

 © 2020 Hussein Al Bazar and Hussein Abdel-Jaber. This open access article is distributed under a Creative Commons

Attribution (CC-BY) 3.0 license.

 Journal of Computer Science

Original Research Paper

A Developed Uncapacitated Scheduling Algorithm of Building

Timetables for Different Exam Kinds

Hussein Al Bazar and Hussein Abdel-Jaber

Faculty of Computer Studies, Arab Open University, Dammam, Kingdom of Saudi Arabia

Article history

Received: 14-06-2020

Revised: 05-08-2020

Accepted: 22-08-2020

Corresponding Authors:

Hussein Al Bazar

Faculty of Computer Studies,

Arab Open University,

Dammam, Kingdom of Saudi

Arabia

Email: halbazar@arabou.edu.sa

Abstract: Scheduling many exams into different timeslots and rooms while

meeting all given requirements is a difficult task, which requires designing

and proposing a scheduling algorithm to deal with the issue of timetabling

examination. This paper proposes a scheduling algorithm for tackling such

an issue. The proposed scheduling algorithm generates a satisfactory

timetable of different module exams derived from different faculties such

as the faculty of language studies, business studies and computer studies

within a university. The generated timetable satisfies all given constraints

such that no student shall attend more than one exam at the same day and

time. Moreover, a user interface system is developed in order to enable

different selections, for instance, exam sort, the number of sessions per day.

Further, it can show the timetable of different exams of a module. The

accuracy of every examination session and all sessions is calculated and it

is found to be proven from the results the satisfaction of each examination

session and all sessions together is increased.

Keywords: Scheduling Algorithm, Fitness Function, User Interface System,

Examination Timetable, Hard and Soft Constraints, Uncapacitated Scheduling

Introduction

The problem of timetabling of different entities have

shown interest in many areas (e.g., people, academic

institutions, factories, machines, sports and so on).

Timetabling allocates a number of entities into different

timeslots and places by taking into account a bundle of

constraints; including hard and soft constraints

(Vatansever and Arici, 2019). For instance, assigning the

exams of academic institutions into a number of timeslots

and rooms based on available resources and meeting the

given constraints. In a university, there are usually several

faculties. In each faculty, there are several departments

and in each department, many students can register and

enrol for different modules. As a result, it is significant to

create a number of schedules for students, such as a

student’s timetable, the timetable of examinations and so

forth. When the number of students that is enrolled for

different modules increases, the difficulty of building

timetables increases, particularly, building timetables for

examinations. Moreover, when the number of hard and

soft constraints is enormous and limited available

resources emerge, building a timetable is considered a

difficult task. Hard and soft constraints should be met in

order to build a quality timetable. Hard constraints differ

from one academic institution to another. When building

an examination timetable, hard constraints should be met.

Examples on such constraints are presented as follows:

 Exams should be allocated to particular given timeslots

such that these timeslots are limited (hard constraint)

 A student can only sit for a single exam within every

timeslot (hard constraint)

 The module’s exams of the same level are scheduled

within the same track into different days unless

some other modules are considered as perquisites

for certain modules (hard constraint)

Soft constraints are required, but are not crucial

(Qu et al., 2009) and are not guaranteed to be met due to

the difficulty of exams in the scheduling problem. Thus, a

number of soft constraints is breached. Additionally, the

differences of soft constraints emerge from one institution

to another according to their necessity and sort (Burke et al.,

1995) and these constraints are conflicting with each

other. This can enable students to obtain sufficient time

for studying their exams. Examples on soft constraints are

given by (Qu et al., 2009) as follows: The conflicting

exams are equally distributed as large as possible and this

enables students to obtain sufficient time to study. The

Hussein Al Bazar and Hussein Abdel-Jaber / Journal of Computer Science 2020, 16 (8): 1139.1149

DOI: 10.3844/jcssp.2020.1139.1149

1140

exams should be held on the same day, at the same time or

in one place. Further, exams should be successive where

the biggest exams should be held on earlier dates. The

priority of exams is required to be satisfying and for every

timeslot, a specified number of exams and/or students is

achieved. Conditions of time such as exams not need to be

in particular timeslots. In the same day, conflicting exams

should be allocated close to each other by dividing exams

on analogous places. The solely exams that share the same

time interval can be held within the same room.

Requirements of resource such as rooms.

Creating an examination timetable is not a simple and

easy task since building an optimal schedule by

satisfying all given constraints is presented as an NP-

Hard problem (Gonsalves and Oishi, 2015). The problem

of examination timetabling is introduced into two

different types: Incapacitated and capacitated. The room

capacities are not assumed in the incapacitated type,

while the capacity of rooms are assumed as a hard

constraint in the capacitated type.

There is a number of heuristic processes for solving

the issues of the timetabling examination. Such processes

include the different scheduling methods, which comprise:

Genetic Algorithms (GAs) (Ross and Corne, 1994;

Hosny and Al-Olayan, 2014; Dener and Calp, 2018),

Ant Colony (Thepphakorn et al., 2014), Simulated

Annealing (Kalender et al., 2013; Kirkpatrick et al.,

1983), FastSA that is a new variant of simulated

annealing algorithm (Leite et al., 2019), Tabu Search

algorithms (Clark, 1993; Hertz, 1991), Graph Coloring

Techniques (Selemani et al., 2013; Malkawi et al., 2008;

Carter, 1986; Abou Kasm et al., 2019), Fuzzy Logic

(Cavdur and Kose, 2016), Memetic Algorithm (Lei et al.,

2015; Burke et al., 1996), Particle Swarm (Marie-Sainte,

2015), automatic scheduling algorithm depending on

hash and priority (Ji and Ma, 2020) and many more.

