

 © 2020 JoseWagner de Andrade Junior and Rodrigo Duarte Seabra. This open access article is distributed under a Creative

Commons Attribution (CC-BY) 3.0 license.

 Journal of Computer Science

Original Research Paper

Fully Retroactive Priority Queues using Persistent Binary

Search Trees

1JoseWagner de Andrade Junior and 2Rodrigo Duarte Seabra

1Institute of Systems Engineering and Information Technology, Federal University of Itajuba, Itajuba, Brazil
2Institute of Mathematics and Computing, Federal University of Itajuba, Itajuba, Brazil

Article history
Received: 20-04-2020
Revised: 23-06-2020
Accepted: 11-07-2020

Corresponding Author:
Rodrigo Duarte Seabra
Institute of Mathematics and
Computing, Federal University
of Itajuba, Itajuba, Brazil
Email: rodrigo@unifei.edu.br

Abstract: Classic dynamic data structures maintains itself subject to

sequence S of operations and answer queries using the latest version of the

data structure. Retroactive data structures are those which allow making a

modification or a query in any version of this data structure through its

timeline. These data structures are used in some geometric problems and in
problems related with graphs, such as the minimum path problem in

dynamic graphs. This work presents how to implement a data structure to a

fully retroactive version of a priority queue through persistent self-balanced

binary search trees in polylogarithmic time. We use these data structures to

improve the performance merging two versions of partially retroactive

priority queues. The empirical analysis showed that the average performance

of the proposed algorithm is better in terms of processing times than the other

algorithms, despite the high constants in its complexity.

Keywords: Retroactivity, Data Structures

Introduction

Considering the computational evolution and the
miniaturization of hardware components, software
should be able to support a large volume of data and an
expressive number of operations. In some applications,
it is necessary to maintain the history of operations

performed and a change in one of these operations can
create a cascade effect in this historical sequence of
events. For example, supposing that one discovered a
wrong measure received from a sensor and needs to
update this measure given by the sensor. Once the
measure from this device changes, all the information
previously extracted from the next measures needs to
be changed as well. A way to deal with all this different
information is performing a rollback on all measures
and re-extracting the information about the new
measure. This process is sometimes non-optimal. The
notion of retroactive data structures was created by

(Demaine et al., 2007).
In the literature, there are two types of temporal data

structures: Persistent and retroactive. In both types, it is

possible to perform updates and queries to the past. The

difference between these two types of data structures is

what happens when an operation is performed. In

persistent data structures, a new version of this structure

is built, deriving from the modified parts of the

operation. As an example of this structure, we have the

version control software, such as git, which allows
creating a new branch in a main timeline of the project,

changing only some parts of the entire project.

The other type of data structure is the retroactive one.

Retroactive data structure is defined by (Demaine et al.,

2007) as data structures that efficiently support

modifications to the historical sequence of operations

performed on the structure. In retroactive data

structures, we are interested in studying and optimizing

the cascade effect created by changing an operation in

the past of the data structure.

In a priority queue, the standard operations are:

 Push(x): Add a value x to the data structure

 Pop(): Delete the minimum value in the data structure

 GetPeak(): Return the minimum value in the priority

queue

These operations can be easily handed in O(lg (n))

time using binary heaps. However, in the retroactive

version of this data structure, we need to be able to

execute the following operations:

 Insert(t, Push(x)): Add a value x to the data structure

at time t

 Insert(t, Pop()): Insert a deletion removing the

minimum value in the data structure at time t

JoseWagner de Andrade Junior and Rodrigo Duarte Seabra / Journal of Computer Science 2020, 16 (7): 906.915

DOI: 10.3844/jcssp.2020.906.915

907

 Delete(t, Push(x)): Delete the operation Push(x)

performed at time t

 Delete(t, Pop()): Delete the operation Pop()
executed at time t

 GetPeak(t): Return the minimum value in the

priority queue at time t

In a partial retroactive data structure, the query

operations, such as GetPeak(t), will always run with t =

 (i.e., at the present time).

The operations in the retroactive version of the priority

queue are a bit harder to handle, once a modification in the

past can create a cascade effect, changing the timelines of

each element in the data structure.

Demaine et al. (2007) proposed retroactive versions,
partial and full, to some data structures such as stacks,

queues, union-finds and priority queues. In that occasion

he proposed a fully retroactive priority queue in

 lgO m m time per update, where m is the size of the

timeline in which the data structure is implemented.
Years later, Demaine et al. (2015) presented an

optimized solution that allows performing the update

operations in O(lg2m) time, using a data structure called

checkpoint tree. This new approach also supports the

operation of determining the time at which an element

was deleted from the data structure in O(lg2m) time.

