substituting 

the new abstraction µ(x).x for the hole variable X in 

these two contexts to get the two terms 

�x.(µ(x).x)•(|x|) and �y.(µ(x).x)•(|y|) respectively. 

These two terms are respectively reduced by the 

reduction rules of �letmx to the two α-equivalent terms 

�x.x and �y.y respectively as required. 

There has been several contributions to the field of 

formalization and computation with contexts, e.g., 

Hashimoto (1998); Hashimoto and Ohori (2001); 

Bognar (2002); Sands (1998); Sato et al. (2002); Taha 

et al. (2002) and Tobisawa (2015); among these only 

the system given by Hashimoto (1998) is an ML-style 

polymorphic type system with a sound and complete 

type inference algorithm. This system is based on the 

simply typed system Hashimoto and Ohori (2001), in 

which hole filling and β-reduction rule can be 

combined under a restriction that a term containing a 

hole cannot be β-reduced. 

Using λletmx to represent contexts, holes of contexts 

are represented by the normal variables, the type of these 

variables includes the type of the variables that intended 

to get captured after filling the hole. The usual lambda 

abstraction is used to abstract hole variables. Filling 

holes is represented by the usual application and the new 

multi-abstraction which represents the variables intended 

to get captured after filling the hole. The β-reduction and 

filling holes can be combined without restrictions. A 

context is a first-class object; it can be passed as 

argument and returned from functions. Filling holes is an 

explicit operation; it can be computed within the system. 

In this representation, there is no need to use any specific 

operations for context; the ordinary lambda abstraction 

and application can be used together with the new multi-

abstraction and simultaneous application as indicated 

above. The λletmx calculus has a subject reduction 

property, is confluent and has a sound and complete type 

inference algorithm. The calculus also has an explicit 

substitution in the sense of Bloo and Rose (1995). The 

explicit substitution describes the details of the 

computation process; it distributes the substitution 

through terms to be finally evaluated at variables. The 

explicit substitution is important to make the process of 

executing the reduction explicit as a part of the calculus 

rather than implicit at the meta-level. Moreover, the 
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explicit substitution of the λletmx has a number of 

substitutions rather than one substitution. It has the 

advantage of performing all the substitutions 

simultaneously which reduces some of the reduction 

steps and consequently reduces programs execution 

time. Last, in comparison with some other formalization 

the ordinary α-equivalence is defined for all terms. 

Since holes of contexts are place holders for some 

unknown terms, filling holes with terms has the effect of 

dynamic binding which enables a given program to 

interact with other programs dynamically. This 

mechanism can be useful in systems like distributed 

programming and mobile computing. We refer to 

Hashimoto and Ohori (2001) for a detailed explanation 

for contexts applications. The calculus can also be used 

in other applications that needs to abstract a sequence of 

variables at a time, needs to apply all the arguments 

simultaneously and at the same time needs to keep the α-

conversion between terms. 

Materials and Methods 

The Calculus 

Types  

The types of the λletmx calculus are defined by the 

following grammar. 
 
τ,υ :: =α ; type variable 

 |b ; basic type (e.g., int, ···) 

 | τ ⇒ υ ; function type 

 | (| |)τ n ⇒ υ ; multi-function type 
 

The multi-function type ( )| |
n

τ ⇒ υ is an abbreviation 

of (|τ1,…,τn|)n ⇒ υ and n∈N , where (| |)
n

τ is an n-tuple 

(The braces (| , |) are used instead of the usual ( , ) which 
are used to group terms). The type schemes are defined as: 
 

:: | .σ τ α σ= ∀  

 
A type scheme is a type that may contain 

quantification of type variables at the outermost position 
only. Let α,β,γ,α1,β1,γ1,… range over type variables, 
τ,υ,ς,τ1,υ1,ς1,… over types and σ,σ1,… over type 
schemes. The type scheme σ = ∀α1∀α2…∀αn.τ is 
abbreviated as 

1 2 n
... . , or .∀α α α τ ∀α τ . In this type, the type 

variables α1,…,αn are said to be bound in σ. Type 
variables that occur in τ and are not bound are said to be 
free in σ. We write FTV(σ) for the set of free type 
variables of σ. If FTV(τ) = 0/ , then τ is said to be a 
monotype. A type scheme is closed if it has no free type 
variables. We assume α-equivalence on ∀ abstraction. 

For instance, ∀α.α is α-equivalent to ∀β.β. 
The set FTV, is defined inductively over λletmx types as: 

{ }

( )n

FTV( )

FTV(b) 0

FTV( ) FTV( ) FTV( )

FTV (| |) FTV( ) FTV( )

FTV( , ) FTV( ) { }

α = α

= /

τ⇒ υ = τ ∪ υ

τ ⇒ υ = τ ∪ υ

∀α σ = σ − α

 

 

where, FTV ( )τ  = FTV(τ1)∪…∪ FTV(τn). 

A type substitution, S, of types for type variables is a 

function that maps from type variables to 

types
1 1

,...,

n n
τ α τ α   , where each i i

τ α is called a 

component of S and all αi, 0≤i≤n are distinct. This 

function will be shortened to τ α 
  . The domain of S, 

dom(S), is { }1
,...

n
α α . The codomain of S, cod(S), 

is { }1
,...

n
τ τ . The set of variables in a substitution S, 

Var(S), is dom(S) ∪FTV ( )τ . The empty substitution is 

denoted by [ ]. The composition of two substitutions S 

and R, denoted by (S °R) or SR. If σ is a type scheme, 

then (S°R)σ, SRσ or S(Rσ), is the substitution which has 

the same effect as applying R then S to σ. The 

substitution SR is a new substitution constructed from S 

and R by first modifying R by applying S to its 

components and then adding the components of S not 

found in R. Therefore, if S = 
1 1

,...,

n n
τ α τ α    and R 

=
1 1

,...,

n n
υ β υ β   , then SR is a new substitution: 

 

1 1 1 1
,..., , ,...,

n n n n
S S  υ β υ β τ α τ α  

 
this substitution should be adjusted by deleting any 

binding 
i i

Sυ β for which Sυi=βi and any binding 

/
j j

τ α for which { }, ,

j 1 n
α β β∈ … . Finally, the substitution 

S is said to be idempotent if and only if SS = S. 