Moreover, (Novita et al., 2020) build a computer

application that aims to establish a schedule of different

exams at the State Polytechnic of Sriwijaya (Carter and

Laporte, 1996). Novita et al. classify the examination

timetabling issue into four different groups, which are:

Classification approaches, sequential approaches,

generalised search techniques and constraint satisfaction

methods. Some of these methods relate to the domain of

GAs, Simulated Annealing and Tabu Search. However,

the problems can be described according to a number of

students that have module’s exams within the same days

and times and according to the importance of managing

such exams within the same level when needed.

This paper attempts to solve the following problems:

 Scheduling of exams

 The flexibility in making different selections are

related to the types of exams and the number of their

sessions in a single day

The research questions of this paper are comprised of

the followings:

 How to decrease the conflict of students’ module

exams?

 How students can at most sit for only one exam

within a time interval?

 How can different options be managed into a schedule

of exams when choosing the type of exam and the

number of periods for an exam within one day?

The objectives of this paper are given as follows:

 To build a schedule of exams that reduces the

conflict of module’s exams

 To provide a schedule of exams that allows students to

sit for at most a single exam within a given timeslot

 To produce a user interface system, which enables

producing dissimilar choices, such as the type of exam

to be given (Midterm Assessment (MTA) exam or

final exam) and the number of daily exam sessions

 To display the timetable of the module’s exams by

the user interface system in order to be extracted

into different formats

The contribution of this paper is to produce a

scheduling algorithm for building an examination
timetable in order to meet any encountered hard
constraints. In fact, this can decrease the conflict of
module’s exams for students. Further, the paper develops
a user interface system in order to present the result for
scheduling module’s exams. The outlines of the paper
are organised as follows: Section II presents the
secondary research (related research) of different
scheduling algorithms that tackle the examination
timetabling problem. In section III, details of the
proposed algorithm are provided. The conclusions of this
research are summarised in section IV.

Related Research

Ishak et al. (2016) present a Hybrid Genetic Algorithm

(HGA) in order to deal with the problem of the university

examination timetable, which allocates a number of exams

into a number of vacant timeslots based on meeting a set

of constraints. A number of solutions is introduced for this

problem, in which low-level heuristic methods are used as

the representation of five domain specific knowledge.

Such methods are applied to easily create a timetable

through the initial population. The key modules of the

genetic operators in GA are tested and the best mixture of

the genetic operators are used for building the Pure

Genetic Algorithm (PGA). The HGA is produced by using

the PGA based on three local optimisation techniques

(e.g., move exam, swap exam and interchange timeslot)

and it aims at enhancing the produced solutions. Exams

Hussein Al Bazar and Hussein Abdel-Jaber / Journal of Computer Science 2020, 16 (8): 1139.1149

DOI: 10.3844/jcssp.2020.1139.1149

1141

and timeslots are organised according to the three local

optimization techniques using a number of equations in

case the alteration reduces the penalty cost function. The

results of the HGA can be improved by producing a trade-

off between the local search and global search (Wan and

Birch, 2013). A software system of the examination

timetabling is implemented by (Chunbao and Nu, 2012) in

order to execute efferent, precise and vigorous solutions

for tackling different restrained timetabling issues.

Chunbao and Nu (2012) demonstrate some fundamental

characteristics of the software system, particularly, the

paper test of the conflictive analysis method, which is

able to produce a largely efficient data model with the

intention to importantly enhance interactivity and the

efficiency of the search.

Burke et al. (1996) declare that the presence of

modularity through various UK institutions appears in an

important growth of its complexity and in further

difficulties of universities’ administrators who ought to

come up with a solution without any assistance based on a

computer. Evolutionary methods are used to automatically

solve this problem and to exhibit a lot of promises due to

its efficient optimisation capabilities (Burke et al., 1996).

Nevertheless, hybrid evolutionary techniques can

produce more effective results. A memetic algorithm is

proposed as a hybrid method to form an evolutionary

technique, which combines the methods of the local

search (Burke et al., 1996). Papaioannou et al. (2017)

use the graph colouring technique in order to propose

solutions for solving the timetabling problems

effectively in higher educations. The aim of the graph

colouring technique issue is to allocate different colours

to the vertices in the graph and hence, the neighbouring

vertices can obtain different colours (Papaioannou et al.,

2017). It is assumed that the aim of timetabling issues in

higher education, such as timetabling of lectures and

exams, it is allocated day/time slots for examination or

teaching. Therefore, the largest number of students can

attend their lectures and sit for their exams by producing

minimum conflicts. The fundamental motivation of this

research relates to the critical issue of an efficient

examination timetabling and courses that are normally

emerging in different departments of the University of

Patras in Greece (Papaioannou et al., 2017). Nonetheless,

the examination timetables and lectures are created based

on a number of heuristic methods that perform

efficiently, but leaving a number of rooms for further

enhancements. Papaioannou et al. (2017) develop a

scheduling application by using a simple colouring

method and MATLAB programming language. Such an

application possesses the following inputs: Courses and

constraints. The output of this application is an efficient

timetable of lectures and exams.

