

 © 2020 Daniel Akinbade, Adewale Opeoluwa Ogunde, Mba Obasi Odim and Bosede Oyenike Oguntunde. This open access

article is distributed under a Creative Commons Attribution (CC-BY) 3.0 license.

 Journal of Computer Science

Original Research Paper

An Adaptive Thresholding Algorithm-Based Optical

Character Recognition System for Information Extraction in

Complex Images

Daniel Akinbade, *Adewale Opeoluwa Ogunde, Mba Obasi Odim and Bosede Oyenike Oguntunde

Department of Computer Science, Redeemer’s University, Ede, Nigeria

Article history:

Received: 06-04-20220

Revised: 19-05-2020

Accepted: 12-06-2020

Corresponding Author:

Adewale Opeoluwa Ogunde

Department of Computer

Science, Redeemer’s

University, Ede, Nigeria

Email: ogundea@run.edu.ng

Abstract: Extracting texts from images with complex backgrounds is a

major challenge today. Many existing Optical Character Recognition

(OCR) systems could not handle this problem. As reported in the literature,

some existing methods that can handle the problem still encounter major

difficulties with extracting texts from images with sharp varying contours,

touching word and skewed words from scanned documents and images

with such complex backgrounds. There is, therefore, a need for new

methods that could easily and efficiently extract texts from these images

with complex backgrounds, which is the primary reason for this work. This

study collected image data and investigated the processes involved in image

processing and the techniques applied for data segmentation. It employed

an adaptive thresholding algorithm to the selected images to properly

segment text characters from the image’s complex background. It then used

Tesseract, a machine learning product, to extract the text from the image

file. The images used were coloured images sourced from the internet with

different formats like jpg, png, webp and different resolutions. A custom

adaptive algorithm was applied to the images to unify their complex

backgrounds. This algorithm leveraged on the Gaussian thresholding

algorithm. The algorithm differs from the conventional Gaussian algorithm

as it dynamically generated the blocksize to apply threshing to the image.

This ensured that, unlike conventional image segmentation, images were

processed area-wise (in pixels) as specified by the algorithm at each

instance. The system was implemented using Python 3.6 programming

language. Experimentation involved fifty different images with complex

backgrounds. The results showed that the system was able to extract

English character-based texts from images with complex backgrounds with

69.7% word-level accuracy and 81.9% character-level accuracy. The

proposed method in this study proved to be more efficient as it

outperformed the existing methods in terms of the character level

percentage accuracy.

Keywords: Adaptive Threshold Algorithm, Complex Backgrounds,

Images, Optical Character Recognition, Pattern Recognition

Introduction

The dynamics of today’s technological domain, that

has seen images play an important role in

communication, calls for continuous improvements on

the processing of such images, as images do not just

convey the structure of places or faces, but now carries

meaning but in interpretation and in the fact that more

often than not, text is printed on them. According to

Ranjan et al. (2015), text extraction in this context is a

difficult task due to the presence of a complex

background that poses challenges such as sharply

varying contours and background pixels that have the

same intensities as text pixels. The results of some

systems recently developed (Rajan and Raj, 2017)

showed better precision and recall compared to baseline

enhancement algorithms but could not extract text from

touching word, scanned documents and images with

mailto:ogundea@run.edu.ng

Daniel Akinbade et al. / Journal of Computer Science 2020, 16 (6): 784.801

DOI: 10.3844/jcssp.2020.784.801

785

such complex backgrounds. This study, therefore, moves

from the conventional application of OCR to scanned

image files or printed digital files like PDFs to the more

general and more complex application to conventional

photographs and other digital documents with complex

backgrounds. This study is important to the fields of

image processing, text-to-speech synthesis systems,

screen readers, etc., as it will provide the means for such

systems to increase accuracy in performance. Optical

Character Recognition (OCR) is a piece of software that

converts printed text and images into a digitized form

such that it can be manipulated by a machine (Islam et al.,

2016), Unlike the human brain, which has the capability

to very easily recognize the text or characters from an

image, machines may not have intelligence enough to

perceive the information available in an image. A large

number of research efforts have been put forward that

attempts to transform a document image to format

understandable for the machine but many are still

challenged. This research is focused on applying such

machine learning algorithms to images to be able to

extract text from them in a more efficient manner by

applying a custom adaptive algorithm to the images to

unify their complex backgrounds. The algorithm used

leveraged on the Gaussian thresholding algorithm and its

different from the conventional Gaussian algorithm as it

dynamically generated the blocksize to apply threshing

to the image. This ensured that, unlike conventional

image segmentation, images were processed area-wise

(in pixels) as specified by the algorithm at each instance,

which is a major contribution of this work.

The remainder of the paper is organized as follows.

Section two reviewed some related works in the

literature. Section three described the images and the

algorithm used to solve the problem. Section four reports

the implementation details and the results obtained from

the experiments conducted and finally gave the results

from comparison with existing methods. Section five

concludes the paper and gave some future directions.

Literature Review

Pattern Recognition Systems

Pattern recognition is the automatic detection of

patterns and regularities in data. It is closely related to

machine learning and artificial intelligence, applications

such as data mining and knowledge discovery in

databases. Machine learning is one approach to pattern

recognition, while other methods include hand-crafted

rules or heuristics; and pattern recognition is one

technique to artificial intelligence, while additional

methods include symbolic artificial intelligence. “The

field of pattern recognition is concerned with the

automatic discovery of regularities in data by using

computer algorithms and using these regularities to take

actions such as classifying data into different categories”

(Bishop, 2006). Character Recognition is simply a

machine simulation of human reading, also known as

optical character recognition (Das et al., 2012). The

character recognition system is used for recognizing the

characters in any document containing handwritten and

machine printed text, graphics, videos, etc. and

converting them into digitized format in machine-

readable or ASCII Codes.

