

 © 2020 Neha Rajan and Sunderrajan Srinivasan. This open access article is distributed under a Creative Commons

Attribution (CC-BY) 3.0 license.

 Journal of Computer Science

Original Research Paper

Exploring Learning Capability of an Agent in SOAR: Using 8-

Queens Problem

1Neha Rajan and 2Sunderrajan Srinivasan

1Department of Computer Science, Mewar University, Rajasthan, India
2Department of Computer Science, PDM University, Bahadurgarh, India

Article history
Received: 04-11-2019
Revised: 25-03-2020
Accepted: 23-05-2020

Corresponding Authors:

Neha Rajan
Department of Computer
Science, Mewar University,
Rajasthan, India
Email: neharajan9@yahoo.com

Abstract: Cognitive architecture deals with describing the intelligent

behavior of an agent. The description of intelligent behavior states how

well an agent can solve and represent variety of problems of the domain-

independent task. The intelligence of an agent is considered in terms of its
learning capabilities. In this study, we are exploring solving 8-Queens

combinatorial problem using SOAR symbolic cognitive architecture. An 8-

Queens problem consists of various constraints which is expressed by

Constraint Satisfaction Problem (CSP). The constraints are further

generalized in the Fuzzy Constraint Satisfaction Problem (FCSP) (a sub

domain of CSP), which simplifies the condition of constraints by providing

the priority value to the location of queen. This paper provides a way to

solve 8-Queens problem by using a heuristic search and backtracking.

These concepts are implemented in SOAR to find an efficient solution of

similar task. The implementation of 8-Queens in SOAR provides

computation efficiency in solving and a way for an agent to learn their own
production rules to solve similar domain problems. The 8-Queens problem

is analyzed by two parameters. First parameter defines how an agent can

learn and transfer rules to solve similar domain problem. The second

parameter describes number of chunks required to solve a problem.

Keywords: Procedural Memory, Chunking, Constraint Satisfaction

Problem, Backtracking

Introduction

The recent advancement of cognitive architecture has

made general purpose intelligent agents smart. These

agents can solve tasks just as humans can (Lindes,

2018). The various popular programming language such

as Java, C++ and C are not required for these tasks.

Moreover, these languages do not offer any built-in

features to communicate the problem space as effectively

and efficiently as an intelligent agent can perform in
comparison. Cognitive Architectures such as GPS,

SOAR (Laird, 2012), ACT or Clarion provide the

higher levels of abstraction fixed processes, memories

and their associated algorithms and data structures.

However, the user must still program the tasks at the

symbol level to symbolize and process knowledge

about the environment for reasoning, problem solving

activities and goal-oriented behavior.

Research on cognitive architectures is essential as

these architectures provide capabilities like creation and

understanding of problem tasks. This general-purpose

behavior of agents in cognitive architecture resembles

the problem-solving skills of humans (Wray and Chong,

2007). In a previous couple of decades, AI research has

actively used specific algorithms to solve particular

problems, whereas cognitive architecture aims to cover

across diverse sets of tasks and domains. Cognitive

architectures are more capable of handling domain

related problems or independent domain learning based
on real-life issues. The problems are well described by

CSP. CSP is used to show how constraints are related

logically among several variables. CSP is defined

knowledge in a set of hard constraints. These

constraints are restricted by particular values, which

sometime results in no-solution of the problem. The

rigidity is overcome by FCSP that makes hard

constraints accessible in such a way that constraint

encompasses both decision similarities among

permissible instantiations of variables and set

preferences amid constraints.

The FCSP is utilized in making symbols in SOAR to
define the facts about the real world. These symbols can

Neha Rajan and Sunderrajan Srinivasan / Journal of Computer Science 2020, 16 (5): 642.650

DOI: 10.3844/jcssp.2020.642.650

643

be manipulated as some predefined instruction sets.

Furthermore, these instruction sets are defined under the

term as rule-based deductive reasoning, which

manufactures the knowledge about the problem,
represents in production rules and also determines how

to solve problems using different techniques.

The integration of FCSP and SOAR helps general

agent to become intelligent enough to perform a variety

of tasks related to the problem. This paper demonstrates

the solving method for the 8-Queens Problem and makes

an agent intelligent enough to solve similar domain tasks

or repeated task.

