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Abstract: Lightweight cryptography is an area of current research 

conducted by academicians and cryptographic experts to ensure the 

security of data in limited-resource devices such as RFID tags, medical 

and health care devices and sensor networks. One of the lightweight 

algorithms built is the PRESENT algorithm. To this day, PRESENT has 

been a reference for lightweight block cipher algorithms and is 

incorporated into Lightweight Cryptography Standard ISO/IEC 29192-2. 

The capacity to act as a random number generator is one of the key 

requirements when designing an algorithm. Thus, this study aims to 

examine the capabilities of the PRESENT algorithm as a random number 

generator. By using the NIST Statistical Test Suite, a randomness 

analysis is performed on the PRESENT algorithm. A total of six data 

categories i.e., Strict Key Avalanche, Strict Plaintext Avalanche, High-

Density Key, Low- Density Key, Low-Density Plaintext and High-Density 

Plaintext were applied to generate 100 input sequences for each algorithm. 

From the analysis, the outputs generated from the PRESENT algorithm are 

essentially non-random based on the 1% significance level. 

 

Keywords: PRESENT Algorithm, Randomness Analysis, NIST Statistical 

Test Suite, Lightweight Block Cipher 

 

Introduction 

Lightweight cryptography is one of the hot research 

topics in cryptography. Its main applications include 

RFID tags, medical and health care devices and sensor 

networks. Lightweight cryptography is generally divided 

into four categories, namely lightweight block cipher, 

lightweight hash function, lightweight message 

authentication codes and lightweight stream cipher 

(McKay et al., 2016). A lightweight block cipher is a 

block cipher requiring less computing power. It is 

designed to support devices with limited resources, e.g., 

RFID tags and sensor networks. Some existing series of 

lightweight block ciphers include DESL (Leander et al., 

2007), KATAN and KTANTAN (De Canniere et al., 

2009), LBlock (Wu and Zhang, 2011), PRESENT 

(Bogdanov et al., 2007) as well as SIMON and SPECK 

(Beaulieu et al., 2015). 

Ultra-lightweight block cipher PRESENT which was 

introduced by (Bogdanov et al., 2007) works in a 64-bit 

plaintext block that utilizes two 80-bit and 128-bit key 

sizes. Its 80-bit version is dedicated for hardware 

implementation. To date, PRESENT is the benchmark 

for lightweight symmetric ciphering and it is included in 

the ISOIEC specification (ISO 29192-2:2012(E), 2012). 

PRESENT is a pioneer of the development of 

lightweight block ciphers and used together with AES 

(Pub, 2001) serving as the standard for new proposals. 

Several attacks have been performed on the 

PRESENT algorithm in order to test its effectiveness 

against various cryptanalysis attacks. These attacks 

include side-channel attacks (Renauld and Standaert, 

2009), side-channel cube attacks (Yang et al., 2009) and 

a related-key attack on the 17 rounds of PRESENT 

(Özen et al., 2009). Certain attacks such as the enhanced 

differential fault analysis has been documented by 

(Jeong et al., 2013); this attack retrieves the key by 

causing two or three 2-byte random faults. According to 

(Jeong et al., 2012), full-round biclique cryptanalysis is 

slightly better than exhaustive search. A truncated 

differential attack on the reduced 26-round cipher has 
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been investigated by (Blondeau and Nyberg, 2014). 

Among all the analyses carried out in evaluating the 

strength of the lightweight block cipher PRESENT, to 

the best of our knowledge, the randomness analysis has 

not been carried out on the PRESENT algorithm so far. 

Therefore, we wish to address this problem in this study. 

This study is structured in the following manner. The 

second section presents some previous works related to 

randomness analysis performed on cryptographic 

algorithms. The third section gives a brief description of the 

PRESENT algorithm. The methodology used to perform 

randomness analysis is explained in the fourth section. 

Results and discussion are presented in the fifth section. 

Finally, the current work is concluded in the sixth section. 

Related Work 

Randomness plays an important role in many areas of 

cryptography (Marton and Suciu, 2015). Cryptographic 

implementations are based on random numbers with 

special features (Demirhan and Bitirim, 2016). One of 

the significant criteria for developing an encryption 

algorithm is its capability as random number generator 

(Hathaway, 2003). The Pseudorandom Number 

Generator (PRNG) statistical test suite can be used to 

evaluate the randomness of outputs from an algorithm by 

applying a series of statistical tests on the outputs. 