Recognition Engines

Several recognition engines exist to address different

needs and proffer solutions in various fields. Some of

these engines and application areas they cater for are x-

rayed here. Optical Character Recognition (OCR)

engines turn machine-printed images into machine-

readable characters. These engines play vital roles in

screen reading systems, text-to-speech synthesis

systems, etc. Intelligent Character Recognition (ICR)

reads images of hand-printed characters (not cursive) and

changes them into machine-readable characters. Hand-

printed character images are taken from a bitmap of the

scanned image. ICR recognizes numeric characters more

accurately than letter characters. Optical Mark

Recognition (OMR) detects the existence of a mark, not

its shape. OMR forms usually contain small ovals,

referred to as 'bubbles,' or checkboxes that the

respondent fills in. OMR cannot recognize alphabetic or

numeric characters. It is commonly used in standardized

examinations (serving as a marker for test sheets). OMR

is the fastest and most accurate technology for data

collection, it is also relatively user-friendly. OMR’s

accuracy is the result of accurate measurement of a

mark’s darkness and sophisticated mark discrimination

algorithms to determine whether it is erasure or a mark

that is detected. Magnetic Ink Character Recognition

(MICR), is a specialized character recognition

technology, adopted by the U.S. banking industry to

facilitate the processing of cheques. Barcode

Recognition is a data representation that can be read by

a machine. Barcodes can be read or scanned from an

image using the software with optical scanners called

barcode readers, it is used in sales systems,

authentication systems and card recognition.

Optical Character Recognition Systems (OCR)

The OCR systems can be categorized as handwritten

recognition and printed character recognition, based on

the type of input. The latter is a relatively more

straightforward problem because characters are usually

of uniform dimensions and the positions of characters on

the page can be predicted (Bhansali and Kumar, 2013).

Handwritten character recognition is a very tough job

due to the different writing styles of the user as well as

various pen movements by the user for the same

Daniel Akinbade et al. / Journal of Computer Science 2020, 16 (6): 784.801

DOI: 10.3844/jcssp.2020.784.801

786

character. These systems can be divided into two sub-

categories, i.e., on-line and off-line systems. The former

is performed in real-time while the users are writing the

character. They are less complicated as they can capture

the temporal or time-based information, i.e., speed,

velocity, number of strokes made, the direction of the

writing of strokes, etc. Also, there is no need for

thinning techniques as the trace of the pen is a few

pixels wide. The offline recognition systems operate

on static data, i.e., the input is a bitmap. Hence, it is

challenging to perform recognition.

Existing OCR Systems have been used to convert the

text in scanned paper documents into ASCII symbols

and other encodings. However, current OCR systems do

not work well if the text is printed against shaded or

hatched backgrounds, as is often found in photographs,

maps, monetary documents, engineering drawings and

commercial advertisements. Furthermore, these

documents are usually scanned in greyscale or color to

preserve details of the graphics and pictures which

often exist along with the text. For current OCR

systems, these scanned images need to be binarized

before actual character segmentation and recognition

can be done. A typical OCR system does the binarization

to separate text from the background by global

thresholding. Unfortunately, global thresholding does

not perform well on complex images, as noted in the

literature (Fletcher and Kasturi, 1988).

Optical Character Recognition is a subset of pattern

recognition. OCR borrows various concepts and

techniques from pattern recognition and image

processing. However, character recognition provided the

impetus for making pattern recognition and image

analysis as matured fields of science and engineering

(Chaudhuri et al., 2017). Designing machines that can

imitate human attributes has been a significant concern

for man. One such imitation of human functions is

reading of documents containing different forms of text.

Machine reading has grown from a dream to reality over

the last few decades, through the development of

advanced and effective OCR systems. This technology

can convert scanned paper documents, pdf files, or

images captured by a digital camera into machine-

editable and searchable data. A typical OCR system

consists of numerous components, such as input text,

optical scanning, location segmentation, pre-processing,

segmentation, representation, feature extraction, training

and recognition, post-processing and output text.

Thresholding Algorithms

Thresholding deals with converting multilevel images

into a bi-level black and white image. This process is

essential as the results of recognition are dependent on

the quality of the bi-level image. Image thresholding

segments a digital image based on a particular

characteristic of the pixels (for example, intensity value).

The goal is to create a binary representation of the

image, classifying each pixel into one of two categories,

such as “dark” or “light.” This is a common task in many

image processing applications and some computer

graphics applications. The two essential categories of

thresholding are global and local.

Some of the tools used to achieve the objectives of

the work are Tesseract and Pytesseract. Tesseract is an

optical character recognition engine for various

operating systems (Kay, 2007). It is free software,

released under the Apache License, Version 2.0. Python-

tesseract (Pytessetact) is an optical character recognition

(OCR) tool for python, it can recognize and read texts

embedded in images. It is a wrapper for Google’s

Tesseract-OCR Engine. It is also useful as a stand-alone

invocation script to tesseract, as it can read all image types

supported by the Python Imaging Library, including jpeg,

png, gif, bmp, tiff and others, whereas tesseract-OCR by

default only supports tiff and bmp. Additionally, if used as a

script, Python-tesseract will print the recognized text instead

of writing it to a file (Lee, 2018).

Deb et al. (2002), suggested a nondominated sorting-

based Multiobjective EA (MOEA), called Nondominated

Sorting Genetic Algorithm II (NSGA-II), which

alleviates most of the difficulties. Specifically, the work

presented a fast nondominated sorting approach and a

selection operator that creates a mating pool by

combining the parent and offspring populations and

selecting the best (for fitness and spread) solutions.

Nakib et al. (2010), reported image thresholding based

on Pareto multiobjective optimization which adopted the

evolutionary algorithm NSGA-II presented by (Deb et al.,

2002). This method optimizes several segmentation

criteria simultaneously in order to improve the quality of

the segmentation. Horng and Jiang (2010), on the other

hand, proposed a multilevel image thresholding selection

model based on the Firefly Algorithm. Four different

methods were implemented and compared to the

proposed method: the exhaustive search, the particle

swarm optimization, the hybrid cooperative-

comprehensive learning-based PSO algorithm and the

honey bee mating optimization. The experimental results

revealed that the algorithm could search for multiple

thresholds, which are very close to the optimal ones

examined by the exhaustive search method.

A novel texture-based color image enhancement

methodology that focuses on an automatic target image

generation is proposed in (Raji et al., 2015). The images

in the database with highest histogram correlation with

input image are identified for extracting different

features. Target image is obtained by fusing images

selected based on minimum Euclidean distance between

extracted features. The proposed method is a simple

color image enhancement methodology where the range

mailto:pytesseract@madmaze.net

Daniel Akinbade et al. / Journal of Computer Science 2020, 16 (6): 784.801

DOI: 10.3844/jcssp.2020.784.801

787

(the gamut) of the R, G and B channels is optimally

preserved. A new quantitative validation approach is

derived to identify visibility loss problem that may

occur during enhancement. The maximum possible

contrast enhancement is achieved by stretching the

intervals of the color levels to the maximum possible

extent using a sigmoid function. The proposed method

has been proved to be a successful approach to deal

with various categories of images.

