

 © 2020 Joy Christy Antony Sami and Umamakeswari Arumugam. This open access article is distributed under a Creative

Commons Attribution (CC-BY) 3.0 license.

 Journal of Computer Science

Original Research Paper

A VF-IMF Cohesion Metric for Object-Oriented Classes

Joy Christy Antony Sami and Umamakeswari Arumugam

Department of Computer Science Engineering, School of Computing,

SASTRA Deemed to be University, Thirumalaisamudram, Thanjavur, Tamil Nadu, India, 613 401

Article history

Received: 10-07-2019

Revised: 21-09-2019

Accepted: 09-04-2020

Corresponding Author:

Umamakeswari Arumugam

Department of Computer

Science Engineering, School of

Computing, SASTRA Deemed

to be University,

Thirumalaisamudram,

Thanjavur, Tamil Nadu, India,

613 401
Email: umamakeswari.arumugam@gmail.com

Abstract: Cohesion in Object Oriented (OO) modules impact reusability,

efficiency and complexity of software. OO Programmers are mandated to

create software with high cohesion. The testing phase in Software

Development Life Cycle (SDLC) is not only concerned about creating error

free software but also assess quality of code through software metrics. The

metric‘Lack of Cohesion in Methods (LCOM)’ is one of the significant OO

metric for measuring level of cohesion in software modules. LCOM and its

improvised versions of cohesion metrics output degree of cohesion in

software modules rather than providing solutions to reconstruct the poorly

cohesive modules. Further, the traditional cohesion metrics do not

differentiate the possible levels such as high, medium and low cohesions.

Thus, in this paper a novel, Variable Frequency – Inverse Method

Frequency (VF-IMF) based machine learning metric is proposed to assess

the level of cohesion in modules and also to group module methods to

instill high cohesion. The proposed metric is experimented over three

sample modules represents each level of cohesion. The experimental results

show that the proposed metric clearly differentiates the three levels of

cohesion and offers a compromised solution for building high cohesive

modules than traditional LCOM metrics. The metric is also validated

against Weyuker’s properties and is proven to be a valid metric as it

satisfies all the 9 properties.

Keywords: TF, IDF, LCOM, MALCOM, TCC, LC

Introduction

Software metric is a standard measure of a degree to
which software system or process possesses some
property. In other words, metrics estimate the quality of
the software in the testing phase of software
development life cycle. The traditional classification of
software metrics can be divided into procedure and
object oriented programming. Object oriented
programming is now a widely adopted approach in
software engineering because software built using this
technique is usually easier to maintain. OO metrics are a
division of software metrics that evaluates the features of
OO programming such as modularity, reusability,
inheritance, abstraction and encapsulation and so on. In
modularity, cohesion is an important feature for
exhibiting the intra module communications. Good
modular designs maximize cohesion and promote
encapsulation. High cohesion classes do not share their
attributes with other classes and can easily be reused.
Thus, high cohesion promotes reusability by reducing
complexity. Software testing researchers have come up
with many object oriented metrics such as LCOM, Tight

Class Cohesion (TCC) and Loose Class Cohesion (LCC)
to evaluate software module with respect to cohesion.
But, all those metrics tend to highlight only the
existence/non-existence of cohesion in modules, without
specifying intermediate levels such as Low, Medium and
High. Modified Approach on LCOM (MALCOM) takes
a different turn by addressing the issue (Ganesh et al.,
2015). But, the usefulness of software metrics should go
beyond the expectations on what action the programmer
ought to take with the obtained metric value or when the
class has poor cohesion. To answer these questions,
machine learning techniques come into picture. Machine
learning techniques consist series of statistical
algorithms that take input data to analyze the hidden
pattern or useful knowledge.

