

 © 2019 Jakup Fondaj and Zirije Hasani. This open access article is distributed under a Creative Commons Attribution (CC-

BY) 3.0 license.

 Journal of Computer Science

Original Research Paper

Real Time Anomaly Detection in Massive Data Streams with

ELK Stack

1
Jakup Fondaj and

2
Zirije Hasani

1Faculty of Computer Science and Technologies, South East European University, Tetovo
2Faculty of Computer Science, University of Prizren "Ukshin Hoti", Prizren, Kosovo

Article history

Received: 13-01-2019

Revised: 23-05-2019

Accepted: 15-06-2019

Corresponding Author:

Zirije Hasani

Faculty of Computer Science,

University of Prizren "Ukshin

Hoti", Prizren, Kosovo
Email: j_fondaj@seeu.edu.mk
 zirije.hasani@uni-prizren.com

Abstract: Real time anomaly detection is very popular topic nowadays
this because the number of data generated every day is larger and larger.
Facing with the phenomena of Big Data is not an easy task. The main aim
of this research is to fine appropriate architecture for real-time big data
analytic and its main task is to detect anomalies in this real-time data. In
this paper we show the implementation of anomaly detection algorithm in
real time infrastructure in order to find anomalies as soon as possible. We
have proposed architecture for real time anomaly detection by adding
some new components and the main part of the infrastructure is Timelion
which enable implementation of different algorithms for anomaly
detection. The research is focused to develop infrastructure to monitor e-
dnevnik (education national system in Macedonia) application server and
to detect errors in order to scale up the performance.

Keywords: Real Time, Big Data, Timelion, Infrastructure for Anomaly
Detection

Introduction

The usage of internet nowadays is constantly
increasing the amount of data. As a result, the need for
analyzing this data has recently emerged and we need to
face a new phenomenon known as massive data streams.
This paper shows the appropriate architecture for real-time
massive data stream analytics and its main task is to detect
anomalies in real-time data. In our previous work (Hasani,
2014a; 2014b; 2015; 2017a; 2017b; Hasani and Fondaj,
2018) we have analyzed various architectures and their
suitability to enable real-time anomaly detection in data
streams. In this paper, we present the visualization of
an e-dnevnik log by using pipeline infrastructure
consisting of Redis, Logstash, Elasticsearch, Kibana
and Timelion. The first component is Redis which is
used as buffer of log data. Logstash have large number
of filters which are used to analyze the data,
Elasticsearch is indexing component of this
infrastructure and also is used for storing data. Other
important components are Timelion and Kibana, the
first one is used for visualization and the other one for
anomaly detection (Hasani et al., 2015).

On (Hasani et al., 2015) we have explored and
implemented different Kibana filters in order to do post-
procesing of SQL queries. The focus of the post-
processing was to prepare the log information in

adequate format and information extraction. The purpose
of this analyze was to monitor the performance of the
National system of Education in Macedonia and to alert or
prevent possible unwanted activities (Hasani et al., 2015).

Our research deals with developing infrastructure for
monitoring e-dnevnik (education national system in
Macedonia) application server and detecting errors in
order to enable its smooth work and scale up the
performance. Different existing algorithms are
implemented in the proposed infrastructure, so our
further work will be the implementation of our proposed
real-time anomaly detection algorithm for streaming data
in this planed infrastructure.

Related Work

Many advanced and highly effective anomaly
detection methods exist that run-in batch mode, where
the data is collected and processed after the occurrence.
However, identifying anomalies long after they
happened isn’t our main goal. On the contrary, real-time
data processing, requests continual input, time-critical
manner processing and instant output (e.g., alarm) if
anomaly happened. We can model the normal behavior
of the data stream instant of searching for unknown
anomalies and then we can compare with the observed
one (Hasani et al., 2018). Consequently, predicting the
values of a stream one-time step ahead is used, the

Jakup Fondaj and Zirije Hasani / Journal of Computer Science 2019, 15 (6): 814.823

DOI: 10.3844/jcssp.2019.814.823

815

deviation between the predicted values and the observed
values are measured and a decision mechanism, if an
observed value exceeds normal behavior, is established
(Hasani et al., 2018). Yet other questions arise. The real-
time streams are infinite, can have a high rate of data's
appearance in time unite (high volume, high velocity)
and can evolve over time (Hasani et al., 2018). Thus, the
development of the model of normal behavior must
adapt to these challenges to maintain detection accuracy:
be iterative, use only a part of the stream (even before it
is permanently stored) and be implemented as a positive
feedback in the learning process (e.g., detected
anomalies labeling in the supervised process). Due to the
need of the real-time detection process, detection
algorithms have to be robust, with low processing time
(low complexity), even at the cost of the accuracy.
Currently, the most intensively developed anomaly
detection methods that consider underlined challenges
are based on machine learning, neural networks,
predictive and statistical time series forecasting models
(Hasani et al., 2018).