The complex problem that is incurred through an

examination timetable in universities, e.g., in big

universities, increases for several grounds such as the

massive sizes of universities, the increase in the elasticity

of students’ curricula and the focus on having a large set

of constraints and aims (Alvarez-Valdés et al., 1997). An

algorithm is introduced to deal with the above problem

and it is intended to be applied in the University of Spain

(Alvarez-Valdés et al., 1997). An incorporation of

different heuristics methods that are based on the Tabu

Search algorithm provides a preliminary solution such that

no student has two exams at the same time. After that, an

equal spacing between exams in the examination period is

enhanced. This algorithm is inserted within a package to

be used by administrators of different faculties and to

propose a number of solutions based on different

interested parties, which comprise departments, students

and administrators (Alvarez-Valdés et al., 1997).

Botangen (2014) develops and evaluates a web-based

timetable application for a cooperative preparation of the

class timetables at the Central Luzon State University. The

development stage incorporates an algorithm for

performing an automatic plotting and checking the

conflicts between the timetable components according to

their availability by considering a number of preferences

and constraints. When using the timetable application,

four academic university units can act cooperatively in

order to build their class timetables. A comparison is

conducted among the prospective problems with

respect to the classes scheduling within the academic

units. The classes scheduling apply an application based

on five academic units, which are not applying the

application (Botangen, 2014).

A study produced by (Akbulut and Yılmaz, 2013)

attempt to solve the problem of the examination

scheduling in many universities. Due to the large

numbers of students and courses, a difficulty has arisen

in scheduling exams through the midterm and final

examination weeks. Additionally, Akbulut and Yılmaz

mention that several works regarding the exams should

be planned beforehand via the department at the end of

every semester. Moreover, (Akbulut and Yılmaz, 2013)

produce a scheduling system for different exams within

the same rooms at the same time. In fact, timetabling is

an essential task for academic institutions and industries

when each system contains a number of resources that

can be used for accomplishing a specific criterion

(Hassan and Hassan, 2016). Timetabling should consider

the use of resources according to a number of conflicting

constraints. This introduces a system for exams

timetabling that uses the graph colouring scheduling

method. This method concentrates on two parts, which

comprise: The constraints that are dealt by the system

and the friendly interface of the system that is used by

users (Hassan and Hassan, 2016). Scheduling of exams

for a given list of courses are assigned to different

timeslots by allocating them to a number of timeslots

(e.g., conflicting exams (Kadry and Ghazal, 2016). Many

Hussein Al Bazar and Hussein Abdel-Jaber / Journal of Computer Science 2020, 16 (8): 1139.1149

DOI: 10.3844/jcssp.2020.1139.1149

1142

researchers introduce dissimilar methods in order to

solve different examination scheduling problems. A

model is proposed by (Kadry and Ghazal, 2016) in order

solve the problem of examination schedule.

A model for the examination management system is
provided by (Shelke et al., 2018) in order to assess the

way of accessing the information that is related to an

examination for a specific student within a determined
class. In particular, this system is developed to compute

the conventional method of performing different exams
(Shelke et al., 2018). The project of the examination

management system provides the facility for students to

view their examination schedule, view the examination
syllabus and observe the locations of their exams. The

system represents a web-based system that is assessed by
using real data via any available users (Shelke et al.,

2018). The design and implementation of many
examination scheduling systems are depicted for the

Universiti Utara Malaysia (UUM) (Abdul-Rahman et al.,

2017). Students who are registered in courses should be
assigned to dissimilar timeslots and halls by avoiding

any conflicts during the process of building the
examination schedule. Moreover, a consideration of

lectures’ conflict is taken into account through this study

(Abdul-Rahman et al., 2017). The developed system
aims at providing an examination schedule without

clashes and increasing the satisfactions of students and
lecturers (Abdul-Rahman et al., 2017). The examination

schedule is created by default where the developed
system possesses the Graphical User Interface (GUI),

which assists the user to input, create and alter the

schedule. The GUI is used by means to enable a user in
allocating or reallocating different courses into

appropriate timeslots within the stage of creation and
alteration that are directed by several heuristics methods.

Moreira (2008) introduces a method for tackling the

issue of automatically creating the schedule of

examinations. The use of the matrix model that is

selected for the benefits of this model is produced based

on the use of the Meta Heuristic algorithm, which

applies the Genetic Algorithm into it (Holland, 1992). In

fact, the model is used to build different examinations’

schedules for various academic organisations of the

higher education. The issue of scheduling relates to the

procedure of performing an ideal level of particular

constraints (Elen and Çayiroğlu, 2010). A solution is

proposed for course timetabling issues in different

universities through the automation of the student affairs

based on the use of the Genetic Algorithm (Elen and

Çayiroğlu, 2010). An examination schedule of the

National University of Singapore was created for the

fall semester in the academic year 2001/2002 by

applying the UTTS Exam. This exam forms a

scheduling program for building a timetable for the

university exams (Lim et al., 2002). In particular, this

type of schedule represents a scheduling program for

creating a university examination timetable (Lim et al.,

2002). The system has several components, which

comprise the hybrid centralised cum decentralized

scheduling method, the combined approach scheduling

method and the entire procedure that are required to

create an ultimate schedule (Lim et al., 2002).

Furthermore, (Hambali et al., 2020) apply the Genetic

Algorithm and Simulated Annealing (Kirkpatrick et al.,

1983) in order to form a Heuristic Approach (HA) that

can tackle the issue of course scheduling in the Federal

University Wukari (FUW). The implementation of the

HA is given by considering soft and hard constraints

along with the endurance of the fittest. A notice of the

complexity of space and the interval has occurred. This

leads to match between the number of rooms and the

number of courses. Moreover, an approach is produced

by (Mandal et al., 2020) to partially schedule the

selected exams into rooms and timeslots and to

sequentially enhance the vector of solution for partial

exams. The following set of exams are scheduled as the

procedure continues to proceed further. The procedure

discontinues until all exams are successfully scheduled.