After evaluating several random test suites that may 
be available i.e., Diehard (Marsaglia, 2008), TestUI 
(L’Ecuyer and Simard, 2007) and NIST Statistical Test 
Suite (Bassham III et al., 2010), this research study 
recognizes that the NIST Statistical Test Suite is reliable 
for executing the test. The NIST Statistical Test Suite is 
developed by the National Institute of Standards and 
Technology, USA (NIST). Previously, NIST Statistical 
Test Suite has been used to test the randomness of 
candidates from AES (Soto and Bassham, 2000) and 
AKSA (MySEAL, 2018). Besides, the NIST Statistical 
Test Suite has been used to check several lightweight 
block cipher algorithms for their randomness. 

Randomness analyses of the lightweight block cipher 

algorithm using the NIST Statistical Test Suite have been 

extensively carried out on KTANTAN (Abdullah et al., 

2011), KATAN (Lot et al., 2011), LBlock (Abdullah et al., 

2014), SPECK (Chew et al., 2015), SIMON (Shah et al., 

2015; 2019), Modified Version of LBlock Block Cipher 

(Abdullah et al., 2015), RECTANGLE (Zakaria et al., 

2020) and GRAIN-128 (Zawawi et al., 2013). 

Description of Algorithm 

PRESENT is an SPN-based algorithm that runs in 31 
rounds. Each PRESENT round is defined by three layers, 
i.e., AddRoundKey, Substitution and Permutation. 
Figure 1 shows the PRESENT process. 

 

 
 

Fig. 1: The PRESENT process 
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Table 1: S-box used in PRESENT 

x  0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F 

S[x]  C  5  6  B  9  0  A  D  3  E  F  8  4  7  1  2 

 
Table 2: Permutation box used in PRESENT 

i  0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 

P[i]  0  16  32  48  1  17  33  49  2  18  34  50  3  19  35  51 

i  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31 

P[i]  4  20  36  52  5  21  37  53  6  22  38  54  7  23  39  55 

i  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47 

P[i]  8  24  40  56  9  25  41  57  10  26  42  58  11  27  43  59 

i  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63 

P[i]  12  28  44  60  13  29  45  61  14  30  46  62  15  31  47  63 

 

AddRoundKey Layer 

The 64-bit input of the round function is XORed with 

the AddRoundKey layer sub-key. This layer is described 

as follows: 

 
i

j j jb b k   (1) 

 

where, bj is the current state and i

jk is the jth subkey bit 

of round key, Ki. Here, 1  i  32, 0  j  63. 

S-box Layer 

The sixteen (16) times 4-bit to 4-bit S-box 

implementation is used as the parallel non-linear 

substitution layer just after the XOR sub-key. The 

contents of the S-box are given in Table 1. 

Permutation Layer 

Finally, a permutation for diffusion is performed in 

the permutation layer. The details of the permutation 

layer is tabulated in Table 2. The permutation layer 

transfers bits from the x-input to the y-output. These 

steps are repeated for each round. 

Key Schedule 

Firstly, the 80-bit key will be registered in the key 

register K of the PRESENT key system and marked as K 

= k79…k0. In round j, PRESENT extracts the 64-bit sub-

keys, i.e., Ki = k63…k0 = k79…k16. Then, the value of the 

80-bit key register is left-rotated by 61 bit positions. 

After that, the S-box moves the four most important bits 

(bits of K from 79 to 76). Finally, the k19k18k17k16k15 are 

XORed with the least round counter bits. The whole 

process is described below: 

 

1. [k79k78…k1k0] = [k18k17…k20k19] 

2. [k79k78k77k76] = S[k79k78k77k76] 

3. [k19k18k17k16k15] = [k19k18k17k16k15]  rc 

 

where, S is the S-box and rc is the round counter. 

Methodology 

The randomness testing method consists of several 

steps, i.e., sample preparation, performing randomness 

analysis and evaluating the test result. In order to 

prepare the samples for the randomness test, six data 

sets are analyzed. Each data set is selected based on its 

specific function. After preparing the sample, the 

algorithms are tested using the NIST Statistical Test 

Suite in order to evaluate the randomness of the 

algorithm. Finally, the result of the statistical test is 

evaluated. Figure 2 shows the research flows. 