These new features of data and processing requirements
in real time, make it inappropriate or impossible to use
traditional architectures (infrastructures, parts of the
technology solutions and tools with a non-instantaneous
processing paradigm) and processing-intensive algorithms
to detect anomalies. Typically, according to Bailis et al.,
2015; Hasani et al., 2018), when we talk about systems
that give processing in real-time or near real-time, we
think for architectures that provide collection and
analysis of data streams from several million data in
milliseconds/sec, at the time of their arrival, eventually
without their permanent storage and if necessary, in
conjunction with the previously stored data. According to
Joao Gama in 2015 users are looking for answers placed
over massive data in real-time. Or, more specifically, it is
not only the process of storing Exabyte data in the data
warehouse, according to Michael Minelli, co-author of
Big Data, Big Analytics, said in Mike Barlo, 2013: “It’s
about the ability to make better decisions and take

meaningful actions at the right time. It’s about detecting
fraud while someone is swiping a credit card or
triggering an offer while a shopper is standing on a
checkout line or placing an ad on a website while
someone is reading a specific article. It’s about
combining and analyzing data so you can take the
right action, at the right time and in the right place.”

The processing of massive data streams in real-time
includes multiple different stages, each for itself in terms
of the requirements stated above. Also, the possible need
for scaling, human intervention, privacy, automatic
actions, etc., is a challenge. Consequently, inability to
adapt classic architectures and technological solutions,
such as Hadoop and similar platforms, which are more
convenient for batch analyze (Hasani et al., 2018) arise.
Requested architecture should provide flexibility in the
implementation of the required sequence stages
(pipelines): acceptance/write data stream,
extraction/cleaning/annotation of data,
integration/aggregation/representation,
questionnaires/analysis/modeling and interpretation.

The analysis besides its SQL analytic, according to
Stonebraker et al. (2015; Hasani et al., 2018), typically
includes machine learning, clustering, predictive
modeling, regression estimation, detection of anomalies,
etc., which, according to the author, matrix organizing of
data compared to the organization in rows or columns
gives better performance. Appropriate technology
solutions need to give parallel processing flows,
scalability, resistant to anomalies and very low latency
when giving statements.

Implementation of Infrastructure for

Streaming Outlier Detection in Massive

Data Streams with ELK Stack

It this chapter the main components and their role in
the infrastructure (Redis, Timelion, Logstash,
Elasticsearch and Kibana) are explained and filters for
pre-processing of SQL log data are shown.

Fig. 1: Infrastructure for real-time anomaly detection in Massive data streams

Broker Decode/
preprocessing

Redis

Filtering/
analytics

Search/
storage

Visualize
(Web interface)

Anomaly
detection

Logpstash Elasticsearch Kibana Timelion

Application
server 1

Logstash
(shipper)

Application
server 2
Logstash
(shipper)

Application
server 3
Logstash

(shipper)

Input

Jakup Fondaj and Zirije Hasani / Journal of Computer Science 2019, 15 (6): 814.823

DOI: 10.3844/jcssp.2019.814.823

816

Infrastructure for Outlier Detection in Real-Time

Massive data streams

To develop the infrastructure, we have done a broad
research and based on them we start (Hasani and Fondaj,
2018) with the solution proposed by Kiyoto (2018). The
infrastructure is very flexible, it allows us to add and
remove infrastructure components very easy. Our
proposed architecture is shown in Fig. 1. This
architectural design (Hasani et al., 2015) is composed
from different phases: input (collects and manages
events and logs), buffering, decode/pre-process (extract
structured data into variables, parse), filter (modify,
extract information) and output (ship the data for storage,
index, search, visualize and anomaly detection). More
details about this infrastructure you can find one our
publication (Hasani et al., 2015).

The proposed architecture is working in hierarchical
form where we have two phases, in the first phase we
make data cleaning, filtering and visualization of data
and in the second phase is done anomaly detection with
Timelion and result visualization from executed anomaly
detection algorithms.