Partial graph heuristic orderings with a modified great

deluge algorithm (Abuhamdah, 2012) are used to resolve

the problem of examination timetabling. Therefore, this

approach uses Partial Graph Heuristic orderings with a

modified Great Deluge algorithm (PGH-mGD).

The Proposed Scheduling Algorithm

This section is divided into the following subsections:
Subsection I demonstrates the implementation
environments and a discussion around the proposed
solution. Subsection II highlights detailed explanations
about the examination scheduling algorithm. Subsection
III exhibits the fitness calculation function. The
implementation part of the proposed algorithm is given
in subsection IV. Finally, the obtained results are
discussed in subsection V.

Implementation Environments and the Proposed

Solution Discussion

In this section, the environment that is used for the

implementation process and the proposed algorithm

related to the exams’ schedule are presented in detail.

The main goal of this algorithm is to generate the exam’s

schedule for all academic faculties and to assure for the

selected schedule that no conflicting modules are held.

This implies that a student will not have two exams, for

instance, at the same session or on the same day.

The implementation’s environment of the proposed

scheduling algorithm consists of three different academic

faculties, which are computer studies, business studies

and language studies at the Arab Open University. These

faculties have more than one academic track for their

students. For example, there are four different tracks in

Hussein Al Bazar and Hussein Abdel-Jaber / Journal of Computer Science 2020, 16 (8): 1139.1149

DOI: 10.3844/jcssp.2020.1139.1149

1143

the faculty of computer studies. In the faculty of

business, there are three academic tracks. Additionally,

the modules within students’ tracks are divided into two

main categories. The first category represents shared

modules where all tracks include these modules within

its study plan (in this study, the types of these modules

are represented as a notation of common modules). The

second category represents the independent modules,

which only belong to a single track. Further, the tracks of

modules are categorised by their level and through this

solution, modules are divided into three levels (1, 2 and 3)

according to students’ registered years. For all faculties,

one centralised database is applied by the proposed

solution where this database includes all details of every

module and its tracks for every faculty such as the module

code, module name, module level, prerequisite module(s)

and track identification ID number.
In addition to the previous implementation features,

some inputs of data should be entered by the user before
starting up with the scheduling algorithm by using a
developed interface. The developed interface is
discussed in detail in the following part. By using this
interface, studnets should select the examination type
(MTA or Final), the start and the end date of the
examination schedule, the number of sessions per day
(up to 3 sessions). Additionally, a set of constraints is
considered to ensure that the main aims of this algorithm
are efficiently and successfully achieved. In the first
constraint, the algorithm should not select more than one
module from the same level (1, 2 and 3) within the same
examination session. In the second constraint, the
algorithm does not select more than two or three
modules (based on the user input) from the same level on
the same day. However, they are distributed through
different sessions. Further, a schedule of exams is
created in order to reduce the conflict that is encountered
in the module examination.

Exams Scheduling Algorithm Discussion

For each indicated faculties, the main steps of the

proposed scheduling algorithm execute the generating
process, which is outlined as follows:

1. Three lists of variable lengths are created for each

academic faculty (computer studies, business studies
and language studies). An extra particular list of all
modules and prerequisite module(s) is created. The
later list is used for the process of calculating the
fitness, which is further discussed later.

2. For each academic faculty, all modules that are
stored into the systems’ main database are fetched
into their corresponding lists that are previously
created in Step 1.

3. A special function, namely, ‘generate-schedule’ is
used to process each of the faculty’s own list
according to its name. This function preforms the
following procedures:

 Generate and store a new copy of the lists of

modules in order to keep the original lists

without any modifications
 A sub function, namely, ‘constrained-sum’ is

invoked from the ‘generate-schedule’ function
where this function is used to generate and return
a list with randomly generated integers. This
process indicates that these integers are used to
determine the number of modules that are
selected for each examination session. The
values of random integers are ranged from the
values (1, 2 and 3) and the total sum of these
integers should be equal to the total number of
modules for each academic faculty. In this stage,
the department that is passed through to the
‘generate-schedule‘ function and the returned
random integers are stored as a local variable list

 For each session within an examination
schedule, a number is randomly selected from
the previously created random values (i.e., the
local variable list). This selected number, for
instance, represents an X number that is used to
determine the number of times a loop is
iterated. During each iteration (i.e., for each
examination session), a module is randomly
selected from the list of stored and copied
modules for the currently selected faculty

 The selected modules are then passed and used
by a function, namely, ‘calculate-fitness’,
which is used to calculate the fitness percentage
value for this session and return the percentage
value of non-conflicting modules only. The
fitness calculation process and the calculation
of the fitness percentage value are further
discussed in the following part

 If the fitness percentage value of this session
that is iterated reaches 100% and for all exams’
session at that day, no more than three modules
are selected from within the same level. After
that, the generated session is approved and
stored as an examination session

 If the calculated fitness percentage of this
session is found to be less than 100% or more,
then three modules from the same level are
selected between all sessions on that day. After
that, the previous process is repeated for this
session and different modules are selected until
the calculation of the fitness value’s percentage
provides a percentage value of 100%.
Moreover, this process is repeated up to N
times, which represents a random number that
is selected by the user before the generated
algorithm starts with its processes. If after N
times the problem is unresolved, the overall
process starts from the first stage

 Each examination session that calculates its
fitness percentage to reach 100% according to
the stated requirements is approved and stored.