Rajinikanth and Couceiro (2015), improved on the

Firefly algorithm in their work, “RGB Histogram-Based

Color Image Segmentation Using Firefly Algorithm”.

This method considered the RGB histogram of the image

for bi-level and multi-level segmentation, optimal

thresholds are achieved by maximizing Otsu’s between

class variance function for each color components. Since

the conventional multilevel thresholding approaches

exhaustively search the optimal thresholds to optimize

objective functions, they are computationally expensive.

Liu et al. (2015), suggested the Modified Particle Swarm

Optimization (MPSO) algorithm to overcome this

drawback. The MPSO employs two new strategies to

improve the performance of original Particle Swarm

Optimization (PSO), which are named Adaptive Inertia (AI)

and Adaptive Population (AP), With the help of AI strategy,

inertia weight varies with the searching state, which helps

MPSO to increase search efficiency and convergence speed.

Moreover, with the help of AP strategy, the

population size of MPSO also varies with the searching

state, which mainly helps the algorithm to jump out of

local optima. More recently, Satapathy et al. (2018)

proposed an improved bi-level and multi-level threshold

procedures based on their histogram using Otsu’s

between-class variance and a novel Chaotic Bat

Algorithm (CBA). Maximization of between-class

variance function in Otsu technique is used as the

objective function to obtain the optimal thresholds for

the considered grayscale images.

This work however, proposes a new adaptive

thresholding algorithm that maximizes the blocksize

variable of the Gaussian local thresholding algorithm which

has been reported as efficient. Unlike the default algorithm

where the same blocksize is chosen for the entire local

region under consideration, this work uses a blocksize that

is relative to the local region and it is selected automatically.

Other Related Works

The subject of text detection and extraction has been

growing concerns in the research community. Several

research efforts have been made in recent times to

improve upon the accuracy and quality of text extraction

from images of various forms. A review of some the

available and very related research in this area is

presented in this section.

A review of detection and extraction of texts from a

complex background was carried out in Kavyashere and

Rejesh (2018). Several research on the subject were

categorised and analysed. They provided a summary

work on text detection and extraction; listed the

contribution and limitations of various study in this area

and made recommendations for future direction. The

authors reported that existing research efforts has not

been able to address the difficulties inherent in detecting

and extracting texts from skewed images. Ding et al.

(2018), proposed an improved OCR video text

recognition technology. The extraction of text in video

was done using the edge analysis algorithm and SVM

was employed in portioning the pixels in text and non-text

pixels. The findings from the results recorded a better

recognition accuracy and a higher text location. The recall

ratio was 92.8%, with a false alarm of 12.1%. However,

there was no report on the word extraction accuracy of the

approach and it could not detect vertical text.

Kumuda and Basavaraj (2017), a method for text

extraction and analysis from complex image from scene

was proposed based on edge segmentation. Discrete

Wavelet Transform (DWT) was used to detect edges at

the early stage, while the localisation of text region was

done based on clustering and AdaBoost classifier.

Character extraction was done at the next stage, using

morphological operations and heuristic rules. The results

of the study on various images from database were

impressive with 91% precision and 85% recall rate

and 5-6 sec time computation. Nevertheless, the

approach could not detect text from structures like

window frame. Again, the approach did not report the

accuracy of word extraction.

An image processing approach for Segmentation and

extraction of text from curved text lines from document

images was presented in Shejwal and Bharkad (2017).

The curved text segmentation was conducted based on x-

line and base line. The proposed technique could detect

the words in the document image, which was specified

by bounding boxes plotted around the words. Words’

segmentation was achieved using properties of

connected components. Are used for segmentation of

words. This algorithm recorded 77.24% accuracy of

proposed characters extraction from curved text lines.

The approach was effective in detecting text from

handwritten and text like background of same colour.

A hybrid method for extraction of text from natural

science image with chaotic background was presented in

Satwashil and Pawar (2017). Four stages were involved

in the extraction. Character descriptors were used in the

first stage to extract superimposed text regions in an

image. Character descriptors and SVM classifier were

used for text content or non-text content in the second

phase. Detection of multiple lines in localized text

regions and line segmentation were carried out using

Daniel Akinbade et al. / Journal of Computer Science 2020, 16 (6): 784.801

DOI: 10.3844/jcssp.2020.784.801

788

horizontal profiles, in the third step. Finally, vertical profiles

of each character were used to extract each character of the

segmented line. Images for the test of this study were drawn

from ICDAR 2013 and SVT 2010 datasets. The results of

the analysis of the classifiers showed 64.40% accuracy of

the Ostu, 75.04% of the AdaBoost and 78.80% of the SVM.

However, the approach could not detect characters of

multilinguistic scripts.

Rajan and Raj (2017) employed fractional Poisson

model for mining text character from natural scene

images to increases the quality of the images obtained by

Laplacian operation. Characters were detected using the

Maximally Stable Extremal Region algorithm. The result

showed a better precision and recall compared to baseline

enhancement algorithms. Regardless, the algorithm could

not extract text from touching word and scanned

documents. A Gaussian Mixture Model Algorithm and

Expectation Maximization Algorithm were employed in

Rajesh and Aradhya (2015) for detection of skews

signature. The result showed 0.3% average error detection

of 300 input samples. However, the study was limited to

skew detection without any implementation. In Rajesh and

Aradhya (2016), Independent Component Analysis (ICA)

and Neural Networks were deployed for identification of

Kannada Signature. The dataset was composed of 100

individual Kannada signatures with 50 samples each. The

result showed that the larger the percentage of the training

set the better the recognition ability.

A deep learning scheme for mining text with a complex

background was presented in Nguyen et al. (2019) based on

the Connectionist Text Proposal Network (CTPN) method.

The work was implemented and tested using several books

covers of over 6000 images which showed some

improvement of feature extraction. However, the scheme

needs some improvement in the area of auto-crop image,

detecting text line with arbitrary direction, low contrast

input image. In addition, there was no record of the word

extraction accuracy of the method.

An in-depth presentation of Tesseract OCR engine

was carried out in Kaundilya et al. (2019). Tesseract was

developed by HP Labs and now owned by Google. It

was described as the most accurate optical character

recognition engine. Texts were extracted from images

using text localization, segmentation and binarization.

Text extraction was used in creating e-books from

scanned books, image searching from a collection of

visual data, among others. The result of the analysis

showed that Tesseract is efficient OCR system.

However, the accuracy of the OCR systems is highly

dependable on the quality and nature of the text data.

