

 © 2020 Isma Norshahila Binti Mohammad Shah and Eddie Shahril Bin Ismail. This open access article is distributed under a

Creative Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Original Research Paper

Randomness Analysis on Lightweight Block Cipher,

PRESENT

1Isma Norshahila Binti Mohammad Shah and 2Eddie Shahril Bin Ismail

1Department of Cryptography Development, CyberSecurity Malaysia,

Menara Cyber Axis, 63000 Cyberjaya, Malaysia
2Department of Mathematical Sciences, Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia

Article history

Received: 24-09-2020

Revised: 23-11-2020

Accepted: 26-11-2020

Corresponding Author:

Isma Norshahila Binti

Mohammad Shah

Department of Cryptography

Development, CyberSecurity

Malaysia, Menara Cyber Axis,

63000 Cyberjaya, Malaysia

Email: isma@cybersecurity.my

Abstract: Lightweight cryptography is an area of current research

conducted by academicians and cryptographic experts to ensure the

security of data in limited-resource devices such as RFID tags, medical

and health care devices and sensor networks. One of the lightweight

algorithms built is the PRESENT algorithm. To this day, PRESENT has

been a reference for lightweight block cipher algorithms and is

incorporated into Lightweight Cryptography Standard ISO/IEC 29192-2.

The capacity to act as a random number generator is one of the key

requirements when designing an algorithm. Thus, this study aims to

examine the capabilities of the PRESENT algorithm as a random number

generator. By using the NIST Statistical Test Suite, a randomness

analysis is performed on the PRESENT algorithm. A total of six data

categories i.e., Strict Key Avalanche, Strict Plaintext Avalanche, High-

Density Key, Low- Density Key, Low-Density Plaintext and High-Density

Plaintext were applied to generate 100 input sequences for each algorithm.

From the analysis, the outputs generated from the PRESENT algorithm are

essentially non-random based on the 1% significance level.

Keywords: PRESENT Algorithm, Randomness Analysis, NIST Statistical

Test Suite, Lightweight Block Cipher

Introduction

Lightweight cryptography is one of the hot research

topics in cryptography. Its main applications include

RFID tags, medical and health care devices and sensor

networks. Lightweight cryptography is generally divided

into four categories, namely lightweight block cipher,

lightweight hash function, lightweight message

authentication codes and lightweight stream cipher

(McKay et al., 2016). A lightweight block cipher is a

block cipher requiring less computing power. It is

designed to support devices with limited resources, e.g.,

RFID tags and sensor networks. Some existing series of

lightweight block ciphers include DESL (Leander et al.,

2007), KATAN and KTANTAN (De Canniere et al.,

2009), LBlock (Wu and Zhang, 2011), PRESENT

(Bogdanov et al., 2007) as well as SIMON and SPECK

(Beaulieu et al., 2015).

Ultra-lightweight block cipher PRESENT which was

introduced by (Bogdanov et al., 2007) works in a 64-bit

plaintext block that utilizes two 80-bit and 128-bit key

sizes. Its 80-bit version is dedicated for hardware

implementation. To date, PRESENT is the benchmark

for lightweight symmetric ciphering and it is included in

the ISOIEC specification (ISO 29192-2:2012(E), 2012).

PRESENT is a pioneer of the development of

lightweight block ciphers and used together with AES

(Pub, 2001) serving as the standard for new proposals.

Several attacks have been performed on the

PRESENT algorithm in order to test its effectiveness

against various cryptanalysis attacks. These attacks

include side-channel attacks (Renauld and Standaert,

2009), side-channel cube attacks (Yang et al., 2009) and

a related-key attack on the 17 rounds of PRESENT

(Özen et al., 2009). Certain attacks such as the enhanced

differential fault analysis has been documented by

(Jeong et al., 2013); this attack retrieves the key by

causing two or three 2-byte random faults. According to

(Jeong et al., 2012), full-round biclique cryptanalysis is

slightly better than exhaustive search. A truncated

differential attack on the reduced 26-round cipher has

Isma Norshahila Binti Mohammad Shah and Eddie Shahril Bin Ismail / Journal of Computer Science 2020, 16 (11): 1639.1647

DOI: 10.3844/jcssp.2020.1639.1647

1640

been investigated by (Blondeau and Nyberg, 2014).

Among all the analyses carried out in evaluating the

strength of the lightweight block cipher PRESENT, to

the best of our knowledge, the randomness analysis has

not been carried out on the PRESENT algorithm so far.