Hussein Al Bazar and Hussein Abdel-Jaber / Journal of Computer Science 2020, 16 (8): 1139.1149

DOI: 10.3844/jcssp.2020.1139.1149

1144

 For each approved session, all selected modules
that belong to this session are deleted from the
list of modules (the list is generated from the
original list of modules). This process is
required in order to ensure that the selected
modules are not selected for a different session
and no repeated modules are selected for the
overall full examination schedule

 After completing the previous steps, a single list
is generated based on a condition, which states
that all modules for that faculty should be
within the range of 1 to 3 (the number of
modules for this sessions) and should achieve
100% for the fitness value

4. The previous steps are repeated for each academic

faculty. Additionally, a final approved list is

provided for each faculty (i.e., computer, business

and language faculties) and all lists are merged

together into one final list according to the final

generated examination schedule

5. 5The final generated examination schedule is passed

through to the calculate-fitness function where this

process is required to calculate the overall fitness

per day and not per session

6. Steps 3, 4 and 5 are repeated N times and hence,

different fitness values per schedule are calculated

and generated from Step 5. The best calculated

fitness value is selected as an approved examination

schedule based on the proposed solution. This value

is presented as an HTML page with its ability to be

extracted as a PDF file. Moreover, a report is

generated to provide a detailed information

regarding the fitness calculation for each faculty on

a daily basis. Figure 1 illustrates the overall steps of

the proposed algorithm

Fig. 1: The main steps of the examination scheduling algorithm

Start

Create variable list for

each academic faculty

Calculate fitness

value per schedule
Repeat X

times

Create special fitness list Select random module add

selected module to list

Select best schedule

fitness value

No Generate HTML,

PDF schedule Fetch all modules for

each academic faculty Invoke calculate-fitness

Repeat N

times

End

Yes

Invoke generate-

schedule function

If (fitness = 100

and same modules

level < 3)

Invoke constrained-

sum function

Generated session

approved and stored

Delete approved

modules from copied list

Repeat for each

exam session

Generate final approved list

Select a random value X

Generate final

approved schedule

Hussein Al Bazar and Hussein Abdel-Jaber / Journal of Computer Science 2020, 16 (8): 1139.1149

DOI: 10.3844/jcssp.2020.1139.1149

1145

Fitness Calculation Function

The fitness function requires three types of

determined parameters in order to perform its intended

task correctly. The first parameter is a list that contains a

number of codes for all modules (which fitness is

calculated for it), the notation modules-list is used to

refer to this list. The second parameter represents the

prerequisite dictionary that contains each module code

and its prerequisite module(s) if any. Finally, the last

parameter represents a track dictionary that contains all

modules’ codes and a track for which each module

belongs to that track due to some existing faultiest such

as computer studies have four different tracks. The

fitness calculation function starts with the process of

creating three different lists where each list is used for a

particular level (level 1, level 2 and Level 3) of modules.

By using the above-mentioned modules-list, each of

these new lists are filled with modules that belong to that

level only. The second step is to create six empty sets

such that two sets are used for each level of the modules’

list. One of the two sets contains the modules’ codes

without any conflicts (from within the same level) and

the other set of modules contains conflicts on the

schedule (from within the same level).

The next step in this function is to check the length

(the number of Level 1’s modules). If there is one

element, it is added to the set of Level 1’s modules, which

does not contain any conflicts since there is no option to

have any conflicts in such case. Nevertheless, if Level 1’s

modules possess more than one element (i.e., modules), a

loop is iterated through all the elements in order to provide

comparisons among the entire elements (modules). This

loop, checks as to whether or not these modules are

prerequisite to each other. If they are, both of these modules

are added to the set of no conflicts since the two modules

cannot be registered within the same semester by a student.

If the modules are not prerequisite, one extra check is

applied as to whether or not the two modules are derived

from a number of common modules (which shared between

many tracks) or from different tracks. If the checked

modules belong to the common list, the elements are added

to the second set, which represents Level 1’s modules with

conflict. The previous step is applied for each level of the

modules separately and leads to obtain 6 sets for which each

set contains its corresponding elements (modules) as

previously mentioned.

After that, the fitness percentage value is calculated

by computing the sum of length (the number of

elements) for each of the three sets that belong to each

module level with no any conflicts. For example, (the set

of Level 1 with no conflicts) + (the set of Level 2 with

no conflicts) + (the set of Level 3 with no conflicts).

Prior to the calculation of the fitness percentage, the set

of Level 1 modules should be checked. If all modules

within this level are added to the conflict set and the set

of no conflict is empty, then one of those modules is

removed through to the no conflicting set and the value

‘1’ is added to the total sum of the fitness since one

course is considered as a no conflicting course. Finally,

the fitness percentage value is calculated as follows:

Fitness-percentage = (Total-Fitness/Totla-

Exams) * 100 where the Total-Fitness denotes

the sum of modules with no conflicts through

the entire sessions.

The Total-Exams denote the sum of modules per one

session or per a single day. For example, when the fitness

percentage value is calculated for each session, the Total-

Exams value represents the number of modules of this

session only and its maximum value is ‘3’. Moreover,

when the fitness percentage value is calculated per one

day, the Total-Exams are assigned the value of the total

number of modules for all sessions on that day.