Liu et al. (2018) presented a new scheme for detection

of the dust image text based on convolutional neural

network and Gaussian smoothing. The results obtained

revealed that the scheme could be used to detect text

regions in dust images with good performance.

Methodology

This section provides a description of the methods

employed and model applied to achieve the objectives of

this research work.

Data Collection and Description

The data for this work were sourced from web

repositories. The web was surfed to gather images with

backgrounds that align with the interest of this study, the

test experiment was carried out using the collected data

and the algorithm was constantly tweaked as adjustments

were needed to improve the system. To achieve the aim

of the work, the image segmentation method using

adaptive thresholding was employed, although this

worked remarkably well, yet improvements made to the

algorithm by automating the task of selecting block size

improved the result. A few simple and basic image pre-

processing techniques like sampling, filtering and feature

extraction were applied for the sake of easy and smooth

running of the experiments.

The Proposed System’s Architecture

The new system will provide a means of extracting

texts from images with complex (shaded or hatched)

background. The method employed an in-built python

function to convert the image to greyscale, then

implemented a custom adaptive thresholding algorithm,

which performed the task of image segmentation using a

block size that helped separate essential features of the

image based on a minimal number of pixels. Hence, this

threshold made the area being segmented to be relative

to surrounding (immediate) pixels and not the entire

image file. Finally, the threshed image was parsed to

tesseract, a commercial OCR tool, to separate the text

easily. Tesseract has been proven to be very efficient in

extraction of texts (Kaundilya et al., 2019). The

proposed architecture, shown in Fig. 1, has various

components and each of these is defined with a specific

purpose and linked to be able to extract texts, i.e., pre-

process an image irrespective of the nature of the

background and return a text as its output.

The Pre-Process Module

This is where all the processes necessary to adapt

images, i.e., segmenting interesting features and

preparing the image for text extraction. It comprises three

sub-modules to help it perform its task. It houses the

adaptive thresholding algorithm shown in Algorithm 1.

The Image to Grey Submodule

This sub-module helps convert the input image to

grayscale, implementing python and openCV functions

to perform this task.

Daniel Akinbade et al. / Journal of Computer Science 2020, 16 (6): 784.801

DOI: 10.3844/jcssp.2020.784.801

789

Image to Grayscale

Thresh Image

Determine block size
PREPROCESS

EXTRACT TEXT

IMAGES

Input

TEXT

Output

Fig. 1: System’s architecture

The Set Block Size Submodule

The set block size sub module helps to determine the

pixel to use per area of the image. The adaptive

thresholding algorithm was employed to achieve this. It

also automatically removes the noises and the artefacts

in the image as noise can drastically reduce the overall

quality of the OCR process. Noise and artefacts could

result from poor quality of original image or poor

scanning of image.

The Thresh IMAGE Submodule

This sub-module returns the image that has been

segmented based on previous processes. This threshed

image is parsed to the Extract Text module for

character extraction.

The Extract Text Module

The extract module is where the text on the pre-

processed image is extracted and displayed on the

screen of the system. The extracted text can also be

saved from here.

Custom Adaptive Algorithm

The custom adaptive algorithm used for this work

is represented in Algorithm 1. This algorithm

leverages on the Gaussian thresholding algorithm,

which is callable in python. The algorithm differs

from the conventional Gaussian in that it uses a

dynamically generated blocksize to apply threshing to

the image. The algorithm has a variable (src) that

holds an image as an array and another variable

(grayImage) that outputs an image as an array. Line 3

shows a procedure/function that converts src to a

grayscale image.

Algorithm 1: Adaptive Thresholding

1: InputArray image: src

2: OutputArray image: grayImage

3: Procedure ConvertToGrayScale(src)

4: grayImage = []

5: row,col,CHANNEL = src.shape

6: for i in range (row):

7: for j in range (col):

8: a = (src[i,j,0]*0.07 + src[i,j,1]*0.72 +

src[i,j,2] *0.21)

9: grayImage.append(a)

10: end for

11: return grayImage

12: end procedure

13: InputArray: Grayimage

14: OutputArray: Threshedimage

15: procedure AdaptiveThresholding(grayImage)

16: src = grayImage

17: blocksize = 1

18: constant = 12

19: maxValue = 255

20: adaptiveType =

cv2.ADAPTIVE_THRESH_GAUSSIAN_C

21: thresholdType = cv2.THRESH_BINARY

22: threshImage = cv2.adaptiveThreshold(src,

maxValue, adaptiveType, thresholdType,

blocksize, constant)

23: if src(i, j) > (i, j) then

24: threshedImage (i, j) = maxValue

25: else

26: threshedImage (i, j) = 0

27: blocksize = blocksize + 2 Goto Line 22

28: end if

29: return threshedImage

30: end procedure

Daniel Akinbade et al. / Journal of Computer Science 2020, 16 (6): 784.801

DOI: 10.3844/jcssp.2020.784.801

790

Line 4 shows the grayImage being initialized as an

empty string and in line 5, the input image is given a

shape attribute, this enables the image to be properly

signified in dimensions. Hence, the image array is

formed and can be iterated through. Lines 6 and 7 show

how the image is being looped through; this is possible

as a result of shaping the image. Line 8 shows a variable

that holds the value used for converting the input image

(SCR) to grayscale, where, the first value represents Red,

the second, Green and the third, Blue. In line 9, the new

variable is appended to the empty array grayImage.

Hence, grayImage becomes the grayscale version of src

and this value is returned and the procedure ends. Line 15

shows another procedure being defined. This is the adaptive

thresholding algorithm; it takes as input the output from the

previous algorithm (grayImage) and returns threshedImage

which will hold a threshed Image. Lines 16 to 19 initializes

some variables, src which is set to the input image,

blocksize with an initial value of 1, this variable holds odd

values otherwise the final system will not execute, constant

initialized to 10, this holds the value that specifies the area

that should be threshed per iteration and maxValue set to

255 represents the highest pixel value the threshed image

can be and 0 representing the minimum pixel value. Lines

20 to 22 implements the Gaussian algorithm. Lines 23 to 28

implements a process to check if the resulting image from

thresh is optimal if it is not the block size is increased by 2

and the image is threshed again else the threshedImage is

returned as the output of this procedure.

Systems Activity Diagram

The system’s activity diagram, represented in Fig. 2,

shows the activities embedded in the system; it represents

each process and decision making of the system. It shows

that the system initializes and expects an image as input, if

the image is loaded correctly then the system converts the

loaded image to grayscale, else, it terminates the current

process, a dynamic thresholding blocksize is then set on the

grayscale image, which is then threshed according to the

dynamic block size to make character segmentation easier,

the text characters from the resulting image are then

separated and displayed as output of the entire process.