Data Categories 

The randomness test is performed for a complete 

round of PRESENT based on the 1% significance level. 

Six data categories are used to construct data input in the 

form of plaintext or key as shown in Table 3. Data 

categories included in this analysis are Strict Key 

Avalanche (StrictKey), Strict Plaintext Avalanche 

(StrictPT), Low Density Key (LowKey), High Density 

Key (HighKey), Low Density Plaintext (LowPT) and 

High Density Plaintext (HighPT). As accordance to 

(Bassham III et al., 2010) a sample size is 

disproportional to the significance level. Thus, 100 

sample size for each data categories are generated. The 

blocks number formed in each sample is depending on 

the block and key sizes (Abdullah et al., 2014). 

To establish a large bit sequence for the test, the 

derived blocks are concatenated. Due to the large 

amount of time required to produce each sample, the 

significance level of 0.01 was selected. In addition, 

randomness analysis that has been conducted on 

KTANTAN algorithms (Abdullah et al., 2011), 

KATAN (Lot et al., 2011), LBlock (Abdullah et al., 

2014), SPECK (Chew et al., 2015), SIMON (Shah et al., 

2015; 2019), Modified Version of LBlock Block Cipher 

(Abdullah et al., 2015), RECTANGLE (Zakaria et al., 

2020) and GRAIN-128 (Zawawi et al., 2013) also uses 

significance level of 0.01. 
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Fig. 2: The research flows 
 
Table 3: Sample preparations using data categories 

Data categories Key  Plaintext  Derived blocks 

StrictKey  196 randoms  All zero  15,680 

StrictPT  All zero  245 randoms  15,680 

LowKey  3,241 specifics  3,241 randoms  3,241 

HighKey  3,241 specifics  3,241 randoms  3,241 

LowPT  2,081 randoms  2,081 specifics  2,081 

HighPT  2,081 randoms  2,081 specifics  2,081 

 

a. Strict Key Avalanche (StrictKey) 

StrictKey examines the sensitivity of each algorithm 

to key changes. One hundred samples are generated. 

Each sample requires 1,003,520 bits of binary sequences. 

The samples are constructed from 196 sets of 80-bit 

random keys and a set of all-zero plaintext blocks. Each 

block of random key is then used as a base-key. The 

base-key is encrypted with the all-zero plaintext row in 

order to create a base-ciphertext block. Then, in order to 

get the disturbed-ciphertext, each bit of the base-key is 

flipped and encrypted with its respective length of all-

zero plaintext block. Each block of disturbed-ciphertext 

is then XORed with the base-ciphertext and concatenated 

in order to generate a binary output containing the least 

number of bits for each sample. 

b. Strict Plaintext Avalanche (StrictPT) 

StrictPT examines the sensitivity of each algorithm 

on the changes in plaintext. One hundred samples are 

generated and a total of 1,003,520-bit binary sequences 

are required for each sample. The samples are built from 

245 sets of random 64-bit plaintext and a set of key 

blocks consisting of zeroes. Then, each random plaintext 

block is used as a base-plaintext. The base-plaintext is 

encrypted with the key block consisting of zeroes in 

order to derive a base-ciphertext block. Then, each bit of 

the base-plaintext is flipped and encrypted with its 

respective length of the key block to obtain the 

disturbed-ciphertext. Each disturbed-ciphertext block is 

then XORed with the base-ciphertext and concatenated 

to generate a binary output consisting of the least 

number of bits for each sample. 

c. Low Density Key (LowKey) 

In this data category, a data set consisting of one 
hundred sequences is generated based on the low density 
80-bit key blocks. For each key block, a random 64-bit 
plaintext block is used. A total of 3,241 ciphertext blocks 
are generated for this data category. The first ciphertext 
block is obtained using a block consisting of zero bit 
key. The subsequent ciphertext block (up to the 
ciphertext block number 81) is obtained by using the 
key blocks (with a single one) in each possible bit 
position. For the remaining ciphertext blocks, the key 
blocks with two ones and 78 zeroes are obtained (the 
two ones appear within the length of the key in each 
combination of two bits position). The derived block of 
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ciphertext is then concatenated in order to produce 
207,424 bits of binary sequence. 

d. High Density Key (HighKey) 