Proposed Algorithm Results and Discussion

This section discusses comprehensive details on the

implementation of the proposed scheduling algorithm,

findings and results discussions, including the overall

extra functions of the proposed solution.

The proposed algorithm achieves the main functions

that represent the ability to generate examination

schedule with best distributions for faculties’ modules,

zero conflicts in the generated schedule (a student will

not have two exams, for instance, at the same session or

on the same day) and a fitness of 100% for the overall

generated schedule. Further, the algorithm takes less

time during its process where this improves the

maintainability and usability by making it more user-

friendly through a simple and an easy use of a user

interface. As depicted from Fig. 2, users are allowed to

pass the required parameters by using the provided

interface before this algorithm begins to operate. Users

can select the examination type in case of AOU’s

examination types (MTA and final exams), exam

duration, start and end dates of exams, duration per day

and the number of sessions per day. Once the required

parameters are entered, the algorithm begins to process

in order to generate the required exam’s schedule.
Based on Fig. 3, an example of the generated MTA

exam’s schedule is provided. This schedule demonstrates

that each examination session contains only one module

from the same level (level 1, level 2 and level 3) for all

of the academic faculties (computer, business and

language faculties).

The entire scheduled sessions include different levels

of modules and no one includes two modules from the

same level. For instance, some sessions include three

modules from three levels (Levels 1, 2 and 3) such as

session 1 of the first day of the examination schedule for

Hussein Al Bazar and Hussein Abdel-Jaber / Journal of Computer Science 2020, 16 (8): 1139.1149

DOI: 10.3844/jcssp.2020.1139.1149

1146

the faculty of computer studies. Some sessions include

two modules from two different levels (Levels 2 and 3) as

shown on Day 2, Session 1, for the faculty of computer

studies. Additionally, it can be illustrated that two or three

modules are selected and distributed from the same levels

within the available examination sessions when checking

a full schedule on a particular day. The selected modules

from the same level of the same day do not refer to the

same track. For example, the three selected modules from

Level 3 of the first day for computer studies (T316, T318

and TM366) refer to three different tracks (Fig. 3).

At the same time, the scheduling algorithm generates

multiple schedules for each academic faculty according

to the N value that is entered by the user. A report about

the fitness calculation is extracted and printed along with

the chart diagram. In fact, this report demonstrates the

fitness calculation for reaching the academic faculty

generated schedule. Further, it highlights the calculation

of the fitness conflict percentage among the generated

exams’ schedules. For each academic faculty, the

algorithm selects the generated schedule with a fitness of

100% and finally, it integrates all selected schedules into

one schedule (Fig. 3).

Furthermore, Fig. 4 illustrates an example of a

generated fitness report where 100% is achieved for the

computer science faculty in the generated schedule

Number 2. The target percentage is achieved for the

business faculty in the generated schedule Number 3 and

Number 1 for the language faculty, which is integrated

into a final approved schedule as previously indicated.

Fig. 2: The main parameters’ interface of the examination scheduling algorithm

Fig. 3: An example of generated schedule of the MTA examination at the Arab Open University

AOU MTA Exam schedule

Date

2019-11-19

2019-11-20

2019-11-21

2019-11-23

Department

Business

CS

English

Business

CS

English

Business

CS

English

Business

CS

English

B205A ECO101 BUS101 B326

T215A M109 T316 TM298 T318 TN366 T277

E302A AA100A U214B

B123 B327 BU310 LB170 B205B ACC300

TM355 TM240 TM356 TM111

AA100B TR102 E302B EL230 EL122

MKT331 BUS110 B325 B292 BUS115 MKT332

M269 TM103 MT129 T216B MT131 TM352

EL117 A230B U214A

B207A ACC302 SYS380 B124 B122

TM105 TM351 MT101 TT284

A230A EL121N E304A

Session 1

12:00-02:00

Session 2

03:00-05:00

Session 1

00:06-08:00

Hussein Al Bazar and Hussein Abdel-Jaber / Journal of Computer Science 2020, 16 (8): 1139.1149

DOI: 10.3844/jcssp.2020.1139.1149

1147

Fig. 4: An example of the calculated fitness report

Table 1: The main functions of the proposed solution

 Exam College Proposed

Key points planner time table solution

Easy to use Yes NA Yes

Space required (size) NA Yes Yes

Automatically produces high-quality timetables that meet all requirements. Yes NA Yes

Produces clash-free results and improved spacing of exams for students. Yes Yes Yes

Flexibility Yes NA Yes

Generating process started instantly Yes Yes

Cross platform Yes NA Yes

Results and Discussion

The proposed scheduling algorithm aims at achieving

the entire targeted main goals, which are efficiently

provided. All of the required activities are easily

performed by using a simple user interface that can pass

the required preliminary parameters through to the

algorithm before starting the process of generating the

examination schedule. In order to improve the level of

users’ convenience, usability and simplicity are taken

into consideration during the development of the

proposed algorithm. As previously discussed, it is found

to be proven from the obtained results that the proposed

algorithm is simply implemented. The schedule

generating process can represent an automated process

by exploiting the processing power of the currently

available computer systems. Further, the results

demonstrate that the generated schedule can be

successfully generated with no conflicts where the

selected schedule is based on the required constrains. In

fact, such constraints assure that no modules from the

same level are selected on the same session.

The same levels of modules are selected on the same

day, but not within the same exam session on that day

and the most important constrain is that the fitness

percentage for each session of modules should reach

100%. Consequently, the algorithm is considered

accurate when achieving the targeted aims.

