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Abstract: Cohesion in Object Oriented (OO) modules impact reusability, 

efficiency and complexity of software. OO Programmers are mandated to 

create software with high cohesion. The testing phase in Software 

Development Life Cycle (SDLC) is not only concerned about creating error 

free software but also assess quality of code through software metrics. The 

metric‘Lack of Cohesion in Methods (LCOM)’ is one of the significant OO 

metric for measuring level of cohesion in software modules. LCOM and its 

improvised versions of cohesion metrics output degree of cohesion in 

software modules rather than providing solutions to reconstruct the poorly 

cohesive modules. Further, the traditional cohesion metrics do not 

differentiate the possible levels such as high, medium and low cohesions. 

Thus, in this paper a novel, Variable Frequency – Inverse Method 

Frequency (VF-IMF) based machine learning metric is proposed to assess 

the level of cohesion in modules and also to group module methods to 

instill high cohesion. The proposed metric is experimented over three 

sample modules represents each level of cohesion. The experimental results 

show that the proposed metric clearly differentiates the three levels of 

cohesion and offers a compromised solution for building high cohesive 

modules than traditional LCOM metrics. The metric is also validated 

against Weyuker’s properties and is proven to be a valid metric as it 

satisfies all the 9 properties. 
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Introduction 

Software metric is a standard measure of a degree to 
which software system or process possesses some 
property. In other words, metrics estimate the quality of 
the software in the testing phase of software 
development life cycle. The traditional classification of 
software metrics can be divided into procedure and 
object oriented programming. Object oriented 
programming is now a widely adopted approach in 
software engineering because software built using this 
technique is usually easier to maintain. OO metrics are a 
division of software metrics that evaluates the features of 
OO programming such as modularity, reusability, 
inheritance, abstraction and encapsulation and so on. In 
modularity, cohesion is an important feature for 
exhibiting the intra module communications. Good 
modular designs maximize cohesion and promote 
encapsulation. High cohesion classes do not share their 
attributes with other classes and can easily be reused. 
Thus, high cohesion promotes reusability by reducing 
complexity. Software testing researchers have come up 
with many object oriented metrics such as LCOM, Tight 

Class Cohesion (TCC) and Loose Class Cohesion (LCC) 
to evaluate software module with respect to cohesion. 
But, all those metrics tend to highlight only the 
existence/non-existence of cohesion in modules, without 
specifying intermediate levels such as Low, Medium and 
High. Modified Approach on LCOM (MALCOM) takes 
a different turn by addressing the issue (Ganesh et al., 
2015). But, the usefulness of software metrics should go 
beyond the expectations on what action the programmer 
ought to take with the obtained metric value or when the 
class has poor cohesion. To answer these questions, 
machine learning techniques come into picture. Machine 
learning techniques consist series of statistical 
algorithms that take input data to analyze the hidden 
pattern or useful knowledge.  

The paper combines the traditional concepts of 
software metrics with machine learning algorithms to 
provide a concrete solution for constructing highly 
cohesive modules in object oriented software. 
Unsupervised algorithms in machine learning techniques 
describe the nature or characteristics of data. Clustering 
is one of the unsupervised learning algorithms that 
groups similar objects as clusters. Clustering algorithms 
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are widely used in image analysis, document clustering, 
medical diagnosis, customer segmentation and pattern 
recognition and so on. The application of clustering 
algorithms in software metrics is yet another novel 
approach of the paper. Initially, the methods in a module 
are transformed to a structure that gets processed by the 
clustering algorithm is same as how tokens are parsed in 
document clustering using Term Frequency-Inverse 
Document Frequency (TF-IDF). In this work, we use K-
Means clustering algorithms for generating clusters as it 
is straight forward, most popular and widely used 
algorithm. The methods that share module variables are 
clustered with the assumption, if all methods grouped in 
one cluster shows high cohesion, grouped in different 
clusters equal to number of methods in module as low 
cohesion. If the clusters formed using the algorithm 
neither puts all methods in one cluster nor forms clusters 
as equal to the number of methods in the module tends to 
fall in the medium cohesion.  