The main aim of the infrastructure is to achieve
flexibility (Hasani et al., 2015), which can be achieved
by possibility of adding different new components as
Hadoop, Graphite, Cassandra, etc. Generally, in most
cases when we run the Logstash server there will be two
broad classes of Logstash host (Hasani, 2015):

• The first one is the host which runs the Logstash

agent as an event "shipper" that sends application,
service and host logs to a central Logstash server

• The second one is central Logstash host which runs
a combination of components of this architecture for
pre-processing and filtering of events

Broker (usually Redis (2018) is temporary buffer

for logs. This is important to collect information when
the number of requests is raising unexpected (Hasani
et al., 2015).

Main component of the infrastructure is Logstash which
have three-phase pipeline: input, filtering and output, it has
different plugins in every phase enabling extracting
information from log data (Hasani et al., 2015).

Elasticsearch/Kibana

Elasticsearch enables efficient indexing and storing
of the event logs enabling a full-text search on them
(Hasani and Fondaj, 2018). It is an open-source
distributed search engine library built on top of Apache
Lucene (Timelion, 2018). Elasticsearch (Kiyoto, 2018)
allows us to implement, store, index and search

functionality, this way it helps us in easier and more
efficient computation of various data analytics.
Elasticsearch is a NoSQL data store (Hasani and Fondaj,
2018) where data are stored as documents. Although it is
mainly used by Java applications, the important thing is
that applications need not be written in Java to work with
Elasticsearch since it can send and receive data over
HTTP in JSON to index, search and manage our
Elasticsearch cluster (Hasani and Fondaj, 2018).

The last part is Kibana (Kiyoto, 2018). This is an
HTML/JS frontend web interface to Elasticsearch for
viewing the log data. The beauty of Kibana is that we
can easily search the data with different queries, produce
charts, histograms and other visual products.

Timelion

The other main component of this infrastructure is
Timelion. Timelion is a time series data visualize that
enables us to combine totally independent data sources
within a single visualization. The main task of Timelion
is to find anomalies in real time. It’s driven by a simple
expression language we use to retrieve time series data,
perform calculations to tease out the answers to complex
questions and visualize the results. In Timelion we
describe queries, make a different transformation of data,
implement statistical methods as well as visualized the
data to learn from them (Timelion, 2018).

Both Timelion and Kibana provide visualization of
the data, but the difference between them is that
Timelion provides us with the opportunity to implement
the code of the various algorithms used for detection of
anomalies and also the result obtained by the execution
of these algorithms can be visualized to find out where
the anomalies are.

Processing of SQL Queries with Proposed

Infrastructure

We have done (Hasani et al., 2014a) processing of
SQL queries in batch mode, in this paper we have
advanced the processing by implementing it in real
time environment. The main aim of SQL query
analytic is to get information and detect anomalies in
order to prevent system down. More details about
filters used for SQL query analytic are given in our
published paper (Hasani et al., 2014a).

Real Time Analysis of e-Dnevnik Database Log File

This part of the paper show how we have analyzed
the log files generated from e-dnevnik (Hasani et al.,
2014a). This application has a large number of requests
during the day, we like to check how many requests have
the system for given period of time and to detect if there
is an anomaly. In the Fig. 2 below we present two
histograms produced by Kibana (Hasani et al., 2014a).

Jakup Fondaj and Zirije Hasani / Journal of Computer Science 2019, 15 (6): 814.823

DOI: 10.3844/jcssp.2019.814.823

817

Fig. 2: e-Dnevnik number of hits and duration mean per 30 sec intervals, in selected 14:26-15:16 period of time (Hasani et al., 2014a)

The first chart displays the distribution of the number
of events in the system, calculated per 30 seconds
intervals in the time period from 14:26 untill 15:16,
having 2207880 hits all. The second chart shows the
calculated mean duration of SQL queries execution
time for the same period and intervals. This shows that
the mean of the query duration is higher at the specific
period of time. The higher mean duration time of SQL
queries in this example is the consequence of the
Postgres server restart and warming up of Postgres
shared buffers (Hasani et al., 2014a).

Kibana Visualization of CSV Logs

The infrastructure presented in the paper (Hasani
and Fondaj, 2018) can be used for anomaly detection
in real-time Massive data streams. After configuring

Logstash, the data can be visualized in Kibana. With
Elasticsearch and Kibana we have the possibility to
visualize the log data (Kiyoto, 2018) from our e-
dnevnik application servers. In the next figure, we
show how the result is visualized by Kibana where we
have the possibility to draw our own charts,
histograms etc. Kibana offers many functions for data
analysis and visualization. Some of their main
functions are shown in Fig. 3 and 4, comprising a
period of three days. We can see here the different
time periods for the number of requests in the chart.
We can also see the content of the log file for every
event that happens in our application server. The
interesting thing about Kibana is that the data can be
read and exported in JSON format.