Therefore, we wish to address this problem in this study.

This study is structured in the following manner. The

second section presents some previous works related to

randomness analysis performed on cryptographic

algorithms. The third section gives a brief description of the

PRESENT algorithm. The methodology used to perform

randomness analysis is explained in the fourth section.

Results and discussion are presented in the fifth section.

Finally, the current work is concluded in the sixth section.

Related Work

Randomness plays an important role in many areas of

cryptography (Marton and Suciu, 2015). Cryptographic

implementations are based on random numbers with

special features (Demirhan and Bitirim, 2016). One of

the significant criteria for developing an encryption

algorithm is its capability as random number generator

(Hathaway, 2003). The Pseudorandom Number

Generator (PRNG) statistical test suite can be used to

evaluate the randomness of outputs from an algorithm by

applying a series of statistical tests on the outputs.

After evaluating several random test suites that may
be available i.e., Diehard (Marsaglia, 2008), TestUI
(L’Ecuyer and Simard, 2007) and NIST Statistical Test
Suite (Bassham III et al., 2010), this research study
recognizes that the NIST Statistical Test Suite is reliable
for executing the test. The NIST Statistical Test Suite is
developed by the National Institute of Standards and
Technology, USA (NIST). Previously, NIST Statistical
Test Suite has been used to test the randomness of
candidates from AES (Soto and Bassham, 2000) and
AKSA (MySEAL, 2018). Besides, the NIST Statistical
Test Suite has been used to check several lightweight
block cipher algorithms for their randomness.

Randomness analyses of the lightweight block cipher

algorithm using the NIST Statistical Test Suite have been

extensively carried out on KTANTAN (Abdullah et al.,

2011), KATAN (Lot et al., 2011), LBlock (Abdullah et al.,

2014), SPECK (Chew et al., 2015), SIMON (Shah et al.,

2015; 2019), Modified Version of LBlock Block Cipher

(Abdullah et al., 2015), RECTANGLE (Zakaria et al.,

2020) and GRAIN-128 (Zawawi et al., 2013).

Description of Algorithm

PRESENT is an SPN-based algorithm that runs in 31
rounds. Each PRESENT round is defined by three layers,
i.e., AddRoundKey, Substitution and Permutation.
Figure 1 shows the PRESENT process.

Fig. 1: The PRESENT process

Plaintext Key reginster

AddRoundKey

Substitution layer

Permutation layer

Update

Substitution layer

Permutation layer

AddRoundKey

Ciphertext

Isma Norshahila Binti Mohammad Shah and Eddie Shahril Bin Ismail / Journal of Computer Science 2020, 16 (11): 1639.1647

DOI: 10.3844/jcssp.2020.1639.1647

1641

Table 1: S-box used in PRESENT

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

Table 2: Permutation box used in PRESENT

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P[i] 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P[i] 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

P[i] 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

P[i] 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63

AddRoundKey Layer

The 64-bit input of the round function is XORed with

the AddRoundKey layer sub-key. This layer is described

as follows:

i

j j jb b k  (1)

where, bj is the current state and i

jk is the jth subkey bit

of round key, Ki. Here, 1  i  32, 0  j  63.

S-box Layer

The sixteen (16) times 4-bit to 4-bit S-box

implementation is used as the parallel non-linear

substitution layer just after the XOR sub-key. The

contents of the S-box are given in Table 1.

Permutation Layer

Finally, a permutation for diffusion is performed in

the permutation layer. The details of the permutation

layer is tabulated in Table 2. The permutation layer

transfers bits from the x-input to the y-output. These

steps are repeated for each round.

Key Schedule

Firstly, the 80-bit key will be registered in the key

register K of the PRESENT key system and marked as K

= k79…k0. In round j, PRESENT extracts the 64-bit sub-

keys, i.e., Ki = k63…k0 = k79…k16. Then, the value of the

80-bit key register is left-rotated by 61 bit positions.

After that, the S-box moves the four most important bits

(bits of K from 79 to 76). Finally, the k19k18k17k16k15 are

XORed with the least round counter bits. The whole

process is described below:

1. [k79k78…k1k0] = [k18k17…k20k19]

2. [k79k78k77k76] = S[k79k78k77k76]

3. [k19k18k17k16k15] = [k19k18k17k16k15]  rc

where, S is the S-box and rc is the round counter.