The remaining section of the paper organized as 

follows: Section II reviews the existing literature in 

software metrics, section III describes the methodology, 

section IV explicates the experimentation and result 

discussion and finally section V concludes the findings 

and future works of the paper. 

Review of Literature 

Over a detailed survey on the Cohesion, new metrics 
were introduced ranging from syntactic to semantic 
analysis (Gu et al., 2017; Alzahrani et al., 2019; 
Cinnéide et al., 2017) and software metrics tools were 
developed e.g. VizzAnalyzer, Analyst4j, Understand and 
Ckjm. A study on comparing these tools was carried out 
by (Purao and Vaishnavi, 2003). However, 
implementation of cohesion metrics from these tools is 
not enough for the investigation of cohesion due to 
several relationships being overlooked. In this paper, the 
authors tried to look at the relationships that make up 
cohesion by examining existing frameworks and 
selecting metrics that correlate to the respective 
relationships. The selected metrics are then formalized to 
show how these metrics are implemented. Another 
detailed survey On Chidamber and Kemerer (Santos et 
al., 2017) introduced the primary cohesion metric for 
object-oriented systems. The authors defined LCOM 
metric as measure of cohesion which is the difference of 
null intersections with non-null intersections of methods 
in module and concluded that higher cohesion results in 
higher quality. The authors later revised their definition 
of LCOM to incorporate Loose and Tight class 
cohesions (Wu et al., 2015; Kerdoudi et al., 2016), 
where LCC is the fraction of number of direct 
connections and number of indirect connections with 
maximum number of possible connections and TCC is 
the fraction of number of direct connections with 
maximum number of possible connections. Goel and 
Gupta (2017) propose a dynamic approach to measure 

cohesion of software systems. The paper concluded that 
the conventionally used measurement systems were 
statically headed and provided the unfinished dynamic 
behaviour of the system. This is due to static systems 
that provide measures only for syntactic program 
analysis and so they have tiny ability. They insisted that 
the dynamic measures should always be utilized in 
combination with their static counterparts. Vincent 
proposed MALCOM metric by introducing a third 
variable ‘R’ in addition to ‘P’ and ‘Q’ in LCOM. The 
variable ‘P’ in MALCOM is set to 1 if the total number 
of resultant variables equal to the fraction of total 
number of variables with total number of methods. ‘Q’ 
variable in MALCOM is set to -1 if the total number of 
variables equal to total number of variables declared in 
the module and Else the variable ‘R’ is set to 0. The 
authors defined ‘P’ as high cohesion, ‘Q’ as poor 
cohesion and ‘R’ as partial cohesion. Kansal et al. 
(2019) formulated Improved Sensitive Class Cohesion 
Metric (ISCOM). The authors have reduced the intensity 
of pair of methods as the fraction of shared variables 
between method-pairs by the average cardinalities of 
the two sets of variables accessed by the methods. 
Rathee et al. (2018) presented FUPClust based on 
Frequent Usage Pattern based cohesion metric by 
initially considering class as a module and 
subsequently group them as packages to improve 
cohesion. The metric extracted the frequent usage 
patterns from member functions interactions to capture 
the cohesiveness of the module, further performed 
clustering to increase cohesion and decrease coupling 
among modules. Zhang et al. (2018) developed a 
directed and weighted software dependency network 
model to measure high cohesion-low coupling nature of 
object oriented software systems. The authors denoted 
classes as nodes, their relationships with other classes as 
edges and the number of occurrences of the relationships 
as weights for the accurate categorization of dependency 
strength between software components. 

The review clearly insists the invention of newer 

cohesion metrics as the exiting metrics fails to 

differentiate the possible levels of cohesions such as low, 

medium, high and boundaries to marginalize them. 

Elucidation of cohesion levels in module initially helps 

the programmers in decision making with respect to 

acceptance or rejection of modules eventually aids to 

build reusable and maintainable software. Thus, in this 

paper an effort has been made to analyze cohesion levels 

and their inferences. 