However, we could not find any paper about
implementing and testing these data structures. We use the
theoretical knowledge presented by Demaine’s articles to
implement and to test the fully retroactive priority queue
and fill this lack of implementations of retroactive data
structures. In this article we perform a slight modification

in the original algorithm proposed to get the fully
retroactive priority queue in poly-logarithmic time using
fully persistent self-balanced binary search trees.

Related Works

In computing, a persistent data structure is one that

always preserves the previous version of itself when it is

modified. This term was introduced by (Driscoll et al.,

1989). A data structure is called partially persistent when

any version of the data structure can be accessed, but

only the newest version can be modified. A data

structure is called fully persistent when we are able to

modify any version of the data structure. There is also
the notion of confluent persistent data structures, which

are structures created by merging two different versions

of the same data structure. Data structures that are not

persistent are called ephemeral (Kaplan, 2018). A

practical example of using persistent data structures is

the planar point location problem proposed by

(Sarnak and Tarjan, 1986). In this problem, we have a

set P of n non-intersect polygons P = {p0, p1,, pn}

and we need to answer q queries. In each of these

queries, we need to answer, given a point v = (x, y),

the index of a polygon which contains point v, or

answer if the point is not contained in any polygon.
Using persistent binary search trees, the algorithm

proposed by (Sarnak and Tarjan, 1986) consumes

O(n)-space and O(lg (n))-time complexity.

The literature considers two types of retroactivity:

Partial and full. Partial retroactivity allows the user to

know how changes made in the past currently affect the

structure. Fully retroactive data structures allow the user to

make queries and updates both in the past and in the

present (Demaine et al., 2007). There is also a concept of

non-oblivious retroactive, introduced by (Tangwongsan

and Blelloch, 2007), which are structures that allow the
user to know, after an update in the past, the first instant at

which this data structure will become inconsistent.

Partially retroactive data structures are more efficient and

less complex than fully retroactive data structures.

The notion of retroactive data structure helps to

solve problems, such as dynamic shortest path problem

(Sunita and Garg, 2018) and geometric problems, such

as cloning Voronoi diagrams (Dickerson et al., 2010) and

nearest neighbor search (Goodrich and Simons, 2011).

Demaine et al. (2015) proposed a fully retroactive

priority queue that consumes O(lg2m) per update,

improving the previous lower bound of lgO m m

time per operation. The data structure also supports the

operation of determining the time at which an element

was deleted from the data structure in O(lg2m).

Chen et al. (2018) sets a nearly optimal separation
between partially and fully retroactive data structures.

The authors used some conjectures to prove that the

upper bounds between partially and fully retroactive data

structures is n << m , where n is the size of data

structure and m is the number of operations in the

timeline, by showing a new transformation with

multiplicative overhead nlgm. They also proved a lower

bound of
 1 1

lg ,
o

n m m

 .

Henzinger and Wu (2019) sets upper and lower
bounds for fully retroactive graph problems, such as
graph connectivity, minimum spanning forest and
maximum degree. They also proposed an algorithm
for incremental fully retroactive connectivity in Õ(1)
time per operation.

Fully Retroactive Priority Queue in

Polylogarithmic Time

It is possible to transform a time-fusible data

structure, with a logarithmic multiplicative cost, using

a technique called hierarchical checkpointing. Two
data structures E1 and E2 are called time-fusible if

they represent the same data structure in consecutive

disjoint times.

JoseWagner de Andrade Junior and Rodrigo Duarte Seabra / Journal of Computer Science 2020, 16 (7): 906.915

DOI: 10.3844/jcssp.2020.906.915

908

In other words, let
1E

I = [l1, r1] be the time range

corresponding to E1 and
2E

I = [l2, r2] be the time range

related to data structure E2. Thus, these data structures

are time-fusible if r1 < l2 e r1 +1 = l2. The union of these

data structures generates another data structure Ef =

E1E2, which covers the range
fE

I = [l1, r2].