If σ is a type scheme and S is type substitution /τ α 
 

, 

then Sσ is a type scheme obtained by replacing each free 

occurrence of αi in σ by τi. Sσ is defined inductively on 

λletmx types as: 
 

{ }

( )

( ) ( )

( )

{ }

( )

[ ]( )

1 2 1 2

1 2 1 2

/

/ ,

/

/ / /

/ (| |) | [ / ] | /

. / ,

/ .

. / / ,

.

i i

n
n

if

b b

if

and FTV

othewise

  = 

  = ∉ 

  = 

     ⇒ = ⇒     

   ⇒ = ⇒   

  ∀ ∉ 
 ∉  ∀ =  

 ∀  


τ α α τ

τ α β β β α

τ α

τ α υ υ τ α υ τ α υ

τ α υ υ τ α υ τ α υ

β τ α σ β α

β τ
τ α β σ

γ τ α γ β σ
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A type scheme σ1 is an instance of σ2 if σ1 = Sσ2 for 

some substitution S. A type scheme σ1 = ∀β1...βm.τ1 is 

ageneric instance of σ2 = ∀α1…αn.τ2, written as 2 1
σ σ≻ , 

if there is a substitution S with domain {α1,…,αn} s.t. τ1 = 

Sτ2 and βi,1 ≤ i ≤ n, are not free in σ2. For example, int 

⇒ int is a generic instance of ∀α.α ⇒ α, written as 

. int int,α α α∀ ⇒ ⇒≻  where [ ]S  int= α . The relation ≻  

is reflexive and transitive. 

The following Lemma shows that ≻  is preserved by 

substitutions. 

Lemma 1 (Damas, 1985) 

If 
1 2
σ σ≻  then for any substitution S,

1 2
S Sσ σ≻ . 

Terms 

Assume V is a countable infinite set of term variables 

x,y,x1,y1,X,Y,X1,Y1,…. We use capital letters X,Y,… for 

hole variables; variables of type ( )| |τ ⇒ υ.The terms of 

λletmx are defined by the following grammar: 
 

( )

( )
n

,  :: ;

| . ;

| MN ;

| let : ;

| : ;

| µ . ;

| | | ;

n

M N  x variable

x M abstraction

application

 x  M inN  let polymorphism

M  x  N  explicit simultaneous substitution

x M multi-abstraction

M N simultaneous application

=

λ

=

< = >

•

 

 
where, the variables x,x1,x2,…,xn range over V. The term 

µn ( )x .M is an abbreviation of µn(x1,…,xn).M, the term M 

• ( )| |
n

N is an abbreviation of M•(|N1,…,Nn|)n and the 

trem M :x N< = > is an abbreviation of M < x1:= N1,…,xn 

:= Nn >, where n∈N . It is clear that the xi’s in µn ( )x .M 

and in M :x N< = > should be distinct. When it is clear, 

the index n in ( )
n

µ x .M and M•(|N|)n will sometimes be 

omitted. 

The set of free variables in a term M, FV(M), is 

defined inductively on λletmx term M as: 
 
FV(x) = {x} 

FV(λx.M) = FV(M)−{x} 

FV(MN) = FV(M)∪FV(N)  

FV(let x := M in N) = (FV(N)−{x})∪FV(M) 

FV(M :< x  N  = > ) = (FV(M)−{ }x ) ∪FV ( )N  

FV(µn ( )x .M) = FV(M)−{ }x  

FV(M• ( )| |
n

N ) = FV(M)∪FV ( )N  

 

where, FV ( )N  = FV(N1) ∪…∪FV(Nn). 

Two terms M and N are α-equivalent, written as 

M≡N, if they are identical except for the renaming of 

bound variables bound by λ, by xi in M :x N< = > , by x 

in let x:= M in N or by xi in µn ( )x .M. This equivalence is 

defined inductively over λletmx term M as: 
 
1. x x≡  

2. . .x M y Nλ λ≡ if [ ]( ) [ ]( ),M z x N z y≡ for some 

z∉FV(MN) 

3. MN≡PQ if M ≡ P and N ≡ Q 

4. let x := M in N ≡ let y := M' in N’ if M ≡ M’ 

and [ ] [ ]N z x N z y′≡ , for z∉FV(NN') 

5. : :M x N P y Q< = >≡ < = > , if there are distinct i1,…,in 

s.t.
1 n

1 ni i
N Q ,...,N Q≡ ≡ and [ ]

1
1

/ ,...,
n

ni i
M z x P z y z y ≡

 
, 

for some { } ( ) 0z FV MP  ∩ = / , where,
1
, ,

n
z z… are 

mutually distinct. 

6. µn ( )x .M ≡ µn ( )y .N, ifM z y N z y   ≡    , for 

some { } ( ) 0z FV MN  ∩ = / , where, 
1
, ,

n
z z… are 

mutually distinct. 