The paper combines the traditional concepts of
software metrics with machine learning algorithms to
provide a concrete solution for constructing highly
cohesive modules in object oriented software.
Unsupervised algorithms in machine learning techniques
describe the nature or characteristics of data. Clustering
is one of the unsupervised learning algorithms that
groups similar objects as clusters. Clustering algorithms

Joy Christy Antony Sami and Umamakeswari Arumugam /Journal of Computer Science 2020, 16 (4): 422.429

DOI: 10.3844/jcssp.2020.422.429

423

are widely used in image analysis, document clustering,
medical diagnosis, customer segmentation and pattern
recognition and so on. The application of clustering
algorithms in software metrics is yet another novel
approach of the paper. Initially, the methods in a module
are transformed to a structure that gets processed by the
clustering algorithm is same as how tokens are parsed in
document clustering using Term Frequency-Inverse
Document Frequency (TF-IDF). In this work, we use K-
Means clustering algorithms for generating clusters as it
is straight forward, most popular and widely used
algorithm. The methods that share module variables are
clustered with the assumption, if all methods grouped in
one cluster shows high cohesion, grouped in different
clusters equal to number of methods in module as low
cohesion. If the clusters formed using the algorithm
neither puts all methods in one cluster nor forms clusters
as equal to the number of methods in the module tends to
fall in the medium cohesion.

The remaining section of the paper organized as

follows: Section II reviews the existing literature in

software metrics, section III describes the methodology,

section IV explicates the experimentation and result

discussion and finally section V concludes the findings

and future works of the paper.

Review of Literature

Over a detailed survey on the Cohesion, new metrics
were introduced ranging from syntactic to semantic
analysis (Gu et al., 2017; Alzahrani et al., 2019;
Cinnéide et al., 2017) and software metrics tools were
developed e.g. VizzAnalyzer, Analyst4j, Understand and
Ckjm. A study on comparing these tools was carried out
by (Purao and Vaishnavi, 2003). However,
implementation of cohesion metrics from these tools is
not enough for the investigation of cohesion due to
several relationships being overlooked. In this paper, the
authors tried to look at the relationships that make up
cohesion by examining existing frameworks and
selecting metrics that correlate to the respective
relationships. The selected metrics are then formalized to
show how these metrics are implemented. Another
detailed survey On Chidamber and Kemerer (Santos et
al., 2017) introduced the primary cohesion metric for
object-oriented systems. The authors defined LCOM
metric as measure of cohesion which is the difference of
null intersections with non-null intersections of methods
in module and concluded that higher cohesion results in
higher quality. The authors later revised their definition
of LCOM to incorporate Loose and Tight class
cohesions (Wu et al., 2015; Kerdoudi et al., 2016),
where LCC is the fraction of number of direct
connections and number of indirect connections with
maximum number of possible connections and TCC is
the fraction of number of direct connections with
maximum number of possible connections. Goel and
Gupta (2017) propose a dynamic approach to measure

cohesion of software systems. The paper concluded that
the conventionally used measurement systems were
statically headed and provided the unfinished dynamic
behaviour of the system. This is due to static systems
that provide measures only for syntactic program
analysis and so they have tiny ability. They insisted that
the dynamic measures should always be utilized in
combination with their static counterparts. Vincent
proposed MALCOM metric by introducing a third
variable ‘R’ in addition to ‘P’ and ‘Q’ in LCOM. The
variable ‘P’ in MALCOM is set to 1 if the total number
of resultant variables equal to the fraction of total
number of variables with total number of methods. ‘Q’
variable in MALCOM is set to -1 if the total number of
variables equal to total number of variables declared in
the module and Else the variable ‘R’ is set to 0. The
authors defined ‘P’ as high cohesion, ‘Q’ as poor
cohesion and ‘R’ as partial cohesion. Kansal et al.
(2019) formulated Improved Sensitive Class Cohesion
Metric (ISCOM). The authors have reduced the intensity
of pair of methods as the fraction of shared variables
between method-pairs by the average cardinalities of
the two sets of variables accessed by the methods.
Rathee et al. (2018) presented FUPClust based on
Frequent Usage Pattern based cohesion metric by
initially considering class as a module and
subsequently group them as packages to improve
cohesion. The metric extracted the frequent usage
patterns from member functions interactions to capture
the cohesiveness of the module, further performed
clustering to increase cohesion and decrease coupling
among modules. Zhang et al. (2018) developed a
directed and weighted software dependency network
model to measure high cohesion-low coupling nature of
object oriented software systems. The authors denoted
classes as nodes, their relationships with other classes as
edges and the number of occurrences of the relationships
as weights for the accurate categorization of dependency
strength between software components.