With this definition, it is possible to generate a binary

tree in the data structure timeline, in which each node

represents a continuous time range in this timeline. This

transformation was denoted by (Demaine et al., 2015) as

hierarchical checkpointing

To create a data structure using this technique, the first

step consists in building the checkpoint tree - a binary

search tree in which each node maintains a partially

retroactive data structure containing all the updates made

to its sub-trees. This tree is similar to the segment tree.
In a segment tree, each node represents a

continuous time range [l, r], starting at time l and

ending at time r. Each node from this segment tree

will contain a partial retroactive priority queue and

two auxiliary sets: Qnow, containing the elements

inside the priority queue, considering the operations

performed between l and r and Qdel containing the

elements removed by some operation in this temporal

range. Sets Qnow and Qdel are given by the partial

retroactive data structure inside a certain node.

If a priority queue is empty when an operation Pop at
time t is performed, then this operation will insert a key

with infinity value in Qdel. That is equivalent to inserting

a value at time t and immediately removing it.

Figure 1 shows the representation of a checkpoint

tree. The set Q[l, r] represents the priority queue which
covers all the operations carried out in the time range [l,

r], in the data structure timeline. In this case, the data
structure has a timeline of size 16 and a query is being

performed in the structure at time 11. The green nodes
represent the ones inside the time range in this query and

the leaf nodes represent the operations conducted
through the timeline. In the leaves, D represents that a

delete operation was performed, whereas the numbers
represent the insertions. In a checkpoint-tree, the leaf

nodes also represent a data structure in a single point,
that is, Q[i,i] for all the i inside the timeline range.

Figure 2 shows how each node keeps the
information about the operations carried out. Each

node contains two sets, Qnow and Qdel, as
aforementioned. Thus, to obtain the range Q[1,11]

(equivalent to a fully retroactive priority queue at time
11), we need to obtain Q[1,8] Q[9,10] Q[11,11].

Algorithm to Merge Two Partially Retroactive

Priority Queues

Demaine et al. (2015), it is possible to merge two

partially retroactive priority queues. Consider two time-

fusible priority queues Q1 and Q2 (that is, with time

range [l1, r1] and [l2, r2] that r1+1 = l2). We can thus

generate a priority queue Q3 merging Q1 and Q2 covering
the range [l1, r2]:

3, 2, 1, 2,

3, 1, 1, 2,

 max

 min

now now now del

del del now delg

Q Q A Q Q

Q Q D Q Q

where, A = |Q1,now Q2,del| - |Q2,del|, D = |Q2,del| and max-

C{S} denote the greatest C elements in S, as min-C{S}

represents the smallest C elements in set S. In the

algorithm, these sets are only merged when a query

operation is performed.

After defining the sets, it is possible to write

Algorithm 1, which returns the union of these partially

retroactive priority queues (Demaine et al., 2015). In
this Algorithm, getSplitKey(D,T) returns a value x, in

which all the subsets of T should be divided and the

number of values smaller or equal to x are equal to D.

This function can be implemented in logarithmic time

in the size of the set generated by the union of Q1,now

and Q2,del using a binary search.

Algorithm 1 Algorithm to merge two partially retroactive

priority queues

1: procedure Merge(Q1, Q2)

2: D |Q2,del|

3: T {Q1,now Q2,del}

4: x getSplitKey(D,T)

5: Q3,now Q2,now T>x

6: Q3,del Q1,del T x

7: return Q3

8: end procedure

Given a set T and a key x, a data structure, able to

divide this set into two sets T1 = Tx and T2 = T>x, is

necessary. It is possible to use a balanced binary search

tree to keep the sets Qnow and Qdel. In a balanced binary

search tree, it is possible to divide this tree into two trees

as mentioned previously.

Figure 3 depicts the two first nodes merged in a query

related at time 11 in the priority queue presented in

Figure 1. The blue and red elements respectively

correspond to sets Qnow and Qdel from partial priority

queue Q[1,8], while the yellow and purple elements are

the elements inside Qnow and Qdel from partial priority

queue Q[9,10]. The blue and purple elements are united by

operation {Q[1,8],now Q[9,10],delg, being that the smaller D
= |Q[9,10],del| are inserted in a new set Qdel, while the other

ones are inserted in Qnow.

The elements inside Q[1,8],del and Q[9,10],now (yellow

and red elements, respectively) are not affected by the

union operation, since none of the elements inside set

JoseWagner de Andrade Junior and Rodrigo Duarte Seabra / Journal of Computer Science 2020, 16 (7): 906.915

DOI: 10.3844/jcssp.2020.906.915

909

Q[1,8],del can be recovered when these time ranges are

merged. Likewise, the elements inside priority queue

Q[9,10],now cannot be erased by a deletion operation that

occurred prior to its insertion.