Here is a brief description of 8-queens problem. The

8 different queen pieces need to be placed on 8*8

chessboard such that each queen piece can follow the
following constraints:

C1- No two or more queens can place in the same row

C2- No two or more queens can place in the same

column

C3- No two or more queens can place in the same

diagonal

An architectural framework is required to represent

the above-mentioned problem statement. By providing

framework, a computational infrastructure is maintained

for developing intelligent agents. These agents are
designed to break down problems into sub-problems,

look for algorithms to solve these sub-problems and

define how to integrate learning with performance and,

how to express knowledge so that it can be retrieved

effectively and efficiently.

The reason for using SOAR as architectural
framework is due to SOAR’s ability to simplify

computation. The computation is basically based on

problem spaces, states, operators and goals.

SOAR manages several memories in its architecture

as depicted in Fig. 1 such as working memory, long-term

memories as episodic memory, procedural memory and

semantic memory. Each memory has its own specific

role to perform, such as working memory is responsible

for getting knowledge from long-term memories as well

as being the basis for initiating action.

The three long-term symbolic memories are
independent in performance (Christophe et al., 2009)

and have separate learning mechanism. The procedural

long-term memory is used for retrieving the knowledge

that controls the processing. The knowledge in

procedural long-term memory (Laird et al., 2017) is

represented as production rules (other words if-else

statement) that match conditions against the contents of

working memory and perform actions in parallel.

Production rules commonly modify the status of working

memory. To control behavior of these production rules,

there is need to generate preferences, which are used by the

decision procedure to select an appropriate operator
(Mininger and Laird, 2018). Operator selection is a major

key of making decision and taking action in SOAR.

Fig. 1: The architecture of SOAR cognitive architecture

Long-term memories

Procedural Semantic Episodic

Reinforcement
learning

Chunking Decision

procedure

Semantic
learning

Episodic

learning

Working memory symbolic graph structure

Motor
Visual buffer object-based

continous metric

Perception

Neha Rajan and Sunderrajan Srinivasan / Journal of Computer Science 2020, 16 (5): 642.650

DOI: 10.3844/jcssp.2020.642.650

644

Once an operator is selected, it is applied and causes

persistent changes in working memory. The other

memories monitor some of the reserved areas of working

memory. The changes that occur in working memory can
either initiate retrievals from semantic/episodic memory

or initiate actions in the environment. Soar has a couple

of learning mechanisms (Zwaan and Radvansky, 1998)

correlated by procedural memory that consists of

chunking and reinforcement learning. Semantic memory

store general facts, whereas episodic memory store

snapshots of working memory.

Method

Integrated Architecture of FCSP and SOAR.

The design goals of integrated FCSP and SOAR are

depicted below in Fig. 2. The Fig. 2 has two majors

sections which are used for solving 8-Queens problem.

First, the FCSP is applied to those variables that have

domain independent priority values. The heuristic search

approach is applied using backtracking in SOAR.
Second, is to focus on how SOAR internal function

procedure is represented to select the priority value of

the variable (Cassimatis, 2006). The knowledge of

solving problem is expressed in integrated architecture of

SOAR and FCSP which consists of 1. Soar Core 2. Soar

Agent 3. External Agent.

Soar Core

Soar Core represents a fixed set of computations

which efficiently bring large forms of symbolic

knowledge to perform different tasks using various

techniques. The core part consists of several

computational mechanisms such as working memory

(state representation); long-term memory (Laird, 2012)
(defines functioning in the form of procedural, semantic

and episodic memory); decision procedures (provides a

link to interact between working and long-term memory)

and learning procedure.

Soar Agent

An agent needs some steps of instruction to solve a

problem. The instructions are encoded in the form of

production rules which performed in long-term memory

where other memories are contributed in the preparation

of production rules (Mohan and Laird, 2014).

These rules have general criteria for usage: First, an

operator is proposed then a defined operator is selected

and lastly the selected operator is applied. Operators

perform specific actions to aid in decision making. The

decision-making procedure is accomplished by using

heuristic approach which is summarized in Fig. 3.