Methodology 

This section explicates the methodology of the 

proposedVF-IMF cohesion metric by means of 

clustering the variables used across the module methods. 

Following are the few important terms used to construct 

the VF-IMF metric: 
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 OO Module: The software is broken into modules. 

Each module is further tokenized as sets of methods 

having variables used by them as members. 

 VF-IMF Dataset: A numerical dataset with row as 

methods and column as variable is constructed from 

the categorical sets. The dataset consists value ‘1’, if 

method ‘i’ uses variable ‘j’ in the intersecting ‘ij’ 

position or ‘0’ otherwise. This process is similar to 

the process of document clustering. Here, a 

variable’s frequency within and between the 

methods are analysed to measure its significance in 

software module.  

 K-means Algorithm: This algorithm is used to group 

the variables in the form of clusters. 

 VF-IMF Cohesion Metric: The output of clustering 

algorithm plots shared and unshared variable in 

separate classes and suggests possible grouping of 

methods into different modules 

 

Figure 1 depicts the process flow of the proposed VF-

IMF metric. 

 

Calculating VF-IMF 

The datasets created from the OO module is given as 

input to VF-IMF matrix. VF-IMF is the customized 

version of popular concept Term Frequency – Inverse 

Document Frequency (TF-IDF). TF-IDF is the most 

common and widely used method in text mining and 

document clustering to group documents of same type. 

The statistical measure aids to evaluate the importance of 

a word with respect to corpus of documents, where, the 

term frequency refers to significance of a term in a 

document and inverse document frequency refers to the 

significance of the term across multiple documents. In 

this work, the terms are assumed as variables and 

methods are denoted as documents. Computation of VF-

IMF with variables and methods in a module is a 

significant contribution in the proposed work as they 

enable K-Means algorithm to create clusters of methods 

that actually shares variables across them. The 

computation of VF-IMF with respect to proposed 

cohesion metric is shown. 

Variable- Frequency (VF) 

VF calculation slightly varies from its base TF. The 

value of TF in document clustering is the fraction of 

number of occurrences of term ‘i’ in document ‘d’ with 

the total number of terms in the document. On the other 

hand, VF value for variable ‘i’ is set to ‘1’, if the variable 

present in method ‘j’ or ‘0’ otherwise. Equation 1 

denotes the notion of VF for variable ‘i’: 

 

 1 1

1        

0

m n

j i

if variable i is present in method j
VF

otherwise
 


  


 (1) 

 

Where: 

VF  = The frequency of variable i in method j 

n = The number of variables in method j 

m = The number of methods in module 

 

Inverse Method Frequency (IMF) 

The inverse method frequency highlights the 

importance of a variable ‘i’ within module methods, by 

comparing its presence in other methods. Specifically, 

the Inverse Method Frequency is shown in Equation 2: 

 

| |
logi

m

M
IMF

M
  (2) 

 

Here: 

|M| = Gives the number of methods in the module 

Mm = The number of methods containing the variable i 

 

Another notation of Equation 2 is shown in Eq. 3: 

 

   
log

       
i

total number of methods
IMF

number of methods with variable i in it
  (3) 

 

 
 

Fig. 1: Process Flow of VF-IMF metric 

OO Module Construct variable sets of 

module methods 
Prepare VF and IMF matrices 

Implement K-means 

Algorithm for clustering 
Compute VF-IMF 

metric value 

Prepare dataset with VF-

IMF value   
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Algorithmic steps for VF-IMF Transformation of 

Class Module: 

Input: An Object Oriented Class 

Output: VF-IMF Dataset 

1. for each inverse frequency, Fi, i=1,2,3,…. n for 

module variables do 

2. Set IFi as 0 

3. end for 

4. for each method Mj, j=1,2,3,…m in a module do 

5. for each variable Vi, i=1,2,3,….n in a module do 

6. if variable Vi is found in method Mj 

7. Set VFji as 1 

8. Increment IFi by 1 

9.           else  

10.                set VFi as 0 

11. end if 

12.      end for 

13. end for 

14. for each inverse method frequency MFi, i=1,2,3,… 

n for module variables do 

15.      set IMFi as m/IFi 

16. end for 

17. for each method Mj, j=1,2,3,…m in a module do 

18. for each variable Vi, i=1,2,3,….n in a module do 

19.           set VF-IMFji as VFjiIMFi 

20.      end for 

21. end for 

 

Clustering by K-MEANS 

The inputs to K-means algorithm are the cohesion 

value calculated using VF-IMF. The main goal is to 

build clusters of methods that have common attributes. 