7. ( ) ( )| | | |
n n

M N P Q• ≡ • if M P≡ and 
i i

N Q≡ for 

,...,i 1 n=  
 

Note that: 
 

• In 5 above, the number of x and y variables 

in : :M x N P y Q< = >≡ < = > should be equal 

• IfM N≡ , then ( ) ( )FV M FV N=  

 

In the definition of the α-equivalence above, the 

capture-avoiding meta-level simultaneous 

substitution [ ]/M N x  is obtained by substituting Ni for 

 ,

i
x 1 i n≤ ≤

 
in M simultaneously. The substitution 

/M N x 
   is defined inductively on λletmx term M as: 

 

1. /
i i
x N x N  =   

2. /y N x y  =  , if { }y x∉  

3. ( ). / . /y M N x y M N xλ λ   =    , if { }y x∉  and 

( )y FV N∉  

4. ( ) ( )( )/ / /MP N x M N x P N x     =       

5. (let y := M in P) /N x 
   = let y := M /N x 

   in 

P /N x 
  , if { }y x∉ and ( )y FV N∉  

6. ( ): /M y P N x < = >   = / : /M N x y P N x   < =   
, if 

{ } { } 0x y∩ = /  and { } ( ) 0y FV N∩ = /  
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7. ( )( ) ( ) ( ). / . /µ y M N x µ y M N x   =   
, if { } { } 0x y∩ = /  and 

{ } ( ) 0y FV N∩ = /  

8. ( )( )| | / / /M P N x M N x P N x
      • = •        

 

 
Typing Rules 

A type assignment, Γ, is a set of assumptions of the 
form x: σ. If Γ = {x1: σ1,…,xn : σn}, then dom (Γ) = 
{x1,…,xn} and Γ(xi) = σi. If V is a set of variables, then 
the restriction of Γ to the set V, Γ | V, is {x : σ| x ∈V and 
σ= Γ(x)}. A typing judgment is an expression of the form 

:Γ M σ⊢ , where Γ is a type assignment, M is a term and 
σ is a type scheme. The set of free type variables of a 
type assignment, FTV(Γ), is defined as: 
 

FTV(0) 0

FTV( , : ) FTV( ) FTV( )x

/ = /

Γ σ = Γ ∪ σ
 

 

The following abbreviations are often be used: 
 

1 1

1 1

: : { : } :

, : : : } :

f

: for :

or

for {

x σ M σ x σ M σ

Γ x σ M σ Γ x σ M σ

M σ M σ

∪

∅

⊢ ⊢

⊢ ⊢

⊢ ⊢

 

 
Substitution over type assignments is defined as: 

 
S( 0/ ) = 0/  

S(Γ,x : σ) = S(Γ),x : S(σ) 
 

The type assignment Γ has an instance Γ' if and only 

if there exists a substitution S such that S Γ = Γ'. A 

typing judgment :
'

Γ M σ'⊢ is an instance of :Γ M σ⊢ if 

there exists a substitution S with S Γ ⊆ Γ' and σ'= Sσ. 

If Γ is a type assignment, the closure of a type 

scheme σ with respect to Γ is ( ), . ,Clos Γ σ = ∀α σ  where 

( ) ( )FTV FTV .α = σ − Γ
 
For example, if  Γ is { }: .x α α γ∀ →

 
and σ is β γ→ , then Clos ( ), .σ β β γΓ = ∀ → . 

Assume that Γ contains at most one assumption for 

each variable x. The type assignment Γx stands for 

removing any assumption x from Γ. The notation, :x σ is 

used as an abbreviation for
1 1
: , , :

n n
x xσ σ… . The typing 

rules of λletmx that are used to derive a typing judgment of 

the form :MΓ ⊢ σ , are defined in Fig. 1. 

A term M is called typable (or well-typed) if and only 

if there exist Γ and τ such that we can derive :Γ M τ⊢ by 

using the λletmx typing rules. 

Lemma 2 (Milner, 1978) 

Let S be a substitution, Γ be a type assignment and τ 

be a type, then: ( ) ( )S , S' , S' ,Clos   Clos  Γ τ = Γ τ  where 

' /S S β α =   , ( ) ( )FTV FTV= − Γα τ  and β are fresh 

type variables. 

Lemma 3 (Damas and Milner, 1982) 

If S is a substitution and Γ⊢M : σ holds, then: 

SΓ⊢M : Sσ also holds  
 

Lemma 4 (Damas and Milner, 1982) 

If 
1 2
≻σ σ  and 

2 0
, :

x
Γ x σ M: σ⊢ then: 

 

1 0
, :

x
Γ x σ M: σ⊢

 

 
 

Fig. 1: The typing rules for λletmx 

( )

( ) ( )

( )
( )

( )
( )

( )

( )

1 1 2

2

1

, : :

, : : : :

. :  :

:: ,

: . :

: , : :

:

, : , , : :    : :

: :

var

x

x

x 1 n n 1 1 n n

x x

x M M N
abs app

 x M  MN

 MM  FTV
typeGen inst

 M M

M x N
let

  let x M in N

x x M N N
expSub

M x N

x

Γ

Γ Γ ⇒ Γ

Γ ⇒ Γ

ΓΓ ∉ Γ

Γ ∀ Γ

Γ Γ

Γ =

Γ … Γ …Γ

Γ < = >

Γ

≻

σ σ

τ υ τ υ τ

λ τ υ υ

σ σ σσ α

α σ σ

σ σ τ

τ

σ σ τ σ σ

τ

⊢

⊢ ⊢ ⊢

⊢ ⊢

⊢⊢

⊢ ⊢

⊢ ⊢

⊢

⊢ ⊢ ⊢

⊢

( ) ( )
( )

( )

( )
( )

: | |   : :, : :