These heuristics steps help in maintaining decision

cycle through which all Problem Space Computational

Model (PSCM) (Laird, 2012) functions as depicted in

Fig. 4 will perform their tasks.

These functions include State Elaborations, Operator

Proposal, Operator Evaluation, Operator Selection,

Operator Elaboration and Operator Applications. The

functionality performed by each function is considered

as SOAR’s process cycle.

Fig. 2: Integrated architecture FCSP-SOAR

Soar core

Long term memory

Procedural memory Semantic memory Episodic memory

Condition Action
General facts and

mental ability
Past experience

snapshots

Soar agent

Constraint propagation Select variable

pattern

Select value

pattern
Backtrack

Decision procedure

M
at

ch

C
h

an
g

es

FCHS phase

Working memory

Variable pattern measure Value pattern measure

External agent communicates with

soar agent via Right Hand Side

(RHS) in terms of action.

External agent

Constraint graph

representation

Constraint propagation

Backtrack

Priority value calculations

Variable/value selection

Substate creation

Neha Rajan and Sunderrajan Srinivasan / Journal of Computer Science 2020, 16 (5): 642.650

DOI: 10.3844/jcssp.2020.642.650

645

Fig. 3: Heuristic approach to solve problem

Fig. 4: Soar process cycle
Table 1: Pattern rules and related heuristics

Name Pattern rules Heuristics

MPV Pi, several priority values remaining in the domain. The highest Pi variable is selected.
DEG Di, several chances to move according to constraint are linked to variable. The largest Di value variable is selected.

Soar’s process cycle provides two possibilities:

Operator Selection and Operator Application in Fig. 4.

One possibility is procedural knowledge encoded as

rules; the other is a problem search in a substate

(Langley et al., 2009) after an impasse. Operator

selection is implemented by a fixed decision procedure

that analyses the preferences created by operator

proposal and operator evaluation functions and either

selects a new operator or detects an impasse and

generates a substate. In operator application, procedural

knowledge and processing in a substate are available as

in other functions. However, operator application is

distinguished due to its ability to initiate agent actions

in the external environment and where the agent can

retrieve structures from semantic memory or episodic

memory as well as store structures to semantic memory.

External Agent

The process which is responsible for operating

production rules is termed as External Agent. The

production rules are most important to select which

heuristic will come and perform an action.

Table 1 describes two heuristics that are considered

to evaluate a pattern that places queen on the board with

8-Queen problem constraints:

 Degree (DEG)-Degree is a value that defines how

many choices are available for a queen to be

placed at a location

 Maximum Priority Value (MPV) -Priority is a

value that defines the priority of a cell where

queen can be placed

1. Mention Constraints (based on FCSP)
2. Represent Propagation within state

 calculate maximum priority value or

assign value to variable (Algorithm 1

mentioned in 2.2)

 If Variable is not found, then perform

backtrack (Algorithm 2 mentioned

in 2.2)
3. Select Variable (based on fuzzy heuristics

which suggested by comparing the variable)

4. Select Value (based on fuzzy heuristics

which gives higher priority concept)

Repeat

Operator selection Operator application

State elaboration

Operator proposal

Decision

procedure

State

elaboration

Procedural
retrieval

Operator

application

Semantic

retrieval

Semantic

Storage

Episodic

retrieval

Operator

evaluation

Input Substate

creation
Operator

elaboration

Neha Rajan and Sunderrajan Srinivasan / Journal of Computer Science 2020, 16 (5): 642.650

DOI: 10.3844/jcssp.2020.642.650

646

Queen will select the cell that has the highest priority

value and is within the degree of queen movement.

From the pattern an agent is able to make decision

for selecting a particular variable and its value for

solving the problem.

The Relationship between Soar and External Agent

The SOAR agent act as the brains and external agent

act as body. External agent performs the task requested

by SOAR agent and after task execution external
agent transfers knowledge and state description back

to SOAR agent. The SOAR agent (Gluck and Laird,

2019) maintains a binary graph of constraints known as

constraint graph in working memory. This graph helps in

keeping status of changing state. This relationship also

maintains the number of levels where both agents can

share more intrinsic information and can improve their

functionality to solve the problem.