Methodology

The randomness testing method consists of several

steps, i.e., sample preparation, performing randomness

analysis and evaluating the test result. In order to

prepare the samples for the randomness test, six data

sets are analyzed. Each data set is selected based on its

specific function. After preparing the sample, the

algorithms are tested using the NIST Statistical Test

Suite in order to evaluate the randomness of the

algorithm. Finally, the result of the statistical test is

evaluated. Figure 2 shows the research flows.

Data Categories

The randomness test is performed for a complete

round of PRESENT based on the 1% significance level.

Six data categories are used to construct data input in the

form of plaintext or key as shown in Table 3. Data

categories included in this analysis are Strict Key

Avalanche (StrictKey), Strict Plaintext Avalanche

(StrictPT), Low Density Key (LowKey), High Density

Key (HighKey), Low Density Plaintext (LowPT) and

High Density Plaintext (HighPT). As accordance to

(Bassham III et al., 2010) a sample size is

disproportional to the significance level. Thus, 100

sample size for each data categories are generated. The

blocks number formed in each sample is depending on

the block and key sizes (Abdullah et al., 2014).

To establish a large bit sequence for the test, the

derived blocks are concatenated. Due to the large

amount of time required to produce each sample, the

significance level of 0.01 was selected. In addition,

randomness analysis that has been conducted on

KTANTAN algorithms (Abdullah et al., 2011),

KATAN (Lot et al., 2011), LBlock (Abdullah et al.,

2014), SPECK (Chew et al., 2015), SIMON (Shah et al.,

2015; 2019), Modified Version of LBlock Block Cipher

(Abdullah et al., 2015), RECTANGLE (Zakaria et al.,

2020) and GRAIN-128 (Zawawi et al., 2013) also uses

significance level of 0.01.

Isma Norshahila Binti Mohammad Shah and Eddie Shahril Bin Ismail / Journal of Computer Science 2020, 16 (11): 1639.1647

DOI: 10.3844/jcssp.2020.1639.1647

1642

Fig. 2: The research flows

Table 3: Sample preparations using data categories

Data categories Key Plaintext Derived blocks

StrictKey 196 randoms All zero 15,680

StrictPT All zero 245 randoms 15,680

LowKey 3,241 specifics 3,241 randoms 3,241

HighKey 3,241 specifics 3,241 randoms 3,241

LowPT 2,081 randoms 2,081 specifics 2,081

HighPT 2,081 randoms 2,081 specifics 2,081

a. Strict Key Avalanche (StrictKey)

StrictKey examines the sensitivity of each algorithm

to key changes. One hundred samples are generated.

Each sample requires 1,003,520 bits of binary sequences.

The samples are constructed from 196 sets of 80-bit

random keys and a set of all-zero plaintext blocks. Each

block of random key is then used as a base-key. The

base-key is encrypted with the all-zero plaintext row in

order to create a base-ciphertext block. Then, in order to

get the disturbed-ciphertext, each bit of the base-key is

flipped and encrypted with its respective length of all-

zero plaintext block. Each block of disturbed-ciphertext

is then XORed with the base-ciphertext and concatenated

in order to generate a binary output containing the least

number of bits for each sample.

b. Strict Plaintext Avalanche (StrictPT)

StrictPT examines the sensitivity of each algorithm

on the changes in plaintext. One hundred samples are

generated and a total of 1,003,520-bit binary sequences

are required for each sample. The samples are built from

245 sets of random 64-bit plaintext and a set of key

blocks consisting of zeroes. Then, each random plaintext

block is used as a base-plaintext. The base-plaintext is

encrypted with the key block consisting of zeroes in

order to derive a base-ciphertext block. Then, each bit of

the base-plaintext is flipped and encrypted with its

respective length of the key block to obtain the

disturbed-ciphertext. Each disturbed-ciphertext block is

then XORed with the base-ciphertext and concatenated

to generate a binary output consisting of the least

number of bits for each sample.

c. Low Density Key (LowKey)

In this data category, a data set consisting of one
hundred sequences is generated based on the low density
80-bit key blocks. For each key block, a random 64-bit
plaintext block is used. A total of 3,241 ciphertext blocks
are generated for this data category. The first ciphertext
block is obtained using a block consisting of zero bit
key. The subsequent ciphertext block (up to the
ciphertext block number 81) is obtained by using the
key blocks (with a single one) in each possible bit
position. For the remaining ciphertext blocks, the key
blocks with two ones and 78 zeroes are obtained (the
two ones appear within the length of the key in each
combination of two bits position). The derived block of