In this data category, a data set consisting of hundred 

sequences is generated based on the high density 80-bit 

key blocks. For each key block, a random 64-bit 

plaintext block is used. A total of 3,241 ciphertext blocks 

are generated for this data category. The first block of 

ciphertext has been obtained using a key block 

consisting of all ones. The subsequence ciphertext blocks 

(up to the ciphertext block number 81) are obtained by 

using a single zero key block in each possible bit 

position. Then, for the remaining ciphertext blocks, two 

key blocks of zeroes and 78 key blocks of ones are 

adopted (the two zeroes appear within the length of the 

key in each combination of two bits position). The 

derived ciphertext block is then concatenated to produce 

207,424 bits of binary sequence. 

e. Low Density Plaintext (LowPT) 

In this data category, a data set consisting of one 

hundred sequences is generated based on the low density 

64-bit plaintext block. For each plaintext block, a random 

80-bit key block is used. A total of 2,081 ciphertext blocks 

are generated for this data category. The first ciphertext 

block is obtained by using the block consisting of all-zero 

plaintext. The subsequent ciphertext blocks (up to the 

ciphertext block number 65) are obtained by using the 

blocks of plaintext with a single one in each possible bit 

position. The remaining ciphertext blocks are then 

obtained by using a plaintext block consisting of two ones 

and 62 zeroes (both appear in each combination of two 

bits of position within the length of the plaintext). The 

derived ciphertext block is then concatenated to produce 

133,184 bits of binary sequence. 

f. High Density Plaintext (HighPT) 

In this data category, a data set consisting of one 

hundred sequences is generated based on the 64-bit high 

density plaintext block. Each plaintext block uses a 

random 80-bit key block. For this category of data, a 

total of 2,081 ciphertext blocks are generated. The first 

ciphertext block is generated by using the all-one 

plaintext blocks. The subsequent ciphertext block (up to 

the ciphertext block number 65) is obtained by using the 

plaintext block with a single zero in each possible bit 

position. The remaining ciphertext blocks are extracted 

by using plaintext blocks consisting of two zeroes and 

62 ones (the two zeroes occur in every combination of 

two bit locations within the plaintext length). The 

derived ciphertext block is then concatenated in order to 

produce 133,184 bits of binary sequence. Table 4 

summarizes the length of the output sequence generated 

for each sample in each data category. 

Table 4: Length of output sequences generated according to 

data categories 

 Length of output 

Data categories (bits) per sample 

StrictKey  1,003,520 

StrictPT  1,003,520 

LowKey  207,424 

HighKey  207,424 

LowPT  133,184 

HighPT  133,184 

 

NIST Statistical Test Suite 

The NIST Statistical Test Suite developed by the 

National Institute of Standards and Technology, USA 

(NIST) is used to perform the randomness analysis. NIST 

Statistical Test Suite is a random test kit for binary 

sequences generated on the hardware- or software basis, 

either by random cryptography or pseudorandom 

generation numbers. 

This test suite consists of 15 tests which are 

divided into two categories, i.e., Parameterized and 

Non-parameterized Test Selections. The statistical 

tests for parameterized test selection include Block 

Frequency (BlockFreq), Non-Overlapping Templates 

(Non-Over), Overlapping Template (Overlapping), 

Maurer’s Universal (MUniversal), Linear Complexity 

(LinearC), Serial (Serial) and Approximate Entropy 

(Apen). The statistical tests of Non-Parameterized 

Test Selection, however, consist of Frequency (Freq), 

Runs (Runs), Longest Runs of Ones (LongestRuns), 

Binary Matrix Rank (BMR), Spectral (Spectral), 

Cumulative Sums (CuSum) (Forward and Reverse), 

Random Excursion (RanEx) and Random Excursion 

Variant (RanExVar). The descriptions of statistical 

randomness tests are given below: 

 

 BlockFreq: To evaluate if the number of blocks in 

the M-bit block is approximately M/2 where M is 

the length of each block 

 Non-Over: To reject sequences that display too 

many occurrences of a given non-periodic pattern 

 Overlapping: To reject sequences that display too 

many or too few occurrences of m-bit patterns 

 MUniversal: Detecting if the sequence can be 

substantially compressed without loss of information 

 LinearC: To determine whether the sequence is 

random 

 Serial: To decide whether the number of 

occurrences of m-bit overlapping patterns is 

essentially the same as that expected in a random 

sequence (m-bit is the length of bits for each block) 