Level 0: Architecture retrieves relevant knowledge

(Perceiving and comprehending the knowledge).

A Soar agent at the level-0 (knowledge level) consists of

an object that can connect with an environment, knowledge
and a set of goals. The Principle of rationality (Lee and

Anderson, 2001) determines interaction behavior. With the

existence of knowledge level; the quality and content of

experience are provided to soar agents and they, in turn,

select an action for the agent. To setup, a better relationship

between the external agent/world and soar agent; the

knowledge has to be more general. Generality is defined by

the interaction between the knowledge level system and the

environment. The interaction decides the range of goals an

agent can achieve and the scope of knowledge that an agent

can acquire and use.

Level 1: Decision Making

Decision making is a critical component in solving

the problem. It is dependent on problem space. Decisions

are required to change the state of a problem using the

operator. The procedure of decision making (Walsh et al.,

2013) involves the parts of working memory, which are

elaborated by parallel access of long-term memory to

exhaustion (Laird et al., 2017). The elaboration process

determines the changing behavior in existing state to
new state. This procedure repeats till it finds the solution

of problem space or finds the sub-problem/subgoal of a

problem. Otherwise backtrack is applied.

Backtracking is a procedure where the variables of a

problem are initiated linearly and the validity of

instantiated constraints associated with variables is

checked. If any variable breaks one or any condition

related to specified restrictions, then backtracking is

done to the various recent mentioned variable. The

backtracking performs a depth-first search of the

potential FCSP solutions typically. The run-time

complexity of backtracking is better. Sometimes the

complexity of nontrivial problems is exponential because

the backtracking standard bears from thrashing; i.e.,

exploration in several elements of the space continues

breaking for the same reasons. To improve this kind of
situation (Genesereth et al., 2005), a variable can be ordered

with a value known as priority value. This will eliminate

inconsistent node is eliminated from the domains.

In 8-Queens problem, an agent may traverse constant

search for the solution that can lead to thrashing

(Hinrichs and Forbus, 2013). Thrashing means searching

similar sub optimal solutions again and again. To

minimize thrashing, locations must be ascertained with

some priority value, so that highest priority value get

selected. Figure 5 describes the sequential instantiation

of queens on board location with task parameters that
generate desired sub-state after satisfying the constraints.

These constraints (Mohan et al., 2012) are represented as

production rules in Soar procedural memory which helps

SOAR agent to make solution-oriented decisions.

If the constraints are not satisfied and queen has

chosen minimum priority location, then algorithm

recommends the procedure of Backtracking in Fig. 6.

The backtracking algorithm in Fig. 6 is modeled on a

recursive depth-first search. The preference function is the

critical function which holds the selection of location based

on priority value. The above-mentioned algorithms help in

setting constraints and well get integrated with Soar.

Level 2: Subgoaling Processing

Subgoaling level is related to the decision-making

procedure. When decision-making procedure is

incompetent to make a selection of solution then an

impasse state occurs in problem-solving. An impasse

state suggests that the system is not capable to know how

to proceed further to solve a problem. To resolve an

impasse condition system automatically generate sub-

goal state. The impasses and thus their sub-goals are
varied from problem to problem.

For subgoaling (Walsh and Gluck, 2014), SOAR

provides the capability and knowledge to an

architecture for resolving impasse conditions. This is

done using a look ahead algorithm. The same

approach is applied in FCSP-Soar.

Level 3: Pattern Measure Evaluation

FCSP-SOAR uses three parameters to measure the

pattern between location on board and their priority

value. The first is a simple calculation that provides

priority value preference rules for selecting further tasks.
This preference rule selects MPV. The procedure

requires circulation series (looping) to acquire a solution.

Second, if a pattern evaluation is directed towards sub-

state domain failure, then it gets rejected. Third, if no

match is found in the sub-state, then pattern evaluation

considered as a “failure” state.