Start

Step 1: Sample

preparation

Generating random

keys and plaintext

[randgenebin.cpp]

Sample generation for six

data categories

[main_xx_randomness.cpp]

Keys

Plaintext

Samples

 SKA_xx.txt

 SPA_xx.txt

 LDK_xx.txt

 HDK_xx.txt

 LDP_xx.txt

 HDP_xx.txt

Step 2: Performing

randomness analysis

sts-2.1.1

.\assess.exe

[length_bit_sample]

State the parameters

for the parameterized

test selection

Select the type of

statistical test

State the number

of samples

Select the input file

format as ASCII

Findings of the

statistical tests

Step 3: Evaluating

the text results

Analysis of the finding of statistical tests

 Pass

 Fail

End

Isma Norshahila Binti Mohammad Shah and Eddie Shahril Bin Ismail / Journal of Computer Science 2020, 16 (11): 1639.1647

DOI: 10.3844/jcssp.2020.1639.1647

1643

ciphertext is then concatenated in order to produce
207,424 bits of binary sequence.

d. High Density Key (HighKey)

In this data category, a data set consisting of hundred

sequences is generated based on the high density 80-bit

key blocks. For each key block, a random 64-bit

plaintext block is used. A total of 3,241 ciphertext blocks

are generated for this data category. The first block of

ciphertext has been obtained using a key block

consisting of all ones. The subsequence ciphertext blocks

(up to the ciphertext block number 81) are obtained by

using a single zero key block in each possible bit

position. Then, for the remaining ciphertext blocks, two

key blocks of zeroes and 78 key blocks of ones are

adopted (the two zeroes appear within the length of the

key in each combination of two bits position). The

derived ciphertext block is then concatenated to produce

207,424 bits of binary sequence.

e. Low Density Plaintext (LowPT)

In this data category, a data set consisting of one

hundred sequences is generated based on the low density

64-bit plaintext block. For each plaintext block, a random

80-bit key block is used. A total of 2,081 ciphertext blocks

are generated for this data category. The first ciphertext

block is obtained by using the block consisting of all-zero

plaintext. The subsequent ciphertext blocks (up to the

ciphertext block number 65) are obtained by using the

blocks of plaintext with a single one in each possible bit

position. The remaining ciphertext blocks are then

obtained by using a plaintext block consisting of two ones

and 62 zeroes (both appear in each combination of two

bits of position within the length of the plaintext). The

derived ciphertext block is then concatenated to produce

133,184 bits of binary sequence.

f. High Density Plaintext (HighPT)

In this data category, a data set consisting of one

hundred sequences is generated based on the 64-bit high

density plaintext block. Each plaintext block uses a

random 80-bit key block. For this category of data, a

total of 2,081 ciphertext blocks are generated. The first

ciphertext block is generated by using the all-one

plaintext blocks. The subsequent ciphertext block (up to

the ciphertext block number 65) is obtained by using the

plaintext block with a single zero in each possible bit

position. The remaining ciphertext blocks are extracted

by using plaintext blocks consisting of two zeroes and

62 ones (the two zeroes occur in every combination of

two bit locations within the plaintext length). The

derived ciphertext block is then concatenated in order to

produce 133,184 bits of binary sequence. Table 4

summarizes the length of the output sequence generated

for each sample in each data category.

Table 4: Length of output sequences generated according to

data categories

 Length of output

Data categories (bits) per sample

StrictKey 1,003,520

StrictPT 1,003,520

LowKey 207,424

HighKey 207,424

LowPT 133,184

HighPT 133,184

NIST Statistical Test Suite

The NIST Statistical Test Suite developed by the

National Institute of Standards and Technology, USA

(NIST) is used to perform the randomness analysis. NIST

Statistical Test Suite is a random test kit for binary

sequences generated on the hardware- or software basis,

either by random cryptography or pseudorandom

generation numbers.