Kibana as a result of visualization produces different
attributes which we can use to filter the result.

Jakup Fondaj and Zirije Hasani / Journal of Computer Science 2019, 15 (6): 814.823

DOI: 10.3844/jcssp.2019.814.823

818

Fig. 3: Visualization of csv e-dnevnik data in real time by Kibana

Jakup Fondaj and Zirije Hasani / Journal of Computer Science 2019, 15 (6): 814.823

DOI: 10.3844/jcssp.2019.814.823

819

Fig. 4: CSV messages in Kibana

Jakup Fondaj and Zirije Hasani / Journal of Computer Science 2019, 15 (6): 814.823

DOI: 10.3844/jcssp.2019.814.823

820

Anomaly Detection with Timelion

An anomaly in our case is considered to happen
when the number of requests is increased during a period of
time from 19:00 pm to 06:00 am, as non-working hours, or
in non-working days, Saturdays and Sundays. The
infrastructure that is used receives the CSV log data as an
input from the application servers of e-dnevnik.

As part of this infrastructure, Timelion, enables
programming and implementation of user defined
anomaly detection algorithms, as example algorithms

we analyzed in (Hasani, 2017). There are some
algorithms used for anomaly detection and we explore
some of them and implement in real time environment
in our proposed infrastructure.

The following figure shows the results of the
implementation of Triple Exponential Smoothing, the
Holt-Winters method (Kibana, 2018). Timelion have user
interface where we can write the commands as is shown in
Fig. 5 and by executing them in real time we can see the
result in our case detection of anomalies.

Fig. 5: Anomaly detection in timelion

Jakup Fondaj and Zirije Hasani / Journal of Computer Science 2019, 15 (6): 814.823

DOI: 10.3844/jcssp.2019.814.823

821

Fig. 6: Moving average in timelion

Fig. 7: Anomaly detection based on different conditions

Jakup Fondaj and Zirije Hasani / Journal of Computer Science 2019, 15 (6): 814.823

DOI: 10.3844/jcssp.2019.814.823

822

From these results, we can see the anomalies pointed
with red circles. These anomalies are human annotated
and in the above diagram we can prove that the
algorithm works well.

Moving Average in Timelion. One of the most
used statistical methods for anomaly detection is
Moving Average. In this example we have
implemented this method in real time environment.
There are defined upper and lower bound in order to
check for anomalies. If a point of data is outside this
bound is considered anomaly.

Anomaly detection based on different conditions.
This algorithm divides data with AVG multiply with 100
and then give 4 conditions for anomalies which may
be just warnings then, minor anomalies, major and
critical. This mean this method categorize anomalies
into four groups, the result is shown in Fig. 6. The
Fig. 7 shows the result we get from this algorithm and
the visualization of the result with Timelion.

The idea is all this method which we use to compare
them and to decide which is the best methods based on
our needs and also to propose our algorithm. Based on
the figure we get; we go further with the analysis and
find the reason the anomalies happened at a specific time
period. The number of anomalies depends on the
threshold we define, in our case the smaller the threshold
the larger the number of anomalies appears.

Conclusion

Big Data analytic is main topic nowadays and is not
easy task because the challenge came from the fact that
the data are analyzed in real time. In this paper, we
propose infrastructure which enable real time Big Data
analytic where e-dnevnik log data are analyzed.

The infrastructure proposed is composed from
different open source tools as: Redis, Logstash,
Elasticsearch, Kibana and Timelion. The infrastructure
design is based on the pipeline event processing, divided
in phases: input (collects and manages events and logs),
buffering, decode/pre-process (extract structured data
into variables, parse), filter (modify, extract information)
and output (ship the data for storage, index, search,
visualize and anomaly detection). Proposed architecture is
capable to scale up/out depending on the input stream size
and rate, by running one or more of its components as
separate threads/servers. Flexibility is achieved by
possibility of adding various further components as
Hadoop, Cassandra, statistical or graphical tools like
Statsd, Graphite, or deploying extension of functionalities
in each phase by using own plugins (Hasani et al., 2015).

We illustrate the SQL queries database transaction
logs analytics with implementation of the filters that
produce various statistics enabling detections of
anomalies in query performance on an operational level
(Hasani et al., 2015). This means that we are able to
detect performance degradation of SQL queries in real
time and alert adequately in order to remove the possible

causes. In the same time in real time we do the pre-
processing of the logs in order to reduce the amount
of content of SQL queries that are necessary to be
saved for further analyze.