Thus, number of clusters to be created by the proposed 

work is the number of methods that the module has. The 

interpretation of K-means clustering should be made 

according to the following findings: 

 

 F1: if only one cluster is created with remaining m-1 

empty clusters, the module is said to have high 

cohesion 

 F2: if m clusters created with one instance in each 

cluster, the module is said to have poor cohesion 

 F3: if k clusters created with arbitrary instances in 

each cluster, m-1 non-empty clusters, the module is 

said to have moderate cohesion 

 

Taking F3 into account, the non-empty clusters can 

be reformed to create new modules with high cohesion. 

K-means algorithm initially chooses ‘m’ random clusters 

centroids, where ‘m’ is the number of methods in the 

module. The distance between cluster centroids and the 

instances are computed and grouped into the cluster with 

the nearest distance. The process gets repeated until the 

cluster formation of the current iteration is same as the 

cluster formation of previous iteration (i.e.) when no new 

cluster formation is possible to reduce the root mean 

squared error. The formulation of K-Means algorithm is 

denoted in Equation 3:  

 
2

1 1
( )

n m

i ji j
RMSE x c

 
    (3) 

 

Where: 

||xi - cj|| = The Euclidean distance between 

instances and cluster centroids 

i = The number of instances 

m = The number of cluster centroids 

 

Algorithmic steps for K-Means Clustering 

Input: VM-IMF Matrix, cluster centroids 

Output: Cluster of methods sharing common attributes 

1. for each row Rj, j=1,2,3,….m in the VM-IMF 

Matrix do 

2.      for each cluster centroids Ci, i=1,2,3…. m do 

3.           compute RMSEji as Euclidean Distance 

of Rj,Ci 

4.      end for 

5.      assign Rj to Ci whose distance is minimum  

6. end for 

7. recompute cluster centroids as 

1

1
( ) )

iE

i ik
i

C x
E 

  ) where E is the number of 

elements in the cluster 

8. repeat steps 1 to 5 until there is no change in the 

cluster centroids 

 

Once when the result of K-Means clustering is 

obtained, the VF-IMF metric value is computed as 

shown in Equation 4: 

 

      

   

total number of methods in the module
VFIMF

number of clusters created
  (4) 

 

Experimentation and Result Discussion 

The theoretical and empirical validation of the 

proposed VF-IMF metric is carried out in this section 

using three cohesion versions of OO programs with the 

interpretation of low cohesion as High Complexity, 

medium cohesion as medium complexity and high 

cohesion as low Complexity. 

Empirical Analysis 

The empirical analysisis conducted with the 

intention to demonstrate the methodology of the 

proposed work with respect to complexity of cohesion 

in modules. Table 1 denotes the variable sets of three 

experimental OO modules namely GeoLow, 

GeoMedium and GeoHigh. 
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Table 1: Variable set Description of Experimental Modules 

  Number of  

S. No Module Name Methods in module Variable Set 

   axisX={x1,x2,x3,x4} 

1 GeoLow 3 axisY={y1,y2,y3,y4} 

   axisZ={z1,z2,z3,z4} 

   setXaxis={x1,x2,x3,x4} 

   setYaxis={y1,y2,y3,y4} 

2 GeoMedium 6 setZaxis={z1,z2,z3,z4} 

   getXaxis={x1,x2,x3,x4} 

   getYaxis={y1,y2,y3,y4} 

   getZaxis={z1,z2,z3,z4} 

   getAxis={x1,x2,x3,x4,y1,y2,y3,y4,z1,z2,z3,z4} 

3 GeoHigh 3 setAxis={x1,x2,x3,x4,y1,y2,y3,y4,z1,z2,z3,z4} 

   printAxis={x1,x2,x3,x4,y1,y2,y3,y4,z1,z2,z3,z4} 

 
Table 2: Cluster results for geolow cohesion complexity version 

 Total number of Number of methods 

 methods in the assigned in the 

Cluster number module cluster  Cluster percentage 

0  1 axisX 33% 

1 3 1 axisY 33% 

2  1 axisZ 33% 

 

The number of clusters to be created in the proposed 

work is always the number of methods in the module. 