System Sequence Diagram

The system’s sequence diagram, shown in Fig. 3,

displays the system operating order, the system's primary

function provides a GUI and allows the user to load the

image using a file dialog, the input image is parsed to a

function which converts it to grayscale image, this is

then parsed to the function which dynamically sets the

block size, the result of this is parsed to the thresh

function which uses the Gaussian threshing to segment

the image, then, based on this threshing, the extract text

module extracts the interesting characters from the image

and returns these texts as response on the GUI.

System Class Diagram

The system was implemented using Object-Oriented

Programming. Hence the class diagram comprises 2 classes

as shown in Fig. 4. The classes are categorised here.

Ui_MainWindow.py

This class creates the GUI. It inherits the

QMainWindow class from PyQT. Gui package. It takes an

input image and also displays the output extracted text

Threshh.py

This class receives the input image from the

Ui_MainWindow class and performs several

operations depending on the button clicked on the

GUI. It essentially converts the image to greyscale,

applies the adaptive thresholding algorithm and

extracts the text by employing tesseract OCR using

pytesseract module of python; the extracted text is

sent back to the Ui_MainWindow. This class can also

display the globally threshed image and the image that

has adaptive thresholding applied to it.

The Conceptual Model of the OCR System

The conceptual model of the OCR system, as

shown in Fig. 5, shows that the system takes in the

image as input, carries out image conversion to

grayscale, determine block size to apply, uses the

custom thresh to the binarized image, extract text

from pre-processed image and finally returns texts as

the output of the whole process.

The Essential Processes in the Model Are

Convert Image to Grayscale

This is the process of converting the input image to

grayscale. That is all forms of color, apart from white

and black in different shades and intensity is removed

from the original image. OpenCV has an inbuilt

function to help with this.

Determine Blocksize

This entails setting a value or values for different

areas of the image. Our adaptive algorithm employs

different blocksize to a different part of the image

based on the properties of the interested region. This

employs Algorithm 1.

Thresh Image, which applies the image threshing

algorithms to segment text from background. This

involves the custom algorithm together with openCV’s

mean_c threshing algorithm.

Extract Text, this extracts the text/character part of

the result of the Thresh image process and gets the

characters ready to be saved in a text file. This process

employs the OCR tool.

Daniel Akinbade et al. / Journal of Computer Science 2020, 16 (6): 784.801

DOI: 10.3844/jcssp.2020.784.801

791

Input image

Is image loaded?

YES

NO

Convert image to

Greyscale

Thresh image

Extract Text

Determine Block Size

output text

Fig. 2: System’s activity diagram

Extract TextGUI
Image to
Grayscale

Set Blocksize Thresh Image

LoadImage()

Greyscaleimg()

setBlocksize()

adaptivethreshAlg

CharacterRecognition

Image

Fig. 3: System’s sequence diagram

Daniel Akinbade et al. / Journal of Computer Science 2020, 16 (6): 784.801

DOI: 10.3844/jcssp.2020.784.801

792

PyQT

MainWindow

Thresh.Py

+aboutWindow(self)

+setupUi(self, MainWindow)

+img: Array
+threshold: Array
+mean_c: Array

+load_img(): Array

+retranslateUi(self, MainWindow)

+extractText(self)

+about(self)

+global_thresh(img): Array

+adaptive_thresh(img): Array

+extract_text(img): List
+saveText(self)

+globalThresh(self)

+adaptiveThresh()

Fig. 4: System’s class diagram

Fig. 5: Conceptual model of the OCR system

Implementation and Results

In this section, a detailed description of the system

classes and the tools used in its implementation were

outlined.

Software Used for the Implementation

The system’s implementation was carried out using

the Python programming language (version 3.6.4) with

PyQt (version 5). Also, the ‘Pillow’ library was used for

image analysis as well as the Tkinter module for the file

dialog. PyQ, which is a third-party package for building

Graphic User Interface (GUI), was employed to design

the user interface of the system. Python 3.6.4 was used

for the software development because of the advantages

it has; its text processing capabilities, large number of

extensive libraries available, high dynamic data types

and the provision of third-party modules (e.g., Qt) for

developmental tasks among many other benefits are a

reason for using it. PyQt5 is a third-party tool used for GUI

design. It is a component of the Digia’s Qt cross-platform

application development framework. Python IDLE

(Integrated Development and Learning Environment) is an

integrated development environment for Python, which

has been bundled with the default implementation of the

language. It was written in Python and Tkinter GUI

toolkit. IDLE is a simple IDE, which is cross-platformed

and avoids feature clutter. IDLE’s main features are

Multi-window text editing with syntax highlighting,

auto-completion and smart indent, Python shell with

syntax highlighting, integrated debugger with stepping,

persistent breakpoints and call stack visibility.

Implementing the Thresh Class

This class implements the core processes of the

system. It has four functions, as explained below.

Load_img()

This method makes use of the file dialog

functionality of the Tkinter module to enable the system

to navigate the OS of the host machine and uses the

openCV module to select whatever image file that is

intended to be analysed (image with text to be extracted).

Image Convert image

to grayscale

Dynamically

determine

blocksize

Thresh image

using adaptive

algorithm

Extract text

using tesseract
Text

Daniel Akinbade et al. / Journal of Computer Science 2020, 16 (6): 784.801

DOI: 10.3844/jcssp.2020.784.801

793

Global_Thresh(img)

This method makes use of the

‘cv2.THRESH_BINARY’ openCV default global

thresholding algorithm. The values are set at 110 and

255. It returns a threshed image (array).

Adaptive_Thresh(img)

This method makes use of the custom algorithm to

select the block size and uses that to implement the

Gaussian mean_c openCV thresholding algorithm. It

returns a threshed image (array)

Extract_Text(img)

This method takes as input an image retrieved from

the adaptive_thresh method and engages the tesseract

OCR engine by using pytesseract to separate the textual

data from the rest of the image.

Implementing the Ui_MainWindow Class

This class brings about the functionality of widgets

from PyQt5, making it possible to create a GUI for the

software. It inherits the MainWindow class from the

PyQt5 module and it has the following methods.

About (self)

This method sets the text in the text area to the

custom text that displays information about the system.

Setup Ui (Self, Main Window)

This method creates and displays the GUI for the

software. It invokes the Qt widget creator.

Retranslate Ui (Self, Main Window)

This is a Qt method that translates the GUI,

converting all characters to a uniform encoding.