Fig. 1: Example of a checkpoint tree generated from a priority queue. Source: The authors

Fig. 2: Query example in a checkpoint tree. Source: The authors

Fig. 3: Example of merging two nodes in a checkpoint tree. Source: The Authors

Q[1,16]

Q[1,8] Q[1,16]

Q[1,4] Q[9,12] Q[13,16]

Q[1,2] Q[3,4] Q[5,6] Q[7,8]

Q[5,8]

Q[9,10] Q[11,12] Q[13,14] Q[15,16]

D D 97 D D D 10 7 1 8 4 23 18 D 13 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

JoseWagner de Andrade Junior and Rodrigo Duarte Seabra / Journal of Computer Science 2020, 16 (7): 906.915

DOI: 10.3844/jcssp.2020.906.915

910

Fig. 4: Example of merging two nodes in a checkpoint tree (continuation). Source: The Authors

Fig. 5. Persistence example using the path-copying

Figure 4, the same operation is performed, yet

considering that Q[1,8] and Q[9,10] were merged by the

previous operation. We thus merge Q[1,10] with Q[11,11].

Now, the blue and red blocks are the elements inside
Qnow and Qdel from Q[1,10] and the yellow and purple

elements are related to partially retroactive priority

queue Q[11,11]. Thus, it is possible to obtain the

minimum element in data structure Q1,11 getting the

smallest value inside Qnow after merging these three

nodes from the checkpoint tree.

Using the implementation of a standard binary search

tree without any modification for each set, we lose the

information about a tree after a division by a value x. A

technique in a binary search tree. Source: The Authors.

possible solution could be copying the entire tree and,
after this operation, performing the division in this

new copied tree. However, this solution consumes

linear time in the size of the tree. To optimize this

solution, we can use a persistent version of a tree,

which creates a new version from a tree by only

modifying the nodes affected by the division.

Persistent Cartesian Tree

To perform the queries using the approach
aforementioned, it is necessary to implement a data
structure that keeps the versions of a binary search tree.
There are some methods to transform a data structure
into its persistent version.

In this implementation, we used a persistent

version of the randomized binary search Cartesian tree

(Martínez and Roura, 1998). The tree was made

persistent using the path-copying technique (Driscoll et al.,

1989). In other words, for each node from the root to the

modified node, a copy is created and the modifications

are made to this copy.
Figure 5 presents the visual representation of an

insertion operation in a binary search tree. The example
shows the insertion of element 13 in the tree. The
operation begins with a standard insertion in a binary
search tree. That is, if the x value inserted is lower than
the current node; we recursively go to the left child,
otherwise, to the right child, repeating this operation
until the current node is not empty.

In the example, an insertion in a standard binary

search tree would follow path {10, 15, 12} to insert

element 13. In the persistent version, this operation

follows the same path, but these nodes are copied to
create a new version of this tree. When a copy is made,

all the attributes of a previous node are copied, including

the left and right child of this node. For example, in Fig.

5, node 10 is initially copied and the pointers to the left

and right child of this new node point to {5, 15},

respectively (blue dashed edges). After analyzing the

JoseWagner de Andrade Junior and Rodrigo Duarte Seabra / Journal of Computer Science 2020, 16 (7): 906.915

DOI: 10.3844/jcssp.2020.906.915

911

node value, the algorithm recursively calls the insertion

function to the right, creating a new blue node with value

15 (black edge). Note that, after creating this new node,
one of the blue dashed edges was replaced with a black

edge by the recursive call. That is, all the blue dashed

edges represent connections between distinct versions of

the data structure, while the black ones are edges

between vertices created in the same version. Using this

technique, a new version of the data structure going

through the tree height can be created.
Algorithm 2 shows how to implement a node copy p.

In a copy, all the attributes from this node are duplicated.
The function update(p) updates and returns the node,
updating information about the maximum, minimum and
the size of the sub-tree rooted in p.

Algorithm 2 Function to copy a node

1 pTreapNode copy(pTreapNode p) {

2 pTreapNode cpy = new TreapNode(p->key, p->data);

3 cpy->l = p->l;

4 cpy->r = p->r;
5 return update(cpy);

6 }

Algorithm 3 shows the function that implements the

split of a binary search tree t, by a value key, generating

trees a = tkey and b = t>key. Therefore, if the current tree

is null, this implies that the split function reached the end

and the split generated in this state generates two empty

trees. If the tree is not empty, the root of this sub-tree

will be modified by a split operation and thus, it is

necessary to copy this node (line 7).