The main functions of the proposed algorithm are

provided in Table 1. This table provides a summarised

comparison between the proposed algorithm and the two

similar solutions that are used for generating the

examination schedule. Both solutions comprise the exam

planner and college timetable. The main key points of

the provided table are based on the usability, solution

size, procedure automation, flexibility and immediate

executional time. In this table, the entire key points are

efficiently achieved based on the proposed solution.

Conclusion

A scheduling algorithm is produced to solve the

problem of the examination schedule in a particular

university. The proposed algorithm introduces a

timetable of different examination modules that prevent

each student from sitting for more than one exam on the

same day and time. All hard constraints are applied

based on the implementation of the proposed algorithm.

Fitness scores report

Business1:Fitness: 75.0 Business1:Fitness: 83.3 Business1:Fitness: 100.0 Business1:Fitness: 80.0 Business1:Fitness: 85.7

CS1:Fitness: 85.7 CS1:Fitness: 100.0 CS1:Fitness: 50.0 CS1:Fitness: 75.0 CS1:Fitness: 66.6

English1:Fitness: 100.0 English1:Fitness: 40.0 English1:Fitness: 33.3 English1:Fitness: 100.0 English1:Fitness: 75.0

Fitness chart

120

100

80

60

40

20

0
CS1 BS1 ES1 CS2 BS2 ES2 CS3 BS3 ES3 CS4 BS4 ES4 CS5 BS5 ES5

Faculties

P
er

ce
n
ta

g
e

Hussein Al Bazar and Hussein Abdel-Jaber / Journal of Computer Science 2020, 16 (8): 1139.1149

DOI: 10.3844/jcssp.2020.1139.1149

1148

Additionally, a user interface system is developed to

make it simple for selecting different options such as the

type of an exam, the number of exam’s sessions per day

and also the user interface system that displays the

examination timetable. The proposed algorithm

decreases the number of examination conflicts and

enables a student to only perform one exam within a

specific day and time. Further, the proposed algorithm

demonstrates an efficient accuracy for all examination

sessions and sections. To sum up, it is found to be

proven that the results of the accuracy of each individual

session and for the entire sessions are both satisfactory.

Acknowledgement

The authors of this manuscript would like to express
their appreciations and gratitude to the Arab Open
University in the Kingdom of Saudi Arabia for
supporting this research.

Author’s Contributions

All authors equally contributed in this work.

Ethics

This article is original and contains unpublished
material. The corresponding author confirms that all of
the other authors have read and approved the manuscript
and there are no ethical issues involved.

References

Abdul-Rahman, S., Benjamin, A. M., Omar, M. F.,

Ramli, R., Ku-Mahamud, K. R. & Jabbar, W. K. A.

(2017). Designing and Implementation a Web-Based

Architecture for an Examination Timetabling

System. Journal of Engineering and Applied

Sciences, 12, 7299-7305.

Abou Kasm, O., Mohandes, B., Diabat, A., & El Khatib,

S. (2019). Exam timetabling with allowable

conflicts within a time window. Computers &

Industrial Engineering, 127, 263-273.

Abuhamdah, A. (2012). Modified great deluge for

medical clustering problems. International Journal

of Emerging Sciences, 2(3), 345-361.

Akbulut, A., & Yilmaz, G. (2013). University exam

scheduling system using graphcoloring algorithm

and rfid technology. International Journal of

Innovation, Management and Technology, 4(1), 66.

Alvarez-Valdés, R., Crespo, E., & Tamarit, J. M. (1997).

A tabu search algorithm to schedule university

examinations. Qüestiió, 21(1-2), 201-215.

Botangen, K. A. W. (2014). Web-Based Class

Scheduling for a Collaborative Preparation of

Block-Based Schedules. International Proceedings

of Economics Development and Research, 81, 161.

Burke, E. K., Newall, J. P., & Weare, R. F. (1996,

August). A memetic algorithm for university exam

timetabling. In international conference on the

practice and theory of automated timetabling (pp.

241-250). Springer, Berlin, Heidelberg.

Burke, E., Elliman, D., Ford, P., & Weare, R. (1995,

August). Examination timetabling in British

universities: A survey. In International Conference

on the Practice and Theory of Automated

Timetabling (pp. 76-90). Springer, Berlin,

Heidelberg.

Carter, M. W. (1986). OR practice—a survey of practical

applications of examination timetabling algorithms.

Operations research, 34(2), 193-202.

Carter, M. W., & Laporte, G. (1996). Recent

developments in practical examination timetabling.

Selected papers from the first international

conference on practice and theory of automated

timetabling (pp. 3-21).

Cavdur, F., & Kose, M. (2016). A fuzzy logic and

binary-goal programming-based approach for

solving the exam timetabling problem to create a

balanced-exam schedule. International Journal of

Fuzzy Systems, 18(1), 119-129.

Chunbao, Z., & Nu, T. (2012). An intelligent, interactive

& efficient exam scheduling system (IIEESS v1. 0).

Proceeding of the Practice and Theory of Automated

Timetabling (PATAT), Norway, 437-450.

Clark, D. (1993). Exam scheduling by Tabu Search.

Australian Soc. Ops Res. Bulletin,, 12, 5-9.

Dener, M., & Calp, M. H. (2018). Solving the exam

scheduling problems in central exams with genetic

algorithms. Mugla Journal of Science and

Technology, 4, 102–115.