On_PushButton_Clicked (self)

This method calls the load_img() method from the th

class of the thresh module. Then, it initiates the call to

load an image.

Extract Text(self)

This method responds to the click action to extract

text from the threshed image by the push button labeled

‘EXTRACT TEXT.’ It calls the extract_text() method

from the th class of the thresh module.

Save Text(self)

This responds to the click action on the push button

labeled ‘SAVE TEXT and it calls the save_text() method

from the th class of the thresh module.

Global Thresh(self)

This method responds to the call of the push button

labeled ‘GLOBAL THRESH IMG,’ and it calls the

global_thresh() method from the th class of the thresh

module. It displays a globally threshed image.

Adaptive Thresh(self)

This method responds to the call of the push button

labeled ‘ADAPTIVE THRESH IMG,’ and it calls the

adaptive_thresh() method from the th class of the thresh

module. This function displays an image that has been

processed using custom adaptive thresholding.

System Evaluation

The system’s performance was checked at word error

level and character error level. The Word Error Rate (WER)

is used to compute the error rate at the word level and

Character Error Rate (CER) was used at the character level.

The formula is shown in equations 1 and 2 respectively:

1
100

S D
WER

N

 
  (1)

1

100
S D

CER
N

 
  (2)

where, S, D and I are the number of substitutions, Deletions

and Insertions made in the transliterated word and N is the

total number of words (the same applies to CER, but N is

the number of characters) in the input English word.

Results and Discussion

The system takes in an image (with complex

background) as input and returns the text written on the

input image as output. As part of the product, a user can

view a sample global threshed image and adaptive

threshed image of the input image. The user can also

choose to save the extracted text; this gets saved with a

timestamp to the primary directory of the software.

Figure 6 shows the outlook of the system’s interface.

Five images (Fig. 7 to 11) were used to test the

developed system. Properties of the five of them are

summarized in Table 1.

The outputs of the system, when tested on Fig. 7 to

11, are displayed in Fig. 12 to 16.
Tables 2 and 3 show the result of the system’s

evaluation according to the formulas in Equations 1 and 2.
Table 2 shows the performance evaluation of the system on
word level for the five (5) test images used. Figures 7 and 8,
which are similar, although, with different font sizes are the
best performers with 100% accuracy each, whereas, Fig. 10
and 11 are the worst performers at word level of testing
with 50.6% and 55.3% accuracy, respectively. The table
also shows a Word Error Rate of 30.3% across the board,
which is massively influenced by Fig. 10 and 11.

Daniel Akinbade et al. / Journal of Computer Science 2020, 16 (6): 784.801

DOI: 10.3844/jcssp.2020.784.801

794

Fig. 6: OCR System for Images with Complex Backgrounds

Fig. 7: Image with complex background – 1

Fig. 8: Image with complex background – 2

Daniel Akinbade et al. / Journal of Computer Science 2020, 16 (6): 784.801

DOI: 10.3844/jcssp.2020.784.801

795

Fig. 9: Image with complex background - 3

Fig. 10: Image with complex background - 4

Fig. 11: Image with complex background - 5

Daniel Akinbade et al. / Journal of Computer Science 2020, 16 (6): 784.801

DOI: 10.3844/jcssp.2020.784.801

796

Fig. 12: System output for Fig. 7

Fig. 13: System output for Fig. 8

Table 3 shows the performance evaluation of the

system on a character level for five (5) test images

used. Figures 7 and 8 are again the best performers

with 100% accuracy each, whereas, Fig. 8 to 11 are

the worst performers at character level of testing with

73.8, 75.4% and 71.1% accuracy, respectively. Table

2 also shows a Character Error Rate of 18.1% across

the board, which is massively influenced by the

accuracy of Fig. 7 and 9.

The result of the performance evaluation of the

system showed impressive results. As shown in Table

4, the system was able to give an accuracy of over

81% at character level and about 70% at word level,

however, it was observed that the system performs

best on Arial font type, larger font and boldly printed

texts irrespective of the complexity of the background

and also when the color of the text on the image is not

too varied, for example, if the system receives an

Daniel Akinbade et al. / Journal of Computer Science 2020, 16 (6): 784.801

DOI: 10.3844/jcssp.2020.784.801

797

image that has two contrasting color test, it will select

either of both as the region of interest and return only

the tests with that color.

Validation of Results

The results obtained in this study was compared

with existing works in order to validate the efficacy of

the method. The metric used was the character level

accuracy of the methods as most of the methods did

not report on the word level accuracy their proposed

methods. Results from the comparison carried out

(Table 5) showed that the proposed method in this

study outperformed the existing used for the

comparison.

Fig. 14: System output for Fig. 9

Fig. 15: System output for Fig. 10

Daniel Akinbade et al. / Journal of Computer Science 2020, 16 (6): 784.801

DOI: 10.3844/jcssp.2020.784.801

798

Fig. 16: System output for figure 11

Table 1: Description of experimental test images

Proper-ties Figure 7 Figure 8 Figure 9 Figure 10 Figure 11

Size in pixels 580 x 350 589 x 388 558 x 366 590 x 333 625x 360

Resolution (ppi) 600 x 600 600 x 600 600 x 600 600 x 600 600x 600

Colour space RGB RGB RGB RGB RGB

Precision (gamma integer) 8-bit 8-bit 8-bit 8-bit 8-bit

Size in memory (MB) 2.1 2.4 2.1 2.0 2.3

Number of pixels 203000 228532 204228 196470 225000

Number of layers 1 1 1 1 1

Table 2: System’s performance evaluation (Word)

Figure 7 8 9 10 11 Total

No. of words 20 13 43 81 38 195
No. of substitutions 0 0 0 33 14 47
No. of deletions 0 2 0 2 2 6
no. of insertions 0 0 0 5 1 6
Word Error Rate (WER %) 0.0 15.0 0.0 49.4 44.7 30.3%

Table 3: System’s performance evaluation (Character)

Figure 7 8 9 10 11/12 Total

No. of Characters 96 61 178 317 223 875

No. of Substitutions 0 0 0 57 36 93

No. of Deletions 0 16 0 5 11 32

No. of Insertions 0 0 0 16 17 33

Character Error Rate (CER %) 0.0 26.2 0.0 24.6 28.9 18.1%

Table 4: System performance summary

 Error rate Accuracy

WORD 30.3 69.7

CHARACTER 18.1 81.9

Daniel Akinbade et al. / Journal of Computer Science 2020, 16 (6): 784.801

DOI: 10.3844/jcssp.2020.784.801

799

Table 5: Comparison with existing methods

 Character level

Method accuracy (%)