The review clearly insists the invention of newer

cohesion metrics as the exiting metrics fails to

differentiate the possible levels of cohesions such as low,

medium, high and boundaries to marginalize them.

Elucidation of cohesion levels in module initially helps

the programmers in decision making with respect to

acceptance or rejection of modules eventually aids to

build reusable and maintainable software. Thus, in this

paper an effort has been made to analyze cohesion levels

and their inferences.

Methodology

This section explicates the methodology of the

proposedVF-IMF cohesion metric by means of

clustering the variables used across the module methods.

Following are the few important terms used to construct

the VF-IMF metric:

Joy Christy Antony Sami and Umamakeswari Arumugam /Journal of Computer Science 2020, 16 (4): 422.429

DOI: 10.3844/jcssp.2020.422.429

424

 OO Module: The software is broken into modules.

Each module is further tokenized as sets of methods

having variables used by them as members.

 VF-IMF Dataset: A numerical dataset with row as

methods and column as variable is constructed from

the categorical sets. The dataset consists value ‘1’, if

method ‘i’ uses variable ‘j’ in the intersecting ‘ij’

position or ‘0’ otherwise. This process is similar to

the process of document clustering. Here, a

variable’s frequency within and between the

methods are analysed to measure its significance in

software module.

 K-means Algorithm: This algorithm is used to group

the variables in the form of clusters.

 VF-IMF Cohesion Metric: The output of clustering

algorithm plots shared and unshared variable in

separate classes and suggests possible grouping of

methods into different modules

Figure 1 depicts the process flow of the proposed VF-

IMF metric.

Calculating VF-IMF

The datasets created from the OO module is given as

input to VF-IMF matrix. VF-IMF is the customized

version of popular concept Term Frequency – Inverse

Document Frequency (TF-IDF). TF-IDF is the most

common and widely used method in text mining and

document clustering to group documents of same type.

The statistical measure aids to evaluate the importance of

a word with respect to corpus of documents, where, the

term frequency refers to significance of a term in a

document and inverse document frequency refers to the

significance of the term across multiple documents. In

this work, the terms are assumed as variables and

methods are denoted as documents. Computation of VF-

IMF with variables and methods in a module is a

significant contribution in the proposed work as they

enable K-Means algorithm to create clusters of methods

that actually shares variables across them. The

computation of VF-IMF with respect to proposed

cohesion metric is shown.

Variable- Frequency (VF)

VF calculation slightly varies from its base TF. The

value of TF in document clustering is the fraction of

number of occurrences of term ‘i’ in document ‘d’ with

the total number of terms in the document. On the other

hand, VF value for variable ‘i’ is set to ‘1’, if the variable

present in method ‘j’ or ‘0’ otherwise. Equation 1

denotes the notion of VF for variable ‘i’:

 1 1

1

0

m n

j i

if variable i is present in method j
VF

otherwise

 (1)

Where:

VF = The frequency of variable i in method j

n = The number of variables in method j

m = The number of methods in module

Inverse Method Frequency (IMF)

The inverse method frequency highlights the

importance of a variable ‘i’ within module methods, by

comparing its presence in other methods. Specifically,

the Inverse Method Frequency is shown in Equation 2:

| |
logi

m

M
IMF

M
 (2)

Here:

|M| = Gives the number of methods in the module

Mm = The number of methods containing the variable i

Another notation of Equation 2 is shown in Eq. 3:

log

i

total number of methods
IMF

number of methods with variable i in it
 (3)

Fig. 1: Process Flow of VF-IMF metric

OO Module Construct variable sets of

module methods
Prepare VF and IMF matrices

Implement K-means

Algorithm for clustering
Compute VF-IMF

metric value

Prepare dataset with VF-

IMF value

Joy Christy Antony Sami and Umamakeswari Arumugam /Journal of Computer Science 2020, 16 (4): 422.429

DOI: 10.3844/jcssp.2020.422.429

425

Algorithmic steps for VF-IMF Transformation of

Class Module:

Input: An Object Oriented Class

Output: VF-IMF Dataset

1. for each inverse frequency, Fi, i=1,2,3,…. n for

module variables do

2. Set IFi as 0

3. end for

4. for each method Mj, j=1,2,3,…m in a module do

5. for each variable Vi, i=1,2,3,….n in a module do

6. if variable Vi is found in method Mj

7. Set VFji as 1

8. Increment IFi by 1

9. else

10. set VFi as 0

11. end if

12. end for

13. end for

14. for each inverse method frequency MFi, i=1,2,3,…

n for module variables do

15. set IMFi as m/IFi

16. end for

17. for each method Mj, j=1,2,3,…m in a module do

18. for each variable Vi, i=1,2,3,….n in a module do

19. set VF-IMFji as VFjiIMFi

20. end for

21. end for

Clustering by K-MEANS

The inputs to K-means algorithm are the cohesion

value calculated using VF-IMF. The main goal is to

build clusters of methods that have common attributes.

Thus, number of clusters to be created by the proposed

work is the number of methods that the module has. The

interpretation of K-means clustering should be made

according to the following findings:

 F1: if only one cluster is created with remaining m-1

empty clusters, the module is said to have high

cohesion

 F2: if m clusters created with one instance in each

cluster, the module is said to have poor cohesion

 F3: if k clusters created with arbitrary instances in

each cluster, m-1 non-empty clusters, the module is

said to have moderate cohesion

Taking F3 into account, the non-empty clusters can

be reformed to create new modules with high cohesion.

K-means algorithm initially chooses ‘m’ random clusters

centroids, where ‘m’ is the number of methods in the

module. The distance between cluster centroids and the

instances are computed and grouped into the cluster with

the nearest distance. The process gets repeated until the

cluster formation of the current iteration is same as the

cluster formation of previous iteration (i.e.) when no new

cluster formation is possible to reduce the root mean

squared error. The formulation of K-Means algorithm is

denoted in Equation 3:

2

1 1
()

n m

i ji j
RMSE x c

 (3)

Where:

||xi - cj|| = The Euclidean distance between

instances and cluster centroids

i = The number of instances

m = The number of cluster centroids

Algorithmic steps for K-Means Clustering

Input: VM-IMF Matrix, cluster centroids

Output: Cluster of methods sharing common attributes

1. for each row Rj, j=1,2,3,….m in the VM-IMF

Matrix do

2. for each cluster centroids Ci, i=1,2,3…. m do

3. compute RMSEji as Euclidean Distance

of Rj,Ci

4. end for

5. assign Rj to Ci whose distance is minimum

6. end for

7. recompute cluster centroids as

1

1
())

iE

i ik
i

C x
E

) where E is the number of

elements in the cluster

8. repeat steps 1 to 5 until there is no change in the

cluster centroids

Once when the result of K-Means clustering is

obtained, the VF-IMF metric value is computed as

shown in Equation 4:

total number of methods in the module
VFIMF

number of clusters created
 (4)

Experimentation and Result Discussion

The theoretical and empirical validation of the

proposed VF-IMF metric is carried out in this section

using three cohesion versions of OO programs with the

interpretation of low cohesion as High Complexity,

medium cohesion as medium complexity and high

cohesion as low Complexity.

Empirical Analysis

The empirical analysisis conducted with the

intention to demonstrate the methodology of the

proposed work with respect to complexity of cohesion

in modules. Table 1 denotes the variable sets of three

experimental OO modules namely GeoLow,

GeoMedium and GeoHigh.