Neha Rajan and Sunderrajan Srinivasan / Journal of Computer Science 2020, 16 (5): 642.650

DOI: 10.3844/jcssp.2020.642.650

647

Fig. 5: Algorithm for minimum thrashing

Fig. 6: Algorithm for backtrack

Algorithm 1: MINIMUM-THRASHING FOR 8-

QUEENS

function MINIMUM-THRASHING (x, d, n-max-
steps) returns a solution or failure

inputs: x as location on board, d as domain, Pr
represents priority value, n-max-steps as the

maximum steps, a queen can perform

1. current_val_queen an initial position of
queen on board

2. for i = 1 to n-max-steps do
3. if current_val_queen is the solution then

return current_val_queen

4. Pr(x) a next row is selected from d,

domain

5. MPV Pr(x) of current queen location is

checked with other location variable of row,
the maximum priority value MPV for Pr(x)

is selected that minimizes THRASHING
(Pr(x),v, current, csp)

6. set Pr(x) = MPV maximum value in
current_val_queen

else return failure or BACKTRACK

function BACKTRACK-SEARCH (d, x) returns a

solution or failure
 return BACKTRACK ({}, d, x)

function BACKTRACK (state, d, x) returns a solution,
or failure

1. If state is completing, then return state
2. Preference(x) select move-sequence (d, x)

3. for each value in domain (Preference(x), state, d,

x) do
3.1 if value is maximum priority with state then

3.2 add {Preference(x) = value} to stat
 update prev(x) = {preference(x), value}

 backtrack is performed
 else if value is minimum priority then

 update preference(x) = value
 add preference to state

 result BACKTRACK(state, d, preference (x)).

 if result failure then

 return result
4. remove {Pr(x) = value} and preference from

state
 add {Pr(x) = old value} from visited.

5. return failure

Algorithm 2: BACKTRACK_8-QUEENS

Neha Rajan and Sunderrajan Srinivasan / Journal of Computer Science 2020, 16 (5): 642.650

DOI: 10.3844/jcssp.2020.642.650

648

With these pattern measure evaluations, the FCSP-

SOAR determines the learning production rules that

helps in making an agent learn and practice the

specific task. This approach creates small chunks of

learning. Resulting chunks have their own set of

conditions, either unary or binary conditions,

composed in operators.

Results and Discussion

The above-mentioned integrated architecture and

number of levels are used for 8-Queens problem as

shown in Fig. 7 and describes as follows:

At level 0; an integrated architecture delivers

knowledge related to the 8-queens problem which

demonstrates that an external agent can interact with the

SOAR agent and access different types of available

memories (Gluck and Laird, 2019).
To define production rules, procedural memory is

utilized and provides enough knowledge to apply some

decision procedure to calculate priority value for the

movement of queen; and update the working memory with

the variable pattern measure and value pattern measure.

Throughout this procedure, backtracking algorithms come
into play to determine the solution of the problem.

The implementation of the 8-Queens problem is

based on PSCM functions and the creation rules of states

that are stored in SOAR’s long-term memory.

At level- 1, for decision making, several rules, such

as, preference rules, elaboration rules, operator selection

rules that aid SOAR decision making. These learned rules

are passed by using concept of transfer of learning. This
concept helps in avoiding unnecessary impasse state. The

results of heuristic and learned rules of an agent is based on

two computational factors, described below.

Factor 1: Analysis by Learning and Transfer of

Learning

The transfer of learning is based on the number of
decisions that are required to solve 8-Queens problem

where the number of decisions depends on 64(8*8 board-

cells) variables that represents each cell on board and 4

constraints C1, C2, C3, C4 mentioned in (Introduction).

According to constraints, the SOAR agent required 38

production rules to place queens at their desired locations.

Some of the test cases mentioned in Table 2, we applied to

evaluate the performance of an agent.

Figure 8, if we look at the 8-queens bars at case-2,

the test case represents hardcoded value and variable,

where each board location value is hard-coded with a

specific constant that defines the priority. The result is
decreased number of decisions by 41% in comparison

with the random choice of pattern measures used in test

case 1. The subgoaling and learning feature were

selected for architecture to generate chunks at an average

of 60 chunks/subgoaling.

Fig. 7: Representation of 8-queens in FCSP-SOAR

Soar core

Long term memory

Procedural memory

Constraint propagation Select variable

pattern

Select value

pattern
Backtrack

Decision procedure

Comparision is conducted via elaboration rules

Pr(C) > Pr (C')

M
at

ch

C
h

an
g

es

FCHS phase

Working memory

Variable pattern measure Value pattern measure

External agent communicates

with soar agent via Right Hand

Side (RHS) in terms of action.