The interpretation of experimentation is done with the 

textual description of the cluster results through Weka 

data mining tool for better understanding the advantages 

of VF-IMF metric. Table 2 denotes the cluster 

alignments of the low cohesion complexity version of 

the experimental program ‘GeoLow’. From the results it 

has been observed that the K-Means algorithm creates 

clusters as equal to the number of methods in the module 

and does not generate any empty clusters. This scenario 

implies that the methods in the module neither share any 

data member (variable) nor have any common data 

member in their variable sets, which means there is no 

cohesion present in the module. As cohesion strongly 

impose variable sharing within module methods to 

discover what method is relevant to a module and how 

the module can further be used, it is inevitable to revisit 

and reconstruct the module with sharable data members. 

Once the attainment of cluster results is over, VF-IMF 

metric is computed as the fraction of total number of 

methods with number of clusters created. Thus, VF-IMF 

metric for the experimental program - Geo Low is 

computed as ‘1’ as shown below. 
 

      3
1

   3

total number of methods in the module
VFIMF

number of clusters created
    

 

Table 3 depicts the cluster results obtained for 

medium cohesion complexity version of the 

experimental program for demonstrating the 

performance of VMIMF metric for medium cohesion. 

Unlike low cohesion version of the OO program, K-

Means algorithm for this experimental program 

‘GeoMedium’ creates three variable groups and three 

empty clusters. As the number of empty clusters lies 

between the ranges of medium cohesion from 2 to m-1 

clusters, the module is said to have medium cohesion. 

The results clearly depict that the VF-IMF metric 

creates clusters of variables and empty clusters when 

there is a partial sharing of variable between module 

methods. Medium cohesion means that the module 

makes up some functionality that is spreading out of 

the scope of the module. Thus, those methods should 

be identified to be repaired and reconstructed. Thus, 

VF-IMF metric for the experimental program 

GeoMedium is computed as ‘2’ as shown below. 

 

      6
2

   3

total number of methods in the module
VFIMF

number of clusters created
    

 

Finally, the proposed VF-IMF metric is computed for 

high cohesion complexity version of the experimental 

program for cohesion and shown in Table 4. According 

to the proposed metric, when the cohesion complexity of 

a module is low, the variable sets of all module 

methods should form a single cluster and m-1 empty 

clusters, which means that all methods in the module 

share all the variables within module methods and the 

variable sets of each method is identical from one 

another. Having executed K-Means algorithm for the 

low cohesion program, it has been proven that the 

proposed metric generates a single cluster with m-1 

cluster, thus, denotes low complexity cohesion module. 
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Table 3: Cluster results of geomedium cohesion complexity version  

 Total number of Number of methods 

Cluster number methods in the module assigned in the cluster Cluster members Cluster percentage 

   getYaxis 

0  2 setYaxis 33% 

   getYaxis 

1 6 2 setYaxis 33% 

   getYaxis 

2  2 setYaxis 33% 

 

Table 4: Cluster results of GeoHigh cohesion complexity version 

 Total number of Number of methods 

 methods in the assigned in the 

Cluster Number module Cluster Cluster Members Cluster Percentage 

   getAxis, setAxis, 

0 3 3 printAxis 100% 

 

Table 5: Metric value analysis 

Complexity 

version LCOM1 LCOM2 LCOM3 TCC LCC VF-IMF VF-IMF Description 

GeoLow 3 0.667 1 0 0 1 Clusters having Variable  

       sets as Members with Non 

       empty clusters 

GeoMedium 8 0.337 0.8 0.533 0.65 2 2….m-1 clusters with  

        empty clusters 

GeoHigh 0 0 0 6 6 3 Single Cluster with m-1  

       empty clusters 
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Fig. 2: Metric value analysis 
 

When the module is designed by sharing all variables 

amongst module methods, the maintenance of a module 

becomes easier and the variables within the module are 

directly related to the functionality that module is meant 

to provide and reduces duplication of knowledge in 

modules. VF-IMF metric for the experimental program 

GeoHigh is computed as ‘3’ as shown below. 