. : | |  | | :

1 1 nn

n n
n

M N N jx M
mAbs sApp

µ x M M N

Γ ⇒ Γ …Γ

Γ ⇒ Γ •

τ υ τ ττ υ

τ υ υ

⊢ ⊢ ⊢⊢

⊢ ⊢
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Reductions 

The reduction rules, 
letmx
λ
→ , of λletmx are the union of 

the following reduction rules,
λ
→ , 

let
→ , 

m
→ and

x
→ :The 

reduction rule 
λ
→ is defined by the rule: 

 

( ) ( ). :x M N M x N
λ

λ λ → < = >  

 

The reduction rule 
let
→ is defined by the rule: 

 

( ) :
let

let let x N in M M x N= → < = >  

 

The reduction rule 
m
→ is defined by the rule: 

 

( ) ( )( ). (| |) :
n n m

m µ x M N M x N• → < = >  

 

Note that, The order of the variables ( ), ,

i
x i 1 n= … in 

( )
n

µ x  is important and there is no reduction for the term 

( )( ) ( ).

n

m

µ x M N• when  .n m≠  

The reduction rule 
x
→ is defined by the following 

6 rules: 
 

(xVar) : .
i x i
x x N N< = > →  

(gc) : ,
x

M x N M< = > → if { } ( ) 0.x FV M∩ = /  

(xAbs) ( ). : . : ,
x

y M x N y M x Nλ λ< = >→ < = >  

 if { },y x∉ and ( ).y FV N∉  

(xApp) 
( )

( )( )
1 2

1 2

:

: : .

x
M M x N

M x N M x N

< = >→

< = > < = >

 

(xmAbs) ( )( ) ( ). : . :
n x n
y M x N y M x N< = >→ < = >µ µ  

 if { } { } 0x y∩ = /  and{ }y FV( 0N)∩ = / . 

(xsApp)
( )

( ) ( )

:

: : .

n x

n

M N x P

M x P N x P

• (| |) < = >→

< = > • < = >

 

 

Let R = {λ, let, m, x}, we write M →r N, if N is 

obtained from M by replacing a subterm M1 in M by N1 

such that M1 →r N1, where r ∈R. The reduction →q,r,s is 

the union of the three reductions →q, →r and →s, where 

q,r,s ∈R. The reflexive and transitive closure of the 

reduction → is denoted by *
→ . 

Example 1 

The term: 
 

( )( )( ) ( )( ). . . | , | , .X x y X x y zx µ x y xyλ λ λ •  

 
is reduced by λletmx reduction rules as: 

( )( )( ) ( )( )

( )( )( ) ( )( )

( )( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )

( )

. . . | , | , .

   . . | , | : , .

   . . | , | , .

   . | , | : , .

   . | , | , .

   | , | : , .

   , . | , |

  : , :

x

x

x

m

X x y X x y zx µ x y xy

X y X x y x z x µ x y xy

X y X z y x µ x y xy

X X z y y x µ x y xy

X X z x µ x y xy

X z x  X  µ x y xy

µ x y xy z x

xy  x  z y x 

∗

∗

∗

•

→ • < = >

→ •

→ • < = >

→ •

→ • < = >

→ •

→ < = = >

λ

λ

λ

λ λ λ

λ λ

λ λ

λ

λ

x
zx

∗

→

 

 

Properties of the Calculus 

In this section, we show that λletmx has the subject 

reduction property (Theorem 1) and the confluence 

property (Theorem 2). The subject reduction property 

insures that the type is preserved by reduction and the 

reductions never introduce new free variables. The 

confluence property guarantees the uniqueness of the 

result if it exists. 

Subject Reduction 

The following proposition and Lemma are needed in 
the proof of the subject reduction theorem. 

Proposition 1 (Milner, 1978) 

If :
'

Γ M σ'⊢ is an instance of a provable typing 

judgment :Γ M σ⊢ then :
'

Γ M σ'⊢  is also provable. 

Lemma 5 (Barendregt, 1992): 

1. If :Γ M σ⊢ then FV ( )M ⊆  dom (Γ) 

2. If :Γ M σ⊢ then | ( ) :Γ FV M M σ⊢  

 

Theorem 1 (Subject Reduction) 

If :Γ M σ⊢  and *
,

letmx

M N→
λ

 then :Γ N σ⊢ . 

Proof 

By induction on the derivation of : M  Γ τ⊢ using 

Proposition 1 and Lemma 5. 

Confluence 

To show that the reductions 
letmx
→

λ
 is confluent, we 

first show that the reduction →x is confluent. 

Lemma 6 

The reduction rule 
x
→ on λletmx terms is neotherian 

and confluent. 
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Proof 

To show that 
x
→ is neotherian, the length of a term 

, ,M M is introduced as: 
 
1. 1x =  

2. 1MN M N= + +  

3. . 1x M Mλ = +  

4. | | 1let x M in N   |M| N= = + +  

5. ( ) 1
| :  | | | 1 where | | | |

n
M x N N M , N N  N< = > = + = +…+  

6. ( )| . |
n

µ x M   M n= +  

7. | | | | | | 1M M N• (| Ν |) = + +  

 
It can easily be verified that 

x
M  N→ implies M N> . Then, by checking the 

overlapping cases, it can easily be verified that 
x
→ is 

weakly-confluent and by Newman’s Lemma, the 

reduction rule 
x
→ is confluent. 

A λletmx term M is said to be x-normal if M→xN holds 

for no N. From Lemma 6, it is clear that for any λletmx 

term M there uniquely exist x-normal term N such that 

x
M N

∗

→ . We will write x(M) to denote N. 