Segmentation and OCR (Shejwal and Bharkad, 2017) 77.24

Ostu (Satwashil and Pawar, 2017) 64.40

AdaBoost (Satwashil and Pawar, 2017) 75.04

SVM (Satwashil and Pawar, 2017) 78.80

GMM algorithm, (Rajesh and Aradhya, 2015) 70

Rajan and Raj (2017) Failed to extract text

The proposed method 81.9%

Conclusion and Future Works

With the dynamic nature of today’s connected

world, information sharing has reached a point where

there are understandably no limits to what can be

shared, be it on social networks, via emails, blog posts,

etc. Pictures are taking center stage in communication;

hence, the intended message must be obtained when

shared as texts appended to images. However, screen

readers and most OCR systems only perform well when

such images contain texts printed on plain

backgrounds, an OCR system that can perform well on

images with texts on complex background becomes a

fundamental necessity in addressing this problem. This

work has attempted to address the issue by designing an

algorithm that leverages on tesseract, an already

existing OCR system to improve on its performance on

interesting images (images with complex backgrounds).

The work built an OCR system using a custom adaptive

thresholding algorithm and then bundling the designed

algorithm with tesseract OCR using the Python

programming language and the pytesseract wrapper to

achieve this. Qt GUI designer was used to implement a

user-friendly interface for the app and ported into

python using the PyQt library. The motivation behind

this work was to provide a means to better extract

essential pieces of information from images, as a huge

percentage of these are lost during communication and

also, to offer the opportunity to easily digitize

information, i.e., convert the information in image files

to ASCII encoding and other machine-readable codes.

In this study, an adaptive thresholding algorithm was

applied, this leveraged on the positives of the Gaussian

mean C algorithm, but the block size variable was

dynamically determined and changes according to the

image pixels per area of the entire image. The system

was tested on five images using Word Error Rate

(WER) and Character Error Rate (CER). The WER

calculates the number of words that is incorrectly

extracted from the given image, i.e., words substituted

with other words, words deleted and words wrongly

inserted in the output, whereas, the CER calculates the

number of characters that are incorrectly extracted from

the given image, i.e., characters substituted with other

characters, characters deleted and characters wrongly

inserted in the output. It was found that the system has

WER of 30.3%, i.e., an accuracy of 69.7% and CER of

18.1%, i.e., an accuracy level of 81.9%, which

appeared to be more impressive as it was able to

recognize some of the test images which has mixed font

types, tiny prints, skewed texts etc., which were the

major difficulties of most existing methods. Validation

and comparison carried out showed that the proposed

method in this study outperformed the existing methods

in terms of the character level percentage accuracy.

Future works will review the adaptive thresholding

algorithm to improve on the output of the system seeing

that this system still produces up to an 18%-character-

level error. Future work will consider the development

of a more robust system that can extract texts from very

high contrasting backgrounds. Other machine learning

products asides tesseract could be bundled into the program

to improve results and validate the system.

Acknowledgement

The authors acknowledge the Department of

Computer Science, Redeemer’s University for providing

access to facilities in their software laboratory.

Author’s Contributions

Daniel Akinbade: He contributed to all the

sections of the paper. He conceived the idea,

formulated the design and worked on the

implementation. He was involved in data gathering

and experimentation.

Adewale Opeoluwa Ogunde: He contributed to all

the sections of the paper. He coordinated the data

gathering, design and execution of all experiments and

organized the paper. He participated in correcting the

paper and responding to all reviewers’ comments.

Mba Obasi Odim: He contributed to all the sections

of the paper. He also contributed in image gathering and

processing, writing, editing and formatting of the

research paper. He participated in correcting the paper

and responding to all reviewers’ comments.

Bosede Oyenike Oguntunde: She contributed to all

the sections of the paper. She also contributed in the

research analysis, writing, editing and formatting the

Daniel Akinbade et al. / Journal of Computer Science 2020, 16 (6): 784.801

DOI: 10.3844/jcssp.2020.784.801

800

research paper. He participated in correcting the paper

and responding to all reviewers’ comments.

Ethics

There are no ethical issues associated with the

publication of this work.

References

Bhansali, M. and P. Kumar, 2013. An alternative method

for facilitating cheque clearance using smart phones

application. Int. J. Applic. Innov. Eng. Manage., 2:

211-217.

Bishop, C.M., 2006. Pattern Recognition and Machine

Learning. 1st Edn., Springer, New York,

 ISBN-10: 0387310738.

Chaudhuri, A., K. Mandaviya, P. Badelia and S.K.

Ghosh, 2017. Optical Character Recognition

Systems for Different Languages with Soft

Computing. 1st Edn., Springer International

Publishing, ISBN-13: 9783319502519.

Das, R.L., B.K. Prasad and G. Sanyal, 2012. HMM

based offline handwritten writer independent

English character recognition using global and local

feature extraction. Int. J. Comput. Applic., 46: 45-50.

DOI: 10.5120/6948-9428

Deb, K., A. Pratap, S. Agarwal and T.A.M.T. Meyarivan,

2002. A fast and elitist multiobjective genetic

algorithm: NSGA-II. IEEE Trans. Evolut. Comput., 6:

182-197. DOI: 10.1109/4235.996017

Ding, J., G. Zhao and F. Xu, 2018. Research on video text

recognition technology based on OCR. Proceedings of

the 10th International Conference on Measuring

Technology and Mechatronics Automation, Feb.

10-11, IEEE Xplore Press, Changsha, China, pp:

457-462. DOI: 10.1109/ICMTMA.2018.00117

Fletcher, L.A.R.K., 1988. A robust algorithm for text

string separation from mixed text/graphics images.

IEEE Trans. Patt. Anal. Mach. Intell., 10: 910-918.

DOI: 10.1109/34.9112

Horng, M.H. and T.W. Jiang, 2010. Multilevel image

thresholding selection based on the firefly algorithm.

 Proceedings of the Symposia and Workshops on

Ubiquitous, Autonomic and Trusted Computing, Oct.

26-29, IEEE Xplore Press, Xian, Shaanxi, China, pp:

58-63. DOI: 10.1109/UIC-ATC.2010.47

Islam, N., Z. Islam and N. Noor, 2016. A survey on

optical character recognition system. J. Inform.

Commun. Technol., 10: 1-4.

Kaundilya, C., D. Chawla and Y. Chopra, 2019.