The testing is done in real-time data that comes from
the e-dnevnik application. This tool enables us to
implement our evaluated algorithms (Hasani, 2017) and
visualize the results. Visualization of the real-time
anomaly detected is an important part of the
infrastructure as a powerful tool for online monitoring
the work of the system. The main contribution of the
paper is that propose real time infrastructure which
enable implementation of different algorithms for
anomaly detection in real time streaming data and also
preprocessing of data is done.

Author’s Contributions

Author 1 do the research and write the paper and
author 2 do the experiments and revise the paper.

Ethics

This article is original and contains unpublished
material. The corresponding author confirms that all of
the other authors have read and approved the manuscript
and no ethical issues involved.

References

Bailis, P., J.M. Hellerstein and M. Stonebraker, 2015.
Readings in Database Systems. 5th Edn.,
RedBook, USA.

Hasani, Z. and J. Fondaj, 2018. Improvement of
implemented infrastructure for streaming outlier
detection in big data with ELK stack. Proceedings of
the 6th World Conference on Information Systems
and Technologies, (IST’ 18), Springer, Italy, pp:
869-877.

Hasani, Z., 2015. Performance comparison throw
running job in Hadoop by defining the number of
maps and reduces. Proceedings of the 12th
International Conference on Informatics and
Information Technologies (IIT’ 15), Bitola,
Macedonia, pp: 49-53.

Hasani, Z., 2017. Robust anomaly detection algorithms
for real-time big data: Comparison of algorithms.
Proceedings of the 6th Mediterranean Conference on
Embedded Computing, (CEC’ 17), IEEE,
Montenegro, pp: 1-6.

Hasani, Z., 2017a. Implementation of Infrastructure for
Streaming Outlier Detection in Big Data. In: Recent
Advances in Information Systems and Technologies,
Rocha, Á., A. Correia, H. Adeli, L. Reis and S.
Costanzo (Eds.), Springer, Cham, pp: 869-877.

Jakup Fondaj and Zirije Hasani / Journal of Computer Science 2019, 15 (6): 814.823

DOI: 10.3844/jcssp.2019.814.823

823

Hasani, Z., 2017b. Infrastructure with R package for
anomaly detection in real time big log data.
Pressacademia, 5: 181-189.

Hasani, Z., B. Jakimovski, G. Velinov and M. Kon-
Popovska, 2018. An adaptive anomaly detection
algorithm for periodic data streams. Proceedings of
the 19th International Conference on Intelligent
Data Engineering and Automated Learning, Nov.
21-23, Madrid, Spain, pp: 385-397.

 DOI: 10.1007/978-3-030-03493-1_41
Hasani, Z., B. Jakimovski, M. Kon-Popovska and G.

Velinov, 2015. Real time analytic of SQL queries
based on log analytic. ICT Innovation, Ohrid
Macedonia.

Hasani, Z., M. Kon-Popovska and G. Velinov, 2014a.
Survey of technologies for real time big data
streams analytic. Proceedings of the 11th
International Conference on Informatics and
Information Technologies, (IIT’ 14), Bitola,
Macedonia, pp: 321-326.

Hasani, Z., M. Kon-Popovska and G. Velinov, 2014b.
Lambda architecture for real time big data analytic.
Proceedings of the Web ICT Innovations, (WII’ 14),
Ohrid, Macedonia, pp: 133-143.

Kibana, T., 2018. Anomaly Detection.
https://rmoff.net/2017/01/18/kibana-timelion-
anomaly-detection/

Kiyoto, T., 2018. Elasticsearch, fluentd and kibana.
Open Source Log Search and Visualization.
https://www.digitalocean.com/community/tutorials/e
lasticsearch-fluentd-and-kibana-open-source-log-
search-and-visualization

Timelion, 2018.
https://www.elastic.co/guide/en/kibana/current/ti
melion.html

Joao Gama, 2015. Challenges in Learning from
Streaming Data. Bogdanova. In: ICT Innovations
2014, Advances in Intelligent Systems and
Computing, Ana Madevska, Gjorgjevikj, Dejan
(Eds.), Springer, Switzerland, pp: 1-5.

Mike Barlo, 2013. Real-Time Big Data Analytic:
Emerging Architecture. O’Reilly Media, Inc., 1005
Gravenstein Highway North, Sebastopol, CA.