Joy Christy Antony Sami and Umamakeswari Arumugam /Journal of Computer Science 2020, 16 (4): 422.429

DOI: 10.3844/jcssp.2020.422.429

426

Table 1: Variable set Description of Experimental Modules

 Number of

S. No Module Name Methods in module Variable Set

 axisX={x1,x2,x3,x4}

1 GeoLow 3 axisY={y1,y2,y3,y4}

 axisZ={z1,z2,z3,z4}

 setXaxis={x1,x2,x3,x4}

 setYaxis={y1,y2,y3,y4}

2 GeoMedium 6 setZaxis={z1,z2,z3,z4}

 getXaxis={x1,x2,x3,x4}

 getYaxis={y1,y2,y3,y4}

 getZaxis={z1,z2,z3,z4}

 getAxis={x1,x2,x3,x4,y1,y2,y3,y4,z1,z2,z3,z4}

3 GeoHigh 3 setAxis={x1,x2,x3,x4,y1,y2,y3,y4,z1,z2,z3,z4}

 printAxis={x1,x2,x3,x4,y1,y2,y3,y4,z1,z2,z3,z4}

Table 2: Cluster results for geolow cohesion complexity version

 Total number of Number of methods

 methods in the assigned in the

Cluster number module cluster Cluster percentage

0 1 axisX 33%

1 3 1 axisY 33%

2 1 axisZ 33%

The number of clusters to be created in the proposed

work is always the number of methods in the module.

The interpretation of experimentation is done with the

textual description of the cluster results through Weka

data mining tool for better understanding the advantages

of VF-IMF metric. Table 2 denotes the cluster

alignments of the low cohesion complexity version of

the experimental program ‘GeoLow’. From the results it

has been observed that the K-Means algorithm creates

clusters as equal to the number of methods in the module

and does not generate any empty clusters. This scenario

implies that the methods in the module neither share any

data member (variable) nor have any common data

member in their variable sets, which means there is no

cohesion present in the module. As cohesion strongly

impose variable sharing within module methods to

discover what method is relevant to a module and how

the module can further be used, it is inevitable to revisit

and reconstruct the module with sharable data members.

Once the attainment of cluster results is over, VF-IMF

metric is computed as the fraction of total number of

methods with number of clusters created. Thus, VF-IMF

metric for the experimental program - Geo Low is

computed as ‘1’ as shown below.

 3
1

 3

total number of methods in the module
VFIMF

number of clusters created

Table 3 depicts the cluster results obtained for

medium cohesion complexity version of the

experimental program for demonstrating the

performance of VMIMF metric for medium cohesion.

Unlike low cohesion version of the OO program, K-

Means algorithm for this experimental program

‘GeoMedium’ creates three variable groups and three

empty clusters. As the number of empty clusters lies

between the ranges of medium cohesion from 2 to m-1

clusters, the module is said to have medium cohesion.

The results clearly depict that the VF-IMF metric

creates clusters of variables and empty clusters when

there is a partial sharing of variable between module

methods. Medium cohesion means that the module

makes up some functionality that is spreading out of

the scope of the module. Thus, those methods should

be identified to be repaired and reconstructed. Thus,

VF-IMF metric for the experimental program

GeoMedium is computed as ‘2’ as shown below.

 6
2

 3

total number of methods in the module
VFIMF

number of clusters created

Finally, the proposed VF-IMF metric is computed for

high cohesion complexity version of the experimental

program for cohesion and shown in Table 4. According

to the proposed metric, when the cohesion complexity of

a module is low, the variable sets of all module

methods should form a single cluster and m-1 empty

clusters, which means that all methods in the module

share all the variables within module methods and the

variable sets of each method is identical from one

another. Having executed K-Means algorithm for the

low cohesion program, it has been proven that the

proposed metric generates a single cluster with m-1

cluster, thus, denotes low complexity cohesion module.

Joy Christy Antony Sami and Umamakeswari Arumugam /Journal of Computer Science 2020, 16 (4): 422.429

DOI: 10.3844/jcssp.2020.422.429

427

Table 3: Cluster results of geomedium cohesion complexity version

 Total number of Number of methods

Cluster number methods in the module assigned in the cluster Cluster members Cluster percentage