External agent

Constraint graph

tepresentation

Constraint propagation

Backtrack

Priority value calculations

Variable/value selection

Substate creation

Semantic memory Episodic memory

Condition Action

Soar agent

Intialization of board variables (consist

of rows and cols) and 8 queens

General facts

and mental

ability

Past experience

snapshots

First queen is placed

at 1st row and 1st
column.

Place other queen in
next row where

position variable

value is not 0.

Update the
same position
value variable

as 1 and all
other position
value variable

in same row, col
and diagonal
marked as 0.

Neha Rajan and Sunderrajan Srinivasan / Journal of Computer Science 2020, 16 (5): 642.650

DOI: 10.3844/jcssp.2020.642.650

649

Table 2: Test cases

S.no Test cases Description

1 Random Choice Random variables and values are selected (indifferent).
2 Hard- Coded Choice Explicitly coded Priority in term of MPV, number of degrees in terms of DEG variable are selected.
3 Internal received chunks Problem runs working memory and acquire chunks.

Fig 8: Decisions represented as a Sub-goaling/Learning Test

Cases

Fig. 9: Comparing of decisions defined as problem complexity

Case 3 explains the way to improve the problem-

solving technique that uses the 64 (8*8 chessboard)

internal decision cycles. These cycles include

backtracking, failure and goal-oriented rules to acquire

memorized regulations. These rules are then correlated with

hard-coded heuristics mentioned in case 2. The end result is

21% decrease in conclusion sequences. From case 3 results,
it can be noted that Soar applied both aggregate range of

variables and value patterns to ensure a solution.

Factor 2: Analysis by Competence

Another factor explored as the analysis of

competence which describes the performance of stored

knowledge depicted in Fig. 9. The performance is

determined in terms of complexity of production rules.

The firing of production rules satisfies the constraints of

the problem and checking learned knowledge- all these
tasks are measured by problem complexity under the

decision cycles in Fig. 9.

The stored knowledge is utilized many times for

random selection. The related chunks, created by random

selections, increase in complexity in comparison to

hardcoded test cases. This means that the agent

consumes maximum time to understand the learned

knowledge in comparison with hardcoded values.

Conclusion and Future Work

The unification behavior of FCSP-SOAR provides

the representation and handling constraints; involves the

concept of providing value as preference associated with

prioritized constraints. The concept of FCSP, a subpart

of CSPs, offers a range of combinatorial problems to

solve problems like 8-Queens.

This specific form of FCSP constraint-based

reasoning introduced a SOAR to solve the 8-Queens

problem using a generalized set of production rules. The

rules include the reasoning of putting together constraint

propagation, rule chaining and backtracking.

The production rules are based on an if-then rule

which describes the capability of Soar architecture to

solve any problem. These production rules further learned

by an agent while solving the problem. The integration of

FCSP is not that hard to implement as the same production

rules are associated with some constraint specific value

which further expands the problem search space. When

associated priority values are satisfied and a specific

solution is got, then the problem is solved otherwise

backtracking algorithm is used.

8-queens (64 board location
variables, 8 queens variables)

Case1

Random
choice

Case 2

Hard coded

choice

Case 3

Internal

received

chunks

100

90

80

70

60

50

40

30

20

10

0

N
u

m
b

e
r

o
f

d
ec

io
n

s
N

u
m

b
er

 o
f

d
ec

is
io

n
s

200

180

160

140

120

100

80

60

40

20

0

Problem complexity (Number of
variables interaction)

1 2 3

Case1 Random choice

Case 2 Hard coded choice

Case 3 Internal received chunks

Neha Rajan and Sunderrajan Srinivasan / Journal of Computer Science 2020, 16 (5): 642.650

DOI: 10.3844/jcssp.2020.642.650

650

Future work is to improvise the networks of

constraints so that subgoaling can be satisfied and related

chunks can be learned. These learned chunks provide

better efficiency in satisfying a constraint network,
which are also known as macro-constraint. The

production rules among preference rules and priority

values will define for the macro constraint that can be

utilized for any combinatorial problem. This behavior

can improve the decision procedure’s efficiency and can

make an agent intelligent to solve similar problems or

repeated problems.