This test suite consists of 15 tests which are

divided into two categories, i.e., Parameterized and

Non-parameterized Test Selections. The statistical

tests for parameterized test selection include Block

Frequency (BlockFreq), Non-Overlapping Templates

(Non-Over), Overlapping Template (Overlapping),

Maurer’s Universal (MUniversal), Linear Complexity

(LinearC), Serial (Serial) and Approximate Entropy

(Apen). The statistical tests of Non-Parameterized

Test Selection, however, consist of Frequency (Freq),

Runs (Runs), Longest Runs of Ones (LongestRuns),

Binary Matrix Rank (BMR), Spectral (Spectral),

Cumulative Sums (CuSum) (Forward and Reverse),

Random Excursion (RanEx) and Random Excursion

Variant (RanExVar). The descriptions of statistical

randomness tests are given below:

 BlockFreq: To evaluate if the number of blocks in

the M-bit block is approximately M/2 where M is

the length of each block

 Non-Over: To reject sequences that display too

many occurrences of a given non-periodic pattern

 Overlapping: To reject sequences that display too

many or too few occurrences of m-bit patterns

 MUniversal: Detecting if the sequence can be

substantially compressed without loss of information

 LinearC: To determine whether the sequence is

random

 Serial: To decide whether the number of

occurrences of m-bit overlapping patterns is

essentially the same as that expected in a random

sequence (m-bit is the length of bits for each block)

 Apen: Comparison of the frequency of

overlapping blocks consisting of two

Isma Norshahila Binti Mohammad Shah and Eddie Shahril Bin Ismail / Journal of Computer Science 2020, 16 (11): 1639.1647

DOI: 10.3844/jcssp.2020.1639.1647

1644

consecutive/adjacent lengths (m and m +1) with

the predicted result for the series normally

distributed (m-bit is the length of each block)

 Freq: In a completely random sequence, deciding

whether or not the number of zeroes and ones in a

sequence is identical to that

 Runs: To evaluate whether or not the number of

runs of one and zeros of different lengths is

equivalent to that of a random sequence

 LongestRuns: To evaluate whether the longest run

of ones is compatible with the longest run of ones in

a random sequence

 BMR: To search for linear dependency between

fixed length substrings in the original sequence

 Spectral: To detect periodic features in the sequence

being evaluated, which is a useful indicator of

randomness error

 Cusum (Forward/Reverse): To assess if the number

of partial sequences occurring in the sequence being

checked is either too big or too small

 RanEx: To assess if the number of visits to a

specific state within a loop will deviate from that in

a random series

 RanExVar: To detect the difference between the

distribution of the number of visits in a random walk

and that in a given state

Every sample in each test requires a minimum number

of bit length in which the value is tabulated in Table 5.

All tests except CuSum, Serial, Non-Over, RanEx and

RanExVar should produce one p-value for every sample.

CuSum and Serial tests produce two p-values for every test.

Non-Over test produces 148 p-values for every sample.

Table 6 shows the p-values provided by each sample in

compliance with the statistical test.

A user should determine the parameter value for each

test in the Parameterized Test Selection as explained by

(Bassham III et al., 2010). Table 7 shows the list of input

quantity for the parameters used in each test in the

Parameterized Test Selection.

Table 5: Minimum bit of length required for each statistical

test for each statistical test

Statistical test Minimum bit length

BlockFreq 100

Non-Over 100

Overlapping 106

MUniversal 387,840

LinearC 106

Serial 100

Apen 100

Freq 100

Runs 100

LongestRuns 128

BMR 38,912

Spectral 1,000

Cusum (Forward/Reverse) 100

RanEx 106

RanExVar 106

Table 6: Breakdown of the p-value(s) obtained for each statistical test

Statistical test p-value(s)

BlockFreq 1

Non-Over 148

Overlapping 1

MUniversal 1

LinearC 1

Serial 2

Apen 1

Freq 1

Runs 1

LongestRuns 1

BMR 1

Spectral 1

Cusum (Forward/Reverse) 2

RanEx 8

RanExVar 18

Table 7: Input for the parameterized test selection

Statistical test Parameter(s)

BlockFreq M = 20,000

Non-Over m = 9

Overlapping m = 9

MUniversal L = 7, Q = 1280

LinearC M = 500

Serial m =2

Isma Norshahila Binti Mohammad Shah and Eddie Shahril Bin Ismail / Journal of Computer Science 2020, 16 (11): 1639.1647

DOI: 10.3844/jcssp.2020.1639.1647

1645

Empirical Results and Analysis

In this analysis, the range of acceptable proportions

for the binary sequences is determined using the

confidence interval (Bassham III et al., 2010):

 1
3

p p
p

s

 
  (2)

where, p = 1-sig, sig is the significance level (sig =

0.01) and s is the sample size which is equal to one

hundred ciphertexts except for RanEx and RanExVar

tests. If the proportion falls outside the range ,a bp p    ,

the data is regarded as non-random.