Next, the parallel reduction (Takahashi, 1989), ⇒ on 
x-normal λletmx terms is defined as: 
 
1.  x x⇒  

2. If  M N⇒ , then . .x M x Nλ λ⇒  

3. If
1 2

M M⇒ and
1 2

N N⇒ ,then

( ) ( )1
. x :

1 2 2
x M N M x N⇒ < = >λ  

4. If 
1 2

M M⇒ and
1 2

N N⇒ , then 
1 1 2 2

M N M N⇒  

5. IfM N⇒ , then ( ). ( ).µ x M µ x N⇒  

6. IfM N⇒ and , 1
i i
P Q i n⇒ ≤ ≤ , 

then ( )( ) ( ) ( ). | | x :µ x M P N x Q• ⇒ < = >  

7. If M N⇒  and ,1
i i
P Q i n⇒ ≤ ≤ , then ( ) (| |)M P N Q• ⇒ •  

8. If 
1 2

M M⇒ and 
1 2

N N⇒ , then 

( )1 1 2 2
: in  x :let x M N N  x M= ⇒ < = >  

 
Then, with each x-normal term M, we associate an x-

normal term M
*
as: 

 

1. *
:x x=  

2. ( )
* *

. : .x M xM=λ λ  

3. ( )( ) ( )
*

* *
. : x :x M N  M x N= < = >λ  

4. ( )
* * *
:MN M N= , if M is not a λ abstraction 

5. ( )( ) ( )
*

*
. : .µ x M µ x M=  

6. ( )( ) ( )( ) ( )
*

* *
. | | : x :µ x M P M x P• = < = >  

7. ( )( ) ( )
*

*| | | |M P PΜ
∗

• := • if M is not a multi-

abstraction. 

8. ( ) ( )* * *
: in : x :let x  M  N N x M= = < = >  

 

It can easily be verified that: 
 
1. The parallel reduction relation is reflexive, i.e., 

M M⇒  

2. *
M M⇒  holds for any x-normal term M 

3. If 
1 2

M M⇒ , then x ( ) ( ) x
1 2

M M⇒  

 

Lemma 7 

If
1 2

M M⇒ , then 
1 2letmx

M M
λ

∗

→ . 

Proof 

By induction on the construction of M1. 

Lemma 8 (Substitution Lemma) 

If M is an x-normal term, then: 
 

( ) ( )x : : x : : :M  x N  y Q M y Q x N y Q< = >< = > ≡ < = >< = < = >> , 

where N  and Q  are λletmx terms, { } { } 0x y∩ = /  and 

{ } { } 0x FV y∩ = / . 

Proof 

By induction on the construction of M such that M is 

x-normal term. 

Lemma 9 

If ( ) ( ) ( ) ( )1
x  x x  x ,1 ,

2 i i
M M  and N P i n⇒ ⇒ ≤ ≤ , then 

( ) ( )x :  x : .
1 2

M x N M x P< = > ⇒ < = >  

Proof 

By induction on the construction of x(M1) such that 

x(M1) is x-normal term. 

Lemma 10 

If 
1 , , 2let m

M M
λ

→ , then ( ) ( )1 2
x xM M⇒  

Proof 

By induction on the construction of M1. 

Lemma 11 

If
1 2x

M M→ , then ( )1 2
x x( )M M⇒ . 

Proof 

Immediate from the reflexivity of ⇒ . 
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Remark 1 

From Lemma 10 and Lemma 11, we have: 

If 
1 2letmx

M M→
λ

, then ( ) ( )1 2
x xM M⇒ . 

Lemma 12 

The parallel reduction ⇒  on x-normal form is 

confluent. 

Proof 

We can easily verify that if M ⇒  N, then N ⇒  M
*
, 

the confluence of ⇒  follows immediately from this fact. 

Theorem 2 (Confluence) 

The reduction 
letmx
→

λ
on λletmx terms is confluent, that 

is, if M 
letmxλ

∗

→ N and M
letmxλ

∗

→ P, then there is a term Q 

such that N 
letmxλ

∗

→ Q and P
letmxλ

∗

→ Q. 

Proof 

Suppose that M 
letmxλ

∗

→ N and M 
letmxλ

∗

→ P, then from 

remark 1, we have: x(M) *
⇒  x(N) and x(M) *

⇒ x(P), 

from the confluence of⇒ , there exists Q such that x(N) 
*

⇒ Q and x(P) *
⇒ Q. From Lemma 7, x(N)

letmxλ

∗

→  Q and 

x(P)
letmxλ

∗

→  Q. Since N
letmxλ

∗

→ x(N) and *

letmx
P

λ
→  x(P), we 

have N
letmxλ

∗

→ Q and P
letmxλ

∗

→ Q.  

The Proposed Type Inference Algorithm 

A Type inference algorithm decides whether a 

given term M has a type or not; it takes M and Γ as 

inputs and produces a principal (most general) type 

(Principal types is different from principal typing. An 

algorithm for principal typing takes just M as input 

and gives both Γ and σ as outputs. Many languages 

have principal types but not principal typing Jim 

(1996)) for M if it exists. 

It is known that Hindley-Milner typability is 

decidable, i.e., there is an algorithm which computes the 

principal type scheme of any term. One of the best well 

known type inference algorithm in the literature for 

Hindley-Milner type system is algorithm W (Milner, 

1978; Damas, 1985; Damas and Milner, 1982; Urban 

and Nipkow, 2009). Given M and Γ, algorithm W finds a 

substitution S and a type τ such that’s :Γ M σ⊢ . 