The comparison of proposed VF-IMF metric and 

other traditional cohesion metric is shown in Table 5. 

The pictorial representation of the metric value 

analysis of the traditional cohesion metrics LCOM1, 

LCOM2, LCOM3, TCC and LCC with VF-IMF is 

shown in Fig. 2. The figure shows less meaningful 

interpretation of traditional metrics with respect to low, 

medium and high cohesions. The distribution of 

traditional cohesion metric values from low cohesion to 

high is not linear and confuses the programmer in 

making reconstruction decisions. On the other hand, the 
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VF-IMF metric values for the low, medium and high 

cohesions are 1, 2 and 3 respectively. The metric clearly 

measures the low cohesion complexity program as 1, 

medium cohesion complexity program as 2 and high 

cohesion complexity program as3, thus, showing a linear 

relationship on the distribution of metric values. This kind 

of representation indeed helps the testers for the effective 

reconstruction of the module. In addition, the proposed 

work visualizes cluster results through graphical notations 

that helps the programmer to identify the possible 

construction of methods to create high cohesion modules. 

Theoretical Validation 

Weyuker suggested nine properties to evaluate any 

software metric to be proven as valid (Mal and Rajnish, 

2013; Rana and Singh, 2018; Xiang et al., 2019). Hence, 

this section theoretically validates the proposed VF-IMF 

metric against the properties of Weyuker’s: 

 

1. Non-Coarseness: VF-IMF metric does not rank all 

modules with same metric value 

2. Non-Negativity: VF-IMF metric does not result a 

negative number as metric value 

3. Non-uniqueness: VF-IMF metric may result same 

metric value for finite number of classes, if the 

modules are equally as complex 

4. Design Details are Important: VF-IMF metric does 

not result same metric value when the 

implementation of two modules are different even if 

they provide same functionality 

5. Monotonicity: VF-IMF metric value for two 

combined modules can never be less than the metric 

value for either of modules 

6. Non-equivalence of Interaction: VF-IMF metric 

does not result the same value for two modules 

pertaining same functionality when interacting with 

a different module  

7. Permutation: VF-IMF metric is not sensitive to the 

permutations of modules, even though the property 

does not suitable for object oriented programming 

8. Renaming: VF-IMF metric value does not affect by 

renaming module. 

9. Interaction increases complexity: The combined VF-

IMF metric value of two modules is higher than the 

sum of metric values of individual modules as the 

interaction increases complexity. 

 

The proposed VF-IMF metric satisfies all the 

properties of Weyuker. Thus, VF-IMF is proven to be 

valid software metric. 

Conclusion  

In this paper, through VF-IMF metric, the variables 

are clustered to depict what level of cohesion exist in a 

module among the three low, high and medium 

cohesions, so that the role of a developer is made easier 

to develop a module that ensures reusability of the 

code. The quality of the metric is also validated against 

a number of modules through theoretical and empirical 

analysis. The result shows that the performance of VF-

IMF metric is good in elucidating the existence of low, 

medium and high level cohesions in a module than that 

of LCOM along with the graphical representation of 

variable clusters. If the module is refined by grouping 

the variables with the clusters created by K-Means 

algorithm will lead to high cohesion. In addition, the 

theoretical validation of VF-IMF metric also conforms 

to all the properties of Weyuker to be proven as a valid 

metric. In future, the approach can also be extended to 

identify the usefulness of machine learning techniques 

to measure the levels of coupling in a module, as the 

modules are expected to be designed with high 

cohesion and low coupling.  
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