Test such as Overlapping, LinearC, RanEx and

RanExVar require certain number of bits while

MUniversal test requires at least 387,840 bits. Therefore,

the analysis of the output sequence generated from

LowKey, LowPT, HighKey and HighPT data categories

cannot be performed in these tests. There are 188 p-values

obtained from StrictKey and StrictPT and 159 p-values

obtained from LowKey, HighKey, LowPT and HighPT.

Since this analysis uses one hundred samples and the

significance level is set at 0.01, the appropriate ranges

for all tests except for RanEx and RanExVar tests are

within [0.95, 1.01]. RanEx and RanExVar tests may not

require all 100 binary sequences, as some of the binary

sequences do not have enough cycles for conducting the

test. Only those samples with more than 500 cycles are

assessed. Samples with inadequate number of cycles are

not considered. Therefore, the ranges of acceptable

rejection of these two tests would vary (Table 8)

depending on the samples meeting the requirements.

NIST suggests that a data can be considered as

random if and only if the sequence(s) pass all testing

procedures. If the tested sequence(s) fail one or more

randomness testing procedures, there is a clear proof of

non-randomness.

The results of the analysis of PRESENT are

summarized in Table 9. If the rejected sequence falls

within the acceptable rejection range, the result is Pass

(P). Otherwise, the result is Fail (F). For data category

that has failed sequences, the number of failed sequences

is indicated in bracket ‘()’.

Table 8: Acceptable rejection ranges for PRESENT

Statistical test Number of sample evaluated Acceptable rejection range

BlockFreq 100 [0.95, 1.01]
Non-Over 100 [0.95, 1.01]
Overlapping 100 [0.95, 1.01]
MUniversal 100 [0.95, 1.01]
LinearC 100 [0.95, 1.01]
Serial 100 [0.95, 1.01]
Apen 100 [0.95, 1.01]
Freq 100 [0.95, 1.01]
Runs 100 [0.95, 1.01]
LongestRuns 100 [0.95, 1.01]
BMR 100 [0.95, 1.01]
Spectral 100 [0.95, 1.01]
Cusu (Forward/Reverse) 100 [0.95, 1.01]
RanEx 53 [0.95, 1.03]
RanExVar 64 [0.95, 1.03]

Table 9: Randomness analysis result for full round of PRESENT

Statistical test StrictKey StrictPT LowKey HighKey LowPT HighPT

BlockFreq P P P P P P

Non-Over F(1) F(11) P F(1) F(1) F(2)

Overlapping P P P P P P

MUniversal P P P P P P

LinearC P P P P P P

Serial P P P P P P

Apen P P P P P P

Freq P P P P P P

Runs P P P P P P

LongestRuns P P P P P P

BMR P F(1) P P P P

Spectral P P P P P P

Cusum (Forward/Reverse) P P P P P P

RanEx P P P P P P

RanExVar P P P P P P

Isma Norshahila Binti Mohammad Shah and Eddie Shahril Bin Ismail / Journal of Computer Science 2020, 16 (11): 1639.1647

DOI: 10.3844/jcssp.2020.1639.1647

1646

As shown in Table 9, the total number of failed

ciphertext sequences from the PRESENT algorithm is 17.

In the StrictKey data category, PRESENT fails 1 statistical

test in the Non-Over test. In StrictPT, PRESENT fails 11

statistical tests in the Non-Over test and 1 statistical test in

the BMR. Also, PRESENT algorithm fails 1 Non-Over test

in HighKey. In LowPT and HighPT, PRESENT shows

non-randomness in 1 and 2 Non-Over tests, respectively.

Only one data category shows the evidence of

randomness from the binary sequences generated in

PRESENT. Therefore, it is evident that output sequences

generated from PRESENT are essentially non-random.

Conclusion

By using the NIST Statistical Test Suite, a

randomness analysis based on 1% significance level has

been performed on PRESENT. This analysis has been

conducted on 100 samples falling under six data

categories, i.e., StrictKey, StrictPT, LowKey, HighKey,

LowPT and HighPT. The significance level has been set

to 0.01 in order to determine whether or not the output

sequence generated from the algorithm is random. The

result shows that the output sequences generated from

PRESENT are essentially non-random based on the 1%

significance level. An algorithm that passes all of the

statistical tests does not guarantee its security (Isa and

Z’aba, 2014). However, a secure algorithm should pass

all of the tests (Zakaria et al., 2020). For security

purposes, enhancement on the PRESENT is suggested in

the future to improve its security. As mentioned above,

the Non-Over test results from StrictKey, StrictPT,

HighKey, LowPT and HighPT are largely negative (fail).