The type scheme σ is called a principal type scheme, 

Damas and Milner (1982), of M under Γ if and only if: 

 

1. :Γ M σ⊢  holds 

2. If :Γ M σ'⊢ holds, then 'σ σ≻  

 

Algorithm W depends on Robinson’s unification 

algorithm, (Robinson, 1965), which takes a pair of types 

and either returns a substitution S or fail, where S unifies 

the pair of types. 

The Unification Algorithm, Unify 

The unification algorithm, Unify, is defined for λletmx 

types as in Fig. 2. Item 5 in this algorithm catches all 

cases that fail if none of the previous cases apply, e.g., 

Unify (  , )bτ υ⇒ , Unify ( )( ) , | , , |  
1 n 1

τ υ υ υ τ⇒ … ⇒ , etc. This 

means that, Unify (τ,υ) fails if τ and υ are two different 

non type variables. It is clear that: 

 

Unify(τ,υ) °S fails if Unify(τ,υ) fails.

 

 
 

Fig. 2: Algorithm Unify: τ x υ → S 

( ) [ ]

( ) ( )

( )

( )

[ ]

( )

( )

( ) ( )( )

2

2 1 1

1 1 1 1

1

. ,  

. , ,

/

. ( , ) ,

,

,

| ,..., | ,

,

1 2 1 2

1 2 2

1 1 1

n n 2 n

1

1 Unify  

fails if FTV

OccurCheck Failed2 Unify or Unify

otherwise

3 Unify S where

S =Unify

S =Unify S S S

4.Unify | ,..., | S where

S =Unify

+

=

 ∈


= 



⇒ ⇒ =

°

⇒ ⇒ =

τ τ

α τ

α τ τ α

τ α

τ τ υ υ

τ υ

τ υ

υ υ τ ς ς τ

τ( )

( )
( )

1
, , 1,..., .

,

2

i i i i i i
S =Unify S S S i n

5.Unify fails for all other cases

+
° =

τ

υ ς

τ υ
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Example 2 
 

1. Unify ( ) ( )( ) [ ]| |  , | |  ,int int int int⇒ ⇒ =α β β α  

2. Unify (  ,  )a bα α⇒ ⇒  fails. 

 

The following two Theorems can easily be verified. 

Theorem 3 (Soundness of Unify) 

If Unify ( ), Sτ υ = , then .S Sτ υ=  

Theorem 4 (Completeness of Unify) 

If V unifies τ and υ, then Unify (τ,υ) returns S and 

there is another substitution R such that V = RS. 

The Type Inference Algorithm,Ŵ  

In this study, algorithm W is extended to the terms 

of λletmx. The extended algorithm is called Ŵ . 

Algorithm Ŵ (Γ,M) is defined inductively on λletmx 

term M as in Fig. 3. 

In algorithm W
⌢

, ( ): ,x Clos S SτΓ is an abbreviation 

of: x1 : Clos(SΓ,Sτ1),…,xn: Clos(SΓ,Sτn). When any of the 

algorithm Ŵ  conditions are not met, the algorithm fails. 

Example 3 

( )( ) ( )( ) ( )ˆ  : | |  , : , | | ,W X int int x int X x V int⇒ • = , where V 

= Unify ( ) ( )( )| |  , | |  int int int⇒ ⇒β  and β is a fresh type 

variable. 

Soundness of Ŵ  

Soundness of Ŵ shows that the algorithm never 

yields any results that are not correct. In other words, 

any type scheme derives by Ŵ  is derivable by the λletmx 

type inference rules. 

Theorem 5 (Soundness of Ŵ ) 

If Ŵ (Γ, M) succeeds with (S,τ), then there is a 

derivation of  SΓ⊢ M: τ. 

Proof 

By induction on the structure of λletmx term M. We 
consider only the following cases, other cases can be 
verified similarly: 

 

1. Case M is x and ( )( ), : . ,
x

W x xΓ ∀
⌢

α τ  succeeds with 

([ ], τ [ / ]β α ), where β are fresh type variables. 

From the (var) typing rule, we have: 

 

, : :
x

Γ x α.τ x α.τ∀ ∀⊢  

Since . / ,α τ τ β α ∀  ≻  then from the (inst) typing 

rule we have the following judgment as required: 
 

/, : :
x

Γ x α.τ x τ  β α ∀ ⊢  
 
2. Case M is let x = P in N and ( )ˆ ,W let x PinNΓ =  

succeeds with ( ), ,

2 1 2
S S τ°  where ( ) ( )1 1

ˆ ,S W P= Γτ and 

( ) ( )( )( )ˆ, , : , , .
2 2 1 x 1 1

S W S x Clos S N= Γ Γτ τ  
 

From the induction hypothesis, we have: 
 

:
1 1
S P andΓ ⊢ τ  (1) 

 

( )2 1 2 1 1 2
, : Clos , :

x
S S Γ x S S Γ τ N τ⊢  (2) 
 

Let 
2

/
2

S S  ′ =  β α , where β are fresh type variables 

and ( ) ( )1 1
.FTV FTV S= − Γα τ  Then, from Lemma 2, 

judgment (2) above and the fact that '

2 1 2 1
S S S SΓ = Γ , 

because 
2

S′ differ from S2 only on bound variables of 

S1Γ, we get: 

 

( )2 1 1 1 2
, : Clos , :

x 2 2
S' S Γ x S' S Γ S' τ N τ⊢  (3) 

 

Applying the (typeGen) typing rule to judgment (1) 

and since ( ) ( ),
1 1

FTV FTV S= − Γα τ we get: 

 

1 1
:S Γ P α.τ∀⊢   (4) 

 
From the definition of Clos(S1Γ,τ1) and judgment 

(4), we get: 
 