Elen, A., & Çayiroğlu, İ. (2010). SOLVING OF

SCHEDULING PROBLEM WITH HEURISTIC

OPTIMIZATION APPROACH. Teknoloji, 13(3).

Gonsalves, T., & Oishi, R. (2015). Artificial Immune

Algorithm for exams timetable. Journal of

Information Sciences and Computing Technologies,

4(2), 287-296.

Hambali, A. M., Olasupo, Y. A., & Dalhatu, M. (2020).

Automated university lecture timetable using

Heuristic Approach. Nigerian Journal of

Technology, 39(1), 1-14.
Hassan, M. A. H., & Hassan, O. A. H. (2016).

Constraints aware and user friendly exam
scheduling system. Int. Arab J. Inf. Technol.,
13(1A), 156-162.

Hertz, A. (1991). Tabu search for large scale timetabling

problems. European journal of operational research,

54(1), 39-47.
Holland, J. H. (1992). Adaptation in natural and

artificial systems: an introductory analysis with
applications to biology, control and artificial
intelligence. MIT press.

Hussein Al Bazar and Hussein Abdel-Jaber / Journal of Computer Science 2020, 16 (8): 1139.1149

DOI: 10.3844/jcssp.2020.1139.1149

1149

Hosny, M., & Al-Olayan, M. (2014, August). A

mutation-based genetic algorithm for room and

proctor assignment in examination scheduling. In

2014 Science and Information Conference (pp. 260-

268). IEEE.

Ishak, S., Lee, L. S., & Ibragimov, G. (2016). Hybrid

Genetic Algorithm for University Examination

Timetabling Problem. Malaysian Journal of

Mathematical Sciences, 10(2), 145-178.

Ji, X., & Ma, K. (2020). Toward Automatic Scheduling

Algorithm with Hash-Based Priority Selection

Strategy. In Soft Computing for Problem Solving

(pp. 35-42). Springer, Singapore.

Kadry, S. & Ghazal, B. (2016). New algorithm to solve

examination timetable problem.

Kalender, M., Kheiri, A., Özcan, E., & Burke, E. K.

(2013). A greedy gradient-simulated annealing

selection hyper-heuristic. Soft Computing, 17(12),

2279-2292.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983).

Optimization by simulated annealing. science,

220(4598), 671-680.

Lei, Y., Gong, M., Jiao, L., & Zuo, Y. (2015). A

memetic algorithm based on hyper-heuristics for

examination timetabling problems. International

Journal of Intelligent Computing and Cybernetics.

Leite, N., Melício, F., & Rosa, A. C. (2019). A fast

simulated annealing algorithm for the examination

timetabling problem. Expert Systems with

Applications, 122, 137-151.

Lim, A., Ang, J. C., Ho, W. K., & Oon, W. C. (2002,

July). UTTSExam: a university examination

timetable scheduler. In AAAI/IAAI (pp. 1004-1005).

Malkawi, M., Hassan, M. A. H., & Hassan, O. A. H.

(2008). A New Exam Scheduling Algorithm Using

Graph Coloring. International Arab Journal of

Information Technology (IAJIT), 5(1).

Mandal, A. K., Kahar, M. N. M., & Kendall, G. (2020).

Addressing Examination Timetabling Problem

Using a Partial Exams Approach in Constructive

and Improvement. Computation, 8(2), 46.

Marie-Sainte, S. L. (2015). A survey of particle swarm

optimization techniques for solving university

examination timetabling problem. Artificial

Intelligence Review, 44(4), 537-546.

Moreira, J. J. (2008). A system for automatic

construction of exam timetable using genetic

algorithms. Tékhne-Revista de Estudos Politécnicos,

(9), 319-336.

Novita, N., Ganiardi, M. A., Ariyanti, I., & Khairunnisa,

D. (2020). The Design Of The Semester Exam

Scheduling Application At The State Polytechnic Of

Sriwijaya. In Journal of Physics: Conference Series

(Vol. 1500, p. 012123).

Papaioannou, E., Athanassopoulos, S., & Kaklamanis, C.

(2017). EFFICIENT COURSE AND EXAM

SCHEDULING USING GRAPH COLORING.

International E-Journal of Advances in Education,

3(7), 51-59.

Qu, R., Burke, E. K., McCollum, B., Merlot, L. T., &

Lee, S. Y. (2009). A survey of search methodologies

and automated system development for examination

timetabling. Journal of scheduling, 12(1), 55-89.

Ross, P., & Corne, D. (1994). Applications of genetic

algorithms. AISB Quaterly on Evolutionary

Computation, 89, 23-30.

Selemani, M. A., Mujuni, E., & Mushi, A. (2013). An

Examination Scheduling Algorithm using Graph

Colouring-The Case of Sokoine University of

Agriculture. International Journal of Computer

Engineering & Applications, 2(1/3), 116-127.

Shelke, S., Yadav, I., & Srivastava, J. (2018). College

examination system. International Journal of

Advance Research, Ideas and Innovations in

Technology. 4, 1445-1454.

Thepphakorn, T., Pongcharoen, P., & Hicks, C. (2014).

An ant colony based timetabling tool. International

Journal of Production Economics, 149, 131-144.

Vatansever, S., & Arici, N. (2019). Creating The Best

Session Plan With Artificial Immune System for

Common Exam In Secondary Education Institutions.

Artificial Intelligence Studies, 2(1), 1-14.

Wan, W., & Birch, J. B. (2013). An improved hybrid

genetic algorithm with a new local search procedure.

Journal of Applied Mathematics, 2013.