 Apen: Comparison of the frequency of 

overlapping blocks consisting of two 
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consecutive/adjacent lengths (m and m +1) with 

the predicted result for the series normally 

distributed (m-bit is the length of each block) 

 Freq: In a completely random sequence, deciding 

whether or not the number of zeroes and ones in a 

sequence is identical to that 

 Runs: To evaluate whether or not the number of 

runs of one and zeros of different lengths is 

equivalent to that of a random sequence 

 LongestRuns: To evaluate whether the longest run 

of ones is compatible with the longest run of ones in 

a random sequence 

 BMR: To search for linear dependency between 

fixed length substrings in the original sequence 

 Spectral: To detect periodic features in the sequence 

being evaluated, which is a useful indicator of 

randomness error 

 Cusum (Forward/Reverse): To assess if the number 

of partial sequences occurring in the sequence being 

checked is either too big or too small 

 RanEx: To assess if the number of visits to a 

specific state within a loop will deviate from that in 

a random series 

 RanExVar: To detect the difference between the 

distribution of the number of visits in a random walk 

and that in a given state 

 

Every sample in each test requires a minimum number 

of bit length in which the value is tabulated in Table 5. 

All tests except CuSum, Serial, Non-Over, RanEx and 

RanExVar should produce one p-value for every sample. 

CuSum and Serial tests produce two p-values for every test. 

Non-Over test produces 148 p-values for every sample. 

Table 6 shows the p-values provided by each sample in 

compliance with the statistical test. 

A user should determine the parameter value for each 

test in the Parameterized Test Selection as explained by 

(Bassham III et al., 2010). Table 7 shows the list of input 

quantity for the parameters used in each test in the 

Parameterized Test Selection. 

 
Table 5: Minimum bit of length required for each statistical 

test for each statistical test 

Statistical test  Minimum bit length 

BlockFreq  100 

Non-Over  100 

Overlapping  106 

MUniversal  387,840 

LinearC  106 

Serial  100 

Apen  100 

Freq  100 

Runs  100 

LongestRuns  128 

BMR  38,912 

Spectral  1,000 

Cusum (Forward/Reverse)  100 

RanEx  106 

RanExVar  106 

 
Table 6: Breakdown of the p-value(s) obtained for each statistical test 

Statistical test  p-value(s) 

BlockFreq  1 

Non-Over  148 

Overlapping  1 

MUniversal  1 

LinearC  1 

Serial  2 

Apen  1 

Freq  1 

Runs  1 

LongestRuns  1 

BMR  1 

Spectral  1 

Cusum (Forward/Reverse)  2 

RanEx  8 

RanExVar  18 

 
Table 7: Input for the parameterized test selection 

Statistical test  Parameter(s) 

BlockFreq  M = 20,000 

Non-Over  m = 9 

Overlapping  m = 9 

MUniversal  L = 7, Q = 1280 

LinearC  M = 500 

Serial  m =2 
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Empirical Results and Analysis 

In this analysis, the range of acceptable proportions 

for the binary sequences is determined using the 

confidence interval (Bassham III et al., 2010): 
 

 1
3

p p
p

s

 
   (2) 

 

where, p = 1-sig, sig is the significance level (sig = 

0.01) and s is the sample size which is equal to one 

hundred ciphertexts except for RanEx and RanExVar 

tests. If the proportion falls outside the range ,a bp p    , 

the data is regarded as non-random. 

Test such as Overlapping, LinearC, RanEx and 

RanExVar require certain number of bits while 

MUniversal test requires at least 387,840 bits. Therefore, 

the analysis of the output sequence generated from 

LowKey, LowPT, HighKey and HighPT data categories 

cannot be performed in these tests. There are 188 p-values 

obtained from StrictKey and StrictPT and 159 p-values 

obtained from LowKey, HighKey, LowPT and HighPT. 

Since this analysis uses one hundred samples and the 

significance level is set at 0.01, the appropriate ranges 

for all tests except for RanEx and RanExVar tests are 

within [0.95, 1.01]. RanEx and RanExVar tests may not 

require all 100 binary sequences, as some of the binary 

sequences do not have enough cycles for conducting the 

test. Only those samples with more than 500 cycles are 

assessed. Samples with inadequate number of cycles are 

not considered. Therefore, the ranges of acceptable 

rejection of these two tests would vary (Table 8) 

depending on the samples meeting the requirements. 