Automated text extraction from images using OCR

system. Proceedings of the 6th International

Conference on Computing for Sustainable Global

Development, Mar. 13-15, IEEE Xplore Press, New

Delhi, India, pp: 145-150.

Kavyashere, D. and T.M. Rejesh, 2018. Analysis of text

detection and extraction from complex background

images. Imanager’s J. Patt. Recog., 5: 37-45.
 DOI: 10.26634/jpr.5.3.15260

Kay, A., 2007. Tesseract: An open-source optical

character recognition engine. Linux J.

Kumuda, T. and L. Basavaraj, 2017. Edge based

segmentation approach to extract text from scene

images. Proceedings of the 7th International

Advance Computing Conference, Jan. 5-7, IEEE

Xplore Press, Hyderabad, India, pp: 1-4.

 DOI: 10.1109/IACC.2017.0147

Lee, M., 2018. Python tesseract.

Liu, H., C. Li, S. Jia and D. Zhang, 2018. Text detection

for dust image based on deep learning. Proceedings

of the 33rd Youth Academic Annual Conference of

Chinese Association of Automation, May 18-20,

IEEE Xplore Press, Nanjing, China.

 DOI: 10.1109/YAC.2018.8406472

Liu, Y., C. Mu, W. Kou and J. Liu, 2015. Modified

particle swarm optimization-based multilevel

thresholding for image segmentation. Soft Comput.,

19: 1311-1327.

Nakib, A., H. Oulhadj and P. Siarr, 2010. Image

thresholding based on Pareto multiobjective

optimization. Eng. Applic. Artif. Intell., 23:

313-320. DOI: 10.1016/j.engappai.2009.09.002

Nguyen, T.N., C.N.N. Hoang, T.S. Le and T.A. Tran,

2019. A system for text extraction in complex-

background document images. Proceedings of the

International Conference on Advanced Computing

and Applications, Nov. 26-28, IEEE Xplore Press,

Nha Trang, Vietnam, pp: 65-69.

 DOI: 10.1109/ACOMP.2019.00017

Rajan, V. and S. Raj, 2017. Text detection and character

extraction in natural scene images using fractional

Poisson model. Proceedings of the International

Conference on Computing Methodologies and

Communication, Jul. 18-19, IEEE Xplore Press,

Erode, India. DOI: 10.1109/ICCMC.2017.8282651

Rajesh, T.M. and V.M. Aradhya, 2016. ICA and neural

networks for Kannada signature identification. Int. J.

Latest Trends Eng. Technol., 7: 271-278.

 DOI: 10.21172/1.73.\537

Rajesh, T.M. and V.M. Aradhya, 2015. An application

of GMM in signature skew detection. I-manager’s J.

Pattern Recognition, 2: 8-15.

 DOI: 10.26634/jpr.2.3.3757

Raji, R., D. Mishra and M.S. Nair, 2015. A novel texture

based automated histogram specification for color

image enhancement using image fusion.

Proceedings of the International Conference on

Information and Communication Technologies, Dec.

3-5, IEEE Xplore Press, India, pp: 1501-1509.

 DOI: 10.1016/j.procs.2015.02.070

https://www.springerprofessional.de/en/optical-character-recognition-systems-for-different-languages-wi/11957726
https://www.springerprofessional.de/en/optical-character-recognition-systems-for-different-languages-wi/11957726
https://www.springerprofessional.de/en/optical-character-recognition-systems-for-different-languages-wi/11957726
http://www.springer.com/
http://www.springer.com/
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1109%2F4235.996017?_sg%5B0%5D=sxCXMRYpXkIoEV82aqYHUEb0IC-_xZQM6amaJSV1QSAQH-ymon-FfKxW4-A_DlHK_cB-GqGZ75rKIdKJ8lClA9isOQ.gzSP0A4RnPpmlvzJRD8lFcq2eZe0qDfJWnBjS4pUkOTPpNNXFiIFbQnikopQZhw7blBka6jsx3QZu0WPQptYBQ
https://doi.org/10.1109/34.9112
https://dl.acm.org/doi/proceedings/10.5555/1919288
https://dl.acm.org/doi/proceedings/10.5555/1919288
https://doi.org/10.1109/UIC-ATC.2010.47
https://link.springer.com/journal/500
https://www.sciencedirect.com/science/article/pii/S1877050915001349#!
https://www.sciencedirect.com/science/article/pii/S1877050915001349#!
https://www.sciencedirect.com/science/article/pii/S1877050915001349#!
https://doi.org/10.1016/j.procs.2015.02.070

Daniel Akinbade et al. / Journal of Computer Science 2020, 16 (6): 784.801

DOI: 10.3844/jcssp.2020.784.801

801

Rajinikanth, V. and M.S. Couceiro, 2015. RGB

histogram based color image segmentation using

firefly algorithm. Proceedings of the International

Conference on Information and Communication

Technologies, Dec. 3-5, IEEE Xplore Press,

India, pp: 1449-1457.

 DOI: 10.1016/j.procs.2015.02.064

Ranjan, R., P. Venugopal, S. Prithvi and N.S. Priyanka,

2015. Text extraction from images with complex

background. Int. J. Eng. Res. Technol., 3: 1-5.

Satapathy, S.C., N.S.M. Raja, V. Rajinikanth, A.S.

Ashour and N. Dey, 2018. Multi-level image

thresholding using Otsu and chaotic bat algorithm.

Neural Comput. Applic., 29: 1-23.

 DOI: 10.1007/s00521-016-2645-5

Satwashil, K.S. and V. Pawar, 2017. Integrated natural

scene text localization and recognition. Proceedings

of the International conference of Electronics,

Communication and Aerospace Technology, Apr.

20-22, IEEE Xplore Press, Coimbatore, India, pp:

371-374. DOI: 10.1109/ICECA.2017.8203708

Shejwal, M.A. and S.D. Bharkad, 2017. Segmentation

and extraction of text from curved text lines using

image processing approach. Proceeding of the

International Conference on Information,

Communication, Instrumentation and Control, Aug.

17-19, IEEE Xplore Press, Indore, India, pp: 1-5.

DOI: 10.1109/ICOMICON.2017.8279138

https://www.sciencedirect.com/science/article/pii/S1877050915001283#!
https://www.sciencedirect.com/science/article/pii/S1877050915001283#!
https://doi.org/10.1016/j.procs.2015.02.064
javascript:void(0);
https://dl.acm.org/journal/ncaa
https://doi.org/10.1007/s00521-016-2645-5