Therefore, it is advisable to avoid using low density

values for plaintext and high density values for keys and

plaintext in the PRESENT algorithm.

Acknowledgment

This study has been funded by the Ministry Of

Higher Education (MOHE) Malaysia under Fundamental

Research Grant Scheme (FRGS) project no.

FRGS/1/2020/STG06/UKM/02/2 (Sifer Blok Ringan

Tempatan Menggunakan Struktur Matematik Feistel

Terubahsuai) through Universiti Kebangsaan Malaysia.

The authors would like to thank Cryptography

Development Department, CyberSecurity Malaysia for

the support and guidance given. The authors would also

like to thank editors and all anonymous reviewers for

their valuable comments.

Author’s Contributions

Isma Norshahila Binti Mohammad Shah:
Developed the main idea and scheme, executed the

experimental tests and prepared the manuscript.

Eddie Shahril Bin Ismail: Proposed some

modifications and corrections of the security and efficiency

of the scheme. Improved the manuscript writing.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of

the other authors have read and approved the manuscript

and no ethical issues involved.

References

Abdullah, N. A. N., Chew, L. C. N., Zakaria, A. A.,

Seman, K., & Norwawi, N. M. (2015). The

Comparative Study of Randomness Analysis

between Modified Version of LBlock Block

Cipher and its Original Design. International

Journal of Computer and Information

Technology, 4(6), 867-875.

Abdullah, N. A. N., Lot, N. H., Zawawi, A., & Rani, H.

A. (2011, December). Analysis on lightweight block

cipher, KTANTAN. In 2011 7th International

Conference on Information Assurance and Security

(IAS) (pp. 46-51). IEEE.

Abdullah, N. A. N., Seman, K., & Norwawi, N. M.

(2014). Statistical analysis on LBlock block cipher.

In International Conference on Mathematical

Sciences and Statistics 2013 (pp. 233-245).

Springer, Singapore.

Bassham III, L. E., Rukhin, A. L., Soto, J., Nechvatal, J.

R., Smid, M. E., Barker, E. B., ... & Heckert, N. A.

(2010). Sp 800-22 rev. 1a. a statistical test suite for

random and pseudorandom number generators for

cryptographic applications. National Institute of

Standards & Technology.

Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S.,

Weeks, B., & Wingers, L. (2015). SIMON and

SPECK: Block Ciphers for the Internet of Things.

IACR Cryptol. ePrint Arch., 2015, 585.

Blondeau, C., & Nyberg, K. (2014, May). Links

between truncated differential and

multidimensional linear properties of block

ciphers and underlying attack complexities. In

Annual International Conference on the Theory

and Applications of Cryptographic Techniques

(pp. 165-182). Springer, Berlin, Heidelberg.

Bogdanov, A., Knudsen, L. R., Leander, G., Paar, C.,

Poschmann, A., Robshaw, M. J., ... & Vikkelsoe,

C. (2007, September). PRESENT: An ultra-

lightweight block cipher. In International

workshop on cryptographic hardware and

embedded systems (pp. 450-466). Springer,

Berlin, Heidelberg.

Isma Norshahila Binti Mohammad Shah and Eddie Shahril Bin Ismail / Journal of Computer Science 2020, 16 (11): 1639.1647

DOI: 10.3844/jcssp.2020.1639.1647

1647

Chew, L., Chew, N., Norshahil, I., Shah, M., Azura, N.,

Abdullah, N., ... & Zakaria, A. A. (2015).

Randomness analysis on Speck family of

lightweight block cipher. International Journal of

Cryptology Research, 5(1), 44-60.

De Canniere, C., Dunkelman, O., & Knežević, M. (2009,

September). KATAN and KTANTAN-a family of

small and efficient hardware-oriented block ciphers.

In International Workshop on Cryptographic

Hardware and Embedded Systems (pp. 272-288).

Springer, Berlin, Heidelberg.

Demirhan, H., & Bitirim, N. (2016). Statistical testing of

cryptographic randomness. İstatistikçiler Dergisi:

İstatistik ve Aktüerya, 9(1), 1-11.

Hathaway, L. (2003). National policy on the use of the

advanced encryption standard (AES) to protect

national security systems and national security

information. National Security Agency, 23.

Isa, H., & Z'aba, M. R. (2014). Randomness of the

PRINCE block cipher.

Jeong, K., Kang, H., Lee, C., Sung, J., & Hong, S.