 getYaxis

0 2 setYaxis 33%

 getYaxis

1 6 2 setYaxis 33%

 getYaxis

2 2 setYaxis 33%

Table 4: Cluster results of GeoHigh cohesion complexity version

 Total number of Number of methods

 methods in the assigned in the

Cluster Number module Cluster Cluster Members Cluster Percentage

 getAxis, setAxis,

0 3 3 printAxis 100%

Table 5: Metric value analysis

Complexity

version LCOM1 LCOM2 LCOM3 TCC LCC VF-IMF VF-IMF Description

GeoLow 3 0.667 1 0 0 1 Clusters having Variable

 sets as Members with Non

 empty clusters

GeoMedium 8 0.337 0.8 0.533 0.65 2 2….m-1 clusters with

 empty clusters

GeoHigh 0 0 0 6 6 3 Single Cluster with m-1

 empty clusters

0
0.6

1

0 0

3

8

0.3
0.8 0.5 0.65

2

3

0 0

6 6

1

0

1

2

3

4

5

6

7

8

9

LCOM1 LCOM2 LCOM3 TCC LCC VF-IMF

M
et

ri
c

V
a

lu
e

/n
u

m
b

er

Cohesion Metrics

Metric Value Analysis

GeoHigh

GeoMediu

m

Fig. 2: Metric value analysis

When the module is designed by sharing all variables

amongst module methods, the maintenance of a module

becomes easier and the variables within the module are

directly related to the functionality that module is meant

to provide and reduces duplication of knowledge in

modules. VF-IMF metric for the experimental program

GeoHigh is computed as ‘3’ as shown below.

The comparison of proposed VF-IMF metric and

other traditional cohesion metric is shown in Table 5.

The pictorial representation of the metric value

analysis of the traditional cohesion metrics LCOM1,

LCOM2, LCOM3, TCC and LCC with VF-IMF is

shown in Fig. 2. The figure shows less meaningful

interpretation of traditional metrics with respect to low,

medium and high cohesions. The distribution of

traditional cohesion metric values from low cohesion to

high is not linear and confuses the programmer in

making reconstruction decisions. On the other hand, the

Joy Christy Antony Sami and Umamakeswari Arumugam /Journal of Computer Science 2020, 16 (4): 422.429

DOI: 10.3844/jcssp.2020.422.429

428

VF-IMF metric values for the low, medium and high

cohesions are 1, 2 and 3 respectively. The metric clearly

measures the low cohesion complexity program as 1,

medium cohesion complexity program as 2 and high

cohesion complexity program as3, thus, showing a linear

relationship on the distribution of metric values. This kind

of representation indeed helps the testers for the effective

reconstruction of the module. In addition, the proposed

work visualizes cluster results through graphical notations

that helps the programmer to identify the possible

construction of methods to create high cohesion modules.

Theoretical Validation

Weyuker suggested nine properties to evaluate any

software metric to be proven as valid (Mal and Rajnish,

2013; Rana and Singh, 2018; Xiang et al., 2019). Hence,

this section theoretically validates the proposed VF-IMF

metric against the properties of Weyuker’s:

1. Non-Coarseness: VF-IMF metric does not rank all

modules with same metric value

2. Non-Negativity: VF-IMF metric does not result a

negative number as metric value

3. Non-uniqueness: VF-IMF metric may result same

metric value for finite number of classes, if the

modules are equally as complex

4. Design Details are Important: VF-IMF metric does

not result same metric value when the

implementation of two modules are different even if

they provide same functionality

5. Monotonicity: VF-IMF metric value for two

combined modules can never be less than the metric

value for either of modules

6. Non-equivalence of Interaction: VF-IMF metric

does not result the same value for two modules

pertaining same functionality when interacting with

a different module

7. Permutation: VF-IMF metric is not sensitive to the

permutations of modules, even though the property

does not suitable for object oriented programming

8. Renaming: VF-IMF metric value does not affect by

renaming module.

9. Interaction increases complexity: The combined VF-

IMF metric value of two modules is higher than the

sum of metric values of individual modules as the

interaction increases complexity.

The proposed VF-IMF metric satisfies all the

properties of Weyuker. Thus, VF-IMF is proven to be

valid software metric.