Author’s Contributions

Neha Rajan: Concept development, implementation

testing, validation and writing the manuscript.

Sunderrajan Srinivasan: Implementation validation

and proofreading.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of

the other authors have read and approved the manuscript

and no ethical issues involved.

References

Cassimatis, N., 2006. A cognitive substrate for human-

level intelligence. AI Magazine, 27: 45-56.
Christophe, L., S. Lakhdar, T. Sébastien and V. Vincent,

2009. Reasoning from last conflict(s) in constraint

programming. Artificial Intell., 173: 1592-1614.

DOI: 10.1016/j.artint.2009.09.002

Genesereth, M., N. Love and B. Pell, 2005. General

game playing: Overview of the AAAI competition.

AI Magazine, 26: 62-72.

Gluck, A. and J.E. Laird, 2019. Interactive task learning:

Humans, robots and agents acquiring new tasks

through natural interactions. Strüngmann Forum

Reports.
Hinrichs, T. and K. Forbus, 2013. X goes first: Teaching

simple games through multimodal interaction. Adv.

Cognitive Syst., 2: 205-218.

Laird, J., K. Gluck, J. Anderson, K. Forbus and O.

Jenkins et al., 2017. Interactive task learning. IEEE

Intell. Syst., 32: 6-21.

 DOI: 10.1109/MIS.2017.3121552

Laird, J.E., 2012. The soar cognitive architecture, MIT

Press.

Langley, P., J.E. Laird and S. Rogers, 2009. Cognitive

architectures: Research issues and challenges.

Cognitive Syst. Res., 10: 141-160.

 DOI: 10.1016/j.cogsys.2006.07.004

Lee, F.J. and J.R. Anderson, 2001. Does learning a

complex task have to be complex? A study in

learning decomposition. Cognitive Psychol., 42:

267-316. DOI: 10.1006/cogp.2000.0747

Lindes, P., 2018. The common model of cognition and

humanlike language comprehension. Proc. Comput.

Sci., 145: 765-772.

 DOI: 10.1016/j.procs.2018.11.032

Mininger, A. and J.E. Laird, 2018. Interactively learning

a blend of goal-based and procedural tasks. AAAI,

32: 1487-1494.

Mohan, S. and J. Laird, 2014. Learning goal-oriented

hierarchical tasks from situated interactive

instruction. Proceedings of the 28th AAAI

Conference on Artificial Intelligence, (CAI’ 14),

AAAI, pp: 387-394.

Mohan, S., A. Mininger, J. Kirk and J.E. Laird, 2012.

Acquiring grounded representations of words with

situated interactive instruction. Adv. Cognitive

Syst., 2: 113-130.

Walsh, M.M., E.H. Einstein and K.A. Gluck, 2013. A

quantification of robustness. J. Applied Res.

Memory Cognition, 2: 137-148.

 DOI: 10.1016/j.jarmac.2013.07.002

Walsh, M.W. and K.A. Gluck, 2014. Mechanisms for

robust cognition. Cognitive Sci., 39: 1131-1171.

DOI: 10.1111/cogs.12192

Wray, R. and R. Chong, 2007. Comparing cognitive

models and human behavior models: Two

computational tools for expressing human behavior.

J. Aerospace Comput. Inform. Commun., 4:

836-852. DOI: 10.2514/1.27099

Zwaan, R. and G. Radvansky, 1998. Situation models in

language comprehension and memory. Psychol.

Bull., 123: 162-185.

 DOI: 10.1037/0033-2909.123.2.162

https://doi.org/10.1016/j.artint.2009.09.002
https://doi.org/10.1109/MIS.2017.3121552
https://doi.org/10.1016/j.cogsys.2006.07.004
https://doi.org/10.1006/cogp.2000.0747
https://doi.org/10.1016/j.procs.2018.11.032
https://doi.org/10.1016/j.jarmac.2013.07.002
https://doi.org/10.1111/cogs.12192
https://doi.org/10.2514/1.27099
https://doi.org/10.1037/0033-2909.123.2.162