( )1 1 1
: Clos ,S Γ P S Γ τ⊢                                    (5) 

 
From Lemma (3) and Judgment (5), we get: 

 

( )2 1 2 1 1
: Clos ,

' '
S S Γ P S S Γ τ⊢                                   (6) 

 
From Lemma (2) and judgment (6), we have: 

 

 ( )2 1 2 1 2 1
: Clos ,

' ' '
S S Γ P S S Γ S τ⊢  (7) 

 
Applying the (let) typing rule to judgments (7) and 

(3), we get: 
 

2 1 2
let in :

'
S S Γ x P N τ=⊢  

 
Finally, by noting that 

2 1 2 1
S S S S′ Γ = Γ , We get the 

following required judgment: 
 

2 1 2
let in :S S Γ x P N τ=⊢  

 

3. Case M is ( )| |
n

P N• and ( )( )ˆ , | |
n

W P NΓ • succeeds 

with ( )1
... ,

n
V S S S V′ο ο ο ο β  where: 
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Fig. 3: Algorithm �
: x xW   M SΓ → τ  

 

( , )
'

S τ = Ŵ (Γ, P)    and  (8) 

 
 

( ) ( ) ( ) ( )1 1 1

ˆ ˆ, , ,···, , ,
n n n

S W S N S W S N′ ′= Γ = Γυ υ

 
(9) 

 

and ( )( ) ( )( )1
·· · , | ,..., |  

n 1 n
V  Unify S S S S= ⇒τ υ β and β is a 

fresh type variable. 

From the induction hypothesis, we have the 

judgments: 

 
'

S Γ P : τ⊢   (10) 

 

1 1 1
: , , :

' '

n n n
S S Γ N υ S S Γ N υ…⊢ ⊢  (11) 

 

From Lemma 4 and judgment (11), since 

1
,

' '
S Γ S S Γ≻ we also have the following derivations: 

 

1 1
: , , :

' '

n n
S Γ N υ S Γ N υ…⊢ ⊢  (12) 

 

From Lemma 3 and judgments (10) and (12), we get: 

1 1

1 1 1 1

1 1

:

: ,

:

'

n n

'

n n

'

n n n n

VS S S Γ P VS S τ

VS S S Γ N VS S υ

VS S S Γ N VS S υ

… …

… …

… …

⋮

⊢

⊢

⊢

 (13) 

 
Applying the (nApp) typing rule to judgments (13) and 
since: 

 

( )1 1
(| |)

n n
VS S τ V S S υ β… = … ⇒  

 
We get the required judgment 

1
(| N |) :'

n
VS S S Γ P V… • β⊢ . 

 
Note that, if :SΓ M τ⊢ , then : Clos ( , )SΓ M SΓ τ⊢  

also holds, where Clos(SΓ,τ) is called the type scheme 

computed by Ŵ for M (Damas and Milner, 1982). 

Completeness of Ŵ  

Completeness of Ŵ ensures that the algorithm 

addresses all possible inputs and does not miss any. In 

other words, any derivable type scheme is an instance of 

that computed by Ŵ . 

� ( ) [ ]( ) ( )

� ( ) ( ) ( ) � ( )( )

� ( ) ( ) ( ) � ( )

( )

2 1 1

, , .

.

, .                 ,  , , : ,

.

,                   , , , ,

x

1

2 2

W x    where x and

are fresh type variables

W x M S S  where S W x M  and

is a fresh type variable

W MN V S S V  where S W M

S ,  =

  ′ ′Γ = Γ = ∀ 

Γ = ⇒ = Γ

Γ = = Γ

β α τ α τ

β

λ β τ τ β

β

ο ο β τ

τ � ( )

� ( ) ( ) ( ) � ( )

( ) � ( )( )( )
� ( ) ( )

( ) � ( ) ( )

2 1 2

2 1 2 1 1

2 1 1 1

1

1 1 1

( ,  ),

.

 , in            , , ,

, , : , ,

, :                 ... ,

, , ,...,

1

2 x

n

n n

W S ,N ,V =Unify S

and is fresh type variable

W let x M N S S  where S W M and

S W S x  Clos S N

W M x N S S S  where

S W N S

Γ ⇒

Γ = = = Γ

= Γ Γ

′Γ < = > =

= Γ

τ τ β

β

ο τ τ

τ τ

ο ο ο υ

τ τ � ( )

( ) � ( )( )
� ( )( ) ( )( ) ( ) � ( )( )

� ( )( ) ( ) ( ) � ( )

( ) � ( ) ( ) � ( )

1 1 1

1

1 1 1

,

, ... , : ... , ... , .

, . , | |  , , : , ,

.

, | | ... , , ,

, , ,···, , , ,

n

n x n n

x

n
n

n n n

W N and

S W S S x  Clos S S S S M

W x M S S where S W x M and

are fresh type variables

W M N V S S S V where S W M and

S W S N S W S N

V Unify

= Γ

′ = Γ Γ

Γ = ⇒ = Γ

′ ′Γ • = = Γ

′ ′= Γ = Γ

=

υ τ

µ β υ υ β

β

ο ο ο ο β τ

υ υ

( ) ( )( )1 1
··· , | ··· |

.

n n
 S S S S

and is a fresh type variable

⇒τ υ β

β
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The restriction of a substitution S to a set A of type 

variables, S|A, is defined by the set 

{ }: .S and A∈ ∈τ α τ α α If S and R are two substitutions 

such that for every ( ) ( ), ,dom S dom R S R∈ ∩ =α α α the 

simultaneous composition Damas (1985), of S 

and ( ),R  S R⊕ , is defined by: 

 

( )
( )if

otherwise

S dom S
S R

R

 ∈
⊕ = 



α α

α

α

 

 

Lemma 13 

If Ŵ (Γ, M)= (S, τ), then: 
 

1. ( ) ( )Var S FTV   New⊆ Γ ∪  

2. ( ) ( )FTV FTV   Newτ ⊆ Γ ∪  

 
where, New is the set of new type variables introduced 

by ( )ˆ ,W MΓ . 