Conclusion

In this paper, through VF-IMF metric, the variables

are clustered to depict what level of cohesion exist in a

module among the three low, high and medium

cohesions, so that the role of a developer is made easier

to develop a module that ensures reusability of the

code. The quality of the metric is also validated against

a number of modules through theoretical and empirical

analysis. The result shows that the performance of VF-

IMF metric is good in elucidating the existence of low,

medium and high level cohesions in a module than that

of LCOM along with the graphical representation of

variable clusters. If the module is refined by grouping

the variables with the clusters created by K-Means

algorithm will lead to high cohesion. In addition, the

theoretical validation of VF-IMF metric also conforms

to all the properties of Weyuker to be proven as a valid

metric. In future, the approach can also be extended to

identify the usefulness of machine learning techniques

to measure the levels of coupling in a module, as the

modules are expected to be designed with high

cohesion and low coupling.

Acknowledgement

The authors would like to thank SASTRA Deemed to

be University for the facilities used in this work

Author’s Contributions

All authors have equally contributed to the final

version of the manuscript

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of

the other authors have read and approved the manuscript

and there are no ethical issues involved

References

Alzahrani, M., S. Alqithami and A. Melton, 2019.
Using client-based class cohesion metrics to
predict class maintainability. Proceedings of the
IEEE 43rd Annual Computer Software and
Applications Conference (COPSAC’ 19), IEEE
Xplore press, pp: 72-80.

Cinnéide, M.O., I.H. Moghadam, M. Harman, S.

Counsell and L. Tratt, 2017. An experimental

search-based approach to cohesion metric

evaluation. Empirical Software Eng., 22: 292-329.
Ganesh, S.H. and H.B. Vincent Raj, 2015. Performance

based analysis on MALCOM-A software metric.
Proceedigs of the International Conference on
Circuits, Power and Computing Technologies
(ICCPCT’ 2015), IEEE xplore press, pp. 1-5.

Goel, B.M. and S.B. Gupta, 2017. Dynamic coupling

based performance analysis of object oriented

systems. Int. J. Advanced Res. Computer Sci.

Joy Christy Antony Sami and Umamakeswari Arumugam /Journal of Computer Science 2020, 16 (4): 422.429

DOI: 10.3844/jcssp.2020.422.429

429

Gu, A., X. Zhou, Z. Li, Q. Li and L. Li, 2017. Measuring

object-oriented class cohesion based on complex

networks. Arabian J. Sci. Eng., 42: 3551-3561.

Kansal, D., T. Aher and R.K. Joshi, 2019. Sensitivity

and Monotonicity in Class Cohesion Metrics.

Proceedings of the 12th Innovations on Software

Engineering Conference (formerly known as India

Software Engineering Conference), ACM.

Kerdoudi, M.L., C. Tibermacine and S. Sadou, 2016.

Opening web applications for third-party

development: A service-oriented solution. Service

Oriented Computing Applications, 10: 437-463.

Mal, S. and K. Rajnish, 2013. Applicability of weyuker's

property 9 to inheritance metric. Int. J. Computer

Applications.

Purao, S. and V. Vaishnavi, 2003. Product metrics for

object-oriented systems. ACM Comput. Surveys,

35: 191-221.

Rana, P. and R. Singh, 2018. Evaluation and

applicability of weyuker's properties on software

metrics for component based software system. Int. J.

Engineering Sci. Mathematics, 7: 495-505.

Rathee, A. and J.K. Chhabra, 2018. Improving cohesion of

a software system by performing usage pattern based

clustering. Procedia Computer Sci., 125: 740-746.

Santos, L.D.C., R.M. Saraiva, M. Perkusich, H.O.

Almeida and A. Perkusich, 2017. An empirical study

on the influence of context in computing thresholds

for Chidamber and Kemerer metrics. SEKE.

Wu, D., L. Chen, Y. Zhou and B. Xu, 2015. A metrics-

based comparative study on object-oriented

programming languages. State Key Laboratory for

Novel Software Technology at Nanjing University.

Xiang, Y., W. Pan, H. Jiang, Y. Zhu and H. Li, 2019.

Measuring software modularity based on software

networks. Entropy, 21: 344.

Zhang, J., J. Wu, Y. Xia and F. Ye, 2018. Measuring

cohesion of software systems using weighted

directed complex networks. Proceedings of the

IEEE International Symposium on Circuits and

Systems (ISCAS’ 18), IEEE Xplore press, pp: 1-5.