(2012). Biclique Cryptanalysis of Lightweight Block

Ciphers PRESENT, Piccolo and LED. IACR

Cryptol. ePrint Arch., 2012, 621.

Jeong, K., Lee, Y., Sung, J., & Hong, S. (2013).

Improved differential fault analysis on PRESENT-

80/128. International Journal of Computer

Mathematics, 90(12), 2553-2563.

ISO 29192-2. (2012). ISO 29192-2:2012(E) Information

technology - Security techniques - Lightweight

cryptography Part 2 Block ciphers. Standard,

International Organization for Standardization,

Geneva, CH.
https://www.sis.se/api/document/preview/914247/

Leander, G., Paar, C., Poschmann, A., & Schramm, K.

(2007, March). New lightweight DES variants. In

International Workshop on Fast Software Encryption

(pp. 196-210). Springer, Berlin, Heidelberg.

L'Ecuyer, P., & Simard, R. (2007). TestU01: AC library

for empirical testing of random number generators.

ACM Transactions on Mathematical Software

(TOMS), 33(4), 1-40.

Lot, N. H., Abdullah, N. A. N., & Rani, H. A. (2011,

November). Statistical analysis on KATAN block

cipher. In 2011 International Conference on

Research and Innovation in Information Systems

(pp. 1-6). IEEE.

Marsaglia, G. (2008). The Marsaglia random number

CDROM including the diehard battery of tests of

randomness. http://www.stat.fsu.edu/pub/diehard/

Marton, K., & Suciu, A. (2015). On the interpretation of

results from the NIST statistical test suite. Science

and Technology, 18(1), 18-32.

McKay, K., Bassham, L., Sönmez Turan, M., &
Mouha, N. (2016). Report on lightweight
cryptography (No. NIST Internal or Interagency
Report (NISTIR) 8114 (Draft)). National Institute
of Standards and Technology.

MySEAL, K. F. (2018). Projek myseal: Kriteria

penyerahan dan penilaian versi 2.0 [2018]. Technical

report, CyberSecurity Malaysia, Malaysia.

https://myseal.cybersecurity.my/en/files/CD-5-RPT-

0218-Kriteria_MySEAL_Versi_2.0-V1a.pdf

Özen, O., Varıcı, K., Tezcan, C., & Kocair, Ç. (2009, July).

Lightweight block ciphers revisited: Cryptanalysis of

reduced round PRESENT and HIGHT. In Australasian

Conference on Information Security and Privacy (pp.

90-107). Springer, Berlin, Heidelberg.

Pub, N. F. (2001). 197: Advanced Encryption Standard

(AES), Federal Information Processing Standards

Publication 197, US Department of

Commerce/NIST, November 26, 2001.

Renauld, M., & Standaert, F. X. (2009, December).

Algebraic side-channel attacks. In International

Conference on Information Security and Cryptology

(pp. 393-410). Springer, Berlin, Heidelberg.

Shah, I. N. M., Chew, L. C. N., Yusof, N. A. M.,

Abdullah, N. A. N., Zawawi, N. H. L. A., & Rani,

H. A. (2015). Statistical analysis on lightweight

block cipher, Simon. International Journal of

Cryptology Research. 5(2), 28-44.

Shah, I. N. M., Rani, H. A., Ahmad, M. M., & Ismail, E.

S. (2019). Cryptographic Randomness Analysis on

Simon32/64.

Soto, J., & Bassham, L. (2000). Randomness testing

of the advanced encryption standard finalist

candidates. BOOZ-ALLEN AND HAMILTON

INC MCLEAN VA.

Wu, W., & Zhang, L. (2011, June). LBlock: a lightweight

block cipher. In International Conference on Applied

Cryptography and Network Security (pp. 327-344).

Springer, Berlin, Heidelberg.

Yang, L., Wang, M., & Qiao, S. (2009, December). Side

channel cube attack on PRESENT. In International

Conference on Cryptology and Network Security

(pp. 379-391). Springer, Berlin, Heidelberg.

Zakaria, A. A., Azni, A. H., Ridzuan, F., Zakaria, N. H.,

& Daud, M. (2020). Randomness Analysis on

RECTANGLE Block Cipher. In Cryptology and

Information Security Conference 2020 (p. 133).

Zawawi, N. H. L. A., Seman, K., & Mohd Zaizi, N. J.

(2013, September). Randomness analysis on

grain-128 stream cipher. In AIP Conference

Proceedings (Vol. 1557, No. 1, pp. 15-20).

American Institute of Physics.