Proof 

By induction on the structure of the λletmx term M. 

Lemma 14 (Lee and Yi, 1998) 

If ′Γ Γ≻ , then Clos ( ),τΓ ≻Clos ( ),τ′Γ . 

Theorem 6. (Completeness of W
⌢

) 

Given Γ and M, let Γ' be an instance of Γ and σ a type 

scheme such that ' :MΓ ⊢ σ

 
then: 

 

1. ( )ˆ ,W MΓ succeeds 

2. If ( ) ( )ˆ , , ,W M SΓ = τ then for some substitution 

R, ( )and ,RS RClose S′Γ = Γ Γ ≻τ σ  

 

Proof 

By induction on the structure of the λletmx term M 

following the same technique of Damas (1985) using 

Lemma 13 and Lemma 14. 

Discussion 

Although the representation of contexts and hole-

filling using λletmx terms can also be represented as terms 

in the ordinary lambda calculus, the λletmx representation 

has the advantage of making contexts internal to the 

calculus which enables to write more clear and elegant 

programs with fewer reduction steps and then faster 

reductions. For instance, consider the context. 

[ ]( )1 1
.···. . . ···

n m
x x M Mλ λ which is represented in λletmx 

as: ( )( )( )1 1 1
.···. . | ,···, | ···

n n m
x x X x x M Mλ λ • .To fill the hole 

X with the term N, the multi-abstraction ( ).µ x N
 
is 

substituted for X in this term to get: 
 

( )( ) ( )( )( )1 1 1
.···. . . | ,···, | ···

n n m
x x µ x N x x M M•λ λ  (14) 

 
This term can be represented as the lambda term: 

 

( )( )( )1 1 1 1
.···. . .··· . ··· ···

n n n m
x x x x N x x M Mλ λ λ λ  (15) 

 
The λletmx representation, (14), has a number of 

advantages over the encoding using the ordinary lambda 

terms, (15): 
 
1. Using both the usual lambda calculus’ abstraction 

and application together with the new multi-

abstraction and simultaneous application makes the 

representation more clear; simple inspecting of the 

representation in (14), it is obvious that the term 

with the new multi-abstraction ( ).x Nµ  replaced the 

hole and the variables after the new simultaneous 

application • is used to store terms in case if the β-

reduction is performed before filling the hole 
2. The representation in (14) has also an advantage in 

terms of the number of reduction steps. To reduce 
the underline subterm of (15), we have to use n β-
reductions, before each of them we have to check if 
the α-conversion rule in needed or not to avoid the 
unintended variable capturing. An n meta-level 
substitutions is also needed after each β-reduction 
which also requires to check the necessity of the α-
conversion. Whereas, to reduce the corresponding 
underline subterm of (14) only one 

m
→ reduction 

step is needed. Then, only one checking for an α-
conversion and a sequence of the explicit 
simultaneous substitution. The number of reductions 
is clearly decreased and consequently the program 
execution time is reduced. To make it clear, consider 
the simple example: 

 

( )( ) ( ) ( )

( )*

, . | 1, | : 1, :

: 1, : : 1, : 1

m

x x

µ x y xy y z xy x y y z

x x y y z y x y y z y+ z

• + → < = + = >

→ < = + = > < = + = >→

 

 
whereas, in reducing the same term encoded as ordinary 

lambda term: 
 

( )( )( ) ( )( )(

( ) ( ) ( )( ) )
( )( ) ( )

1 1

1 1 1

1 1

. . 1 . . 1

. 1 ) . 1

1 1

1

x y xy y z x x xx y z

x xx y x z x y x z

y x z x   y z

β

β

λ λ λ λ

λ λ

+ ≡ + →

 +  ≡ + → 

 + ≡ + 

 

 

Conclusion 

ML-style multi-abstraction calculus, λletmx, is 
introduced as an extension of the ML-style Hindley-
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Milner type system. The calculus has a multi-abstraction, 
a simultaneous application and an explicit simultaneous 
substitution. The multi-abstraction abstracts a sequence 
of variables rather than just one variable at a time. The 
simultaneous application applies all of its arguments 
simultaneously and the explicit simultaneous substitution 
has a number of substitutions that can be performed in 
parallel which can decrease some reduction steps and 
consequently reduces programs execution time. The 
calculus has the advantage of saving the usual α-
equivalence between all terms. The ML-style Hindley-
Milner type system is chosen as a base of the calculus 
since its typability is decidable and since it supports 
parametric polymorphism that allows a part of a program 
to be instantiated with different types as needed in 
different situations. The calculus has a subject reduction 
property, is confluent and has a sound and complete type 
inference algorithm. The type inference algorithm infer 
the most general or principal types for terms. 

The calculus can be used to represent contexts, where 

contexts are lambda terms with holes. The multi-

abstraction and simultaneous applications of the calculus 

can also have several other useful applications that needs 

to abstract a sequence of variables at a time, needs to 

apply the arguments simultaneously and which needs at 

the same time to keep the usual α-conversion between 

terms. The calculus λletmx can serve as a theoretical basis 

for a polymorphic functional programming with multi-

abstraction and simultaneous application. An 

implementation of the calculus and its type inference 

algorithm should be considered as a future work. 
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