NIST suggests that a data can be considered as 

random if and only if the sequence(s) pass all testing 

procedures. If the tested sequence(s) fail one or more 

randomness testing procedures, there is a clear proof of 

non-randomness. 

The results of the analysis of PRESENT are 

summarized in Table 9. If the rejected sequence falls 

within the acceptable rejection range, the result is Pass 

(P). Otherwise, the result is Fail (F). For data category 

that has failed sequences, the number of failed sequences 

is indicated in bracket ‘()’. 

 
Table 8: Acceptable rejection ranges for PRESENT 

Statistical test  Number of sample evaluated Acceptable rejection range 

BlockFreq  100  [0.95, 1.01] 
Non-Over  100  [0.95, 1.01] 
Overlapping  100  [0.95, 1.01] 
MUniversal  100  [0.95, 1.01] 
LinearC  100  [0.95, 1.01] 
Serial  100  [0.95, 1.01] 
Apen  100  [0.95, 1.01] 
Freq  100  [0.95, 1.01] 
Runs  100  [0.95, 1.01] 
LongestRuns  100  [0.95, 1.01] 
BMR  100  [0.95, 1.01] 
Spectral  100  [0.95, 1.01] 
Cusu (Forward/Reverse)  100  [0.95, 1.01] 
RanEx  53  [0.95, 1.03] 
RanExVar  64  [0.95, 1.03] 

 
Table 9: Randomness analysis result for full round of PRESENT 

Statistical test  StrictKey  StrictPT  LowKey  HighKey  LowPT  HighPT 

BlockFreq  P  P  P  P  P  P 

Non-Over  F(1)  F(11)  P  F(1)  F(1)  F(2) 

Overlapping  P  P  P  P  P  P 

MUniversal  P  P  P  P  P  P 

LinearC  P  P  P  P  P  P 

Serial  P  P  P  P  P  P 

Apen  P  P  P  P  P  P 

Freq  P  P P  P  P  P 

Runs  P  P  P  P  P  P 

LongestRuns  P  P  P  P  P  P 

BMR  P  F(1)  P  P  P  P 

Spectral  P  P  P  P  P  P 

Cusum (Forward/Reverse)  P  P  P  P  P  P 

RanEx  P  P  P  P  P  P 

RanExVar  P  P  P  P  P  P 
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As shown in Table 9, the total number of failed 

ciphertext sequences from the PRESENT algorithm is 17. 

In the StrictKey data category, PRESENT fails 1 statistical 

test in the Non-Over test. In StrictPT, PRESENT fails 11 

statistical tests in the Non-Over test and 1 statistical test in 

the BMR. Also, PRESENT algorithm fails 1 Non-Over test 

in HighKey. In LowPT and HighPT, PRESENT shows 

non-randomness in 1 and 2 Non-Over tests, respectively. 

Only one data category shows the evidence of 

randomness from the binary sequences generated in 

PRESENT. Therefore, it is evident that output sequences 

generated from PRESENT are essentially non-random. 

Conclusion 

By using the NIST Statistical Test Suite, a 

randomness analysis based on 1% significance level has 

been performed on PRESENT. This analysis has been 

conducted on 100 samples falling under six data 

categories, i.e., StrictKey, StrictPT, LowKey, HighKey, 

LowPT and HighPT. The significance level has been set 

to 0.01 in order to determine whether or not the output 

sequence generated from the algorithm is random. The 

result shows that the output sequences generated from 

PRESENT are essentially non-random based on the 1% 

significance level. An algorithm that passes all of the 

statistical tests does not guarantee its security (Isa and 

Z’aba, 2014). However, a secure algorithm should pass 

all of the tests (Zakaria et al., 2020). For security 

purposes, enhancement on the PRESENT is suggested in 

the future to improve its security. As mentioned above, 

the Non-Over test results from StrictKey, StrictPT, 

HighKey, LowPT and HighPT are largely negative (fail). 

Therefore, it is advisable to avoid using low density 

values for plaintext and high density values for keys and 

plaintext in the PRESENT algorithm. 
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