Algorithm 3 Split operation in a persistent binary search

tree

1 void split(pTreapNode t, K key,

2 pTreapNode anda, pTreapNode andb) {

3

4 if (!t) {

5 a = b = NULL;

6 return;

7 }

8 pTreapNode aux;
9 t = copy(t);

10 if (key < t->key) {

11 split(t->l, key, a, aux);

12 t->l = aux;

13 b = update(t);

14 }

15 else {

16 split(t->r, key, aux, b);

17 t->r = aux;

18 a = update(t);

19 }

20 }

Fig. 6: Example of a split operation by a value x in a binary

search tree. Source: The Authors

Figure 6 shows the representation of a split operation

in a sub-tree rooted at node t by a value x. In the case

shown, value x is higher than the value in the root of the

tree and the figure therefore refers to the operations

performed between lines 13 to 16 from Algorithm 3.

Initially, the split function is called recursively to the

right child of the tree, returning two pointers, aux and

b. The values inside the tree rooted in aux are lower

than value x of the division of the tree; however, higher
than the values inside the current tree; thus, aux

becomes the right child of this tree. The sub-tree rooted

in b is correct after the recursive call. Finally, the sub-

tree rooted in t after the split is assigned to a; thus, a

contains all the values lower or equal to x while b

contains all the values higher than x. Symmetrically this

algorithm is implemented when value x is lower than the

value in the current sub-tree.

Algorithm 4 shows how to perform an insertion in a

randomized binary search tree. In this tree, besides its pair

key/value, each element contains, a variable that represents

its balancing. This kind of tree is also is commonly called

Treap (tree + heap Treap), because it combines the
search properties from a binary search tree with the

balancing properties from a binary heap. In a binary heap,

every child element from a node is lower than this node.

This condition should be maintained to keep the heap

property. This data structure is called Cartesian tree as well.

In Algorithm 4, the heap condition is kept by the

auxiliary variable y, which keeps the balancing of the tree

through this property. In other words, let (x, y) be a pair

related to a value x in the tree and y a randomly selected

JoseWagner de Andrade Junior and Rodrigo Duarte Seabra / Journal of Computer Science 2020, 16 (7): 906.915

DOI: 10.3844/jcssp.2020.906.915

912

value, we want to keep the heap property in the tree using

the y values in a binary search tree related to its x values.

Algorithm 4 Insertion operation in a persistent

Cartesiantree

1 pTreapNode insert(pTreapNode t, pTreapNode it) {

2 t = copy(t);

3 if(!t) {
4 t = it;

5 }

6 else if(it->y < t->y) {

7 split(t, it->key, it->l, it->r);

8 t = it;

9 }

10 else {

11 if(it->key < t->key) t->l = insert(t->l, it);

12 else t->r = insert(t->r, it);

13 }

14 return update(t);

15 }

Since it is a persistent Cartesian-tree, the first step

consists in copying all the nodes in the path between the
tree root and the element inserted. In line 3, we have the

base case, when the sub-tree root is null and, thus, the sub-

tree root is the current element. After this, we need to treat

the tree heap property. That is, if the priority of the current

inserted element is lower than the priority of the current

sub-tree root, this means that the currently inserted element

cannot descend further into the tree. Therefore, the sub-tree

is divided by the key of the inserted node and the current

node is defined as the root of the two trees generated by the

division. Otherwise, the insertion of the new element

follows the normal operations of a common binary tree.
Algorithm 5 shows the implementation of a function

to merge two binary self-balanced search trees, l and r,

in which the highest value from tree l is lower than the

lowest value from r. When a merge operation occurs,

there are two possibilities:

 Use tree l as parent from tree r

 Use tree r as parent from tree l

After defining the merging policies, recursively calls

are made until l and r are not empty. However, the

definition of a static policy to merge the sub-trees can

generate a completely unbalanced tree.

Algorithm 5 Merge operation in two binary search trees.

1 pTreapNode merge(pTreapNode l, pTreapNode r) {

2 if (!l || !r) {

3 return l ? l : r;

4 }
5 int m = getSize(l), n = getSize(r);

6 if(rand() % (m + n) < m) {

7 l = copy(l);
8 l->r = merge(l->r, r);

9 return update(l);
10 }

11 else {

12 r = copy(r);

13 r->l = merge(l, r->l);

14 return update(r);

15 }

16 }

In a fully persistent Cartesian tree, besides variable y
used to maintain the heap property, the proportional

probability of the size of the tree is used to define the

policy used in this iteration. Therefore, two different

executions of joining the same trees can yield different

results, but maintaining an amortized logarithmic height

in both cases. Line 6 of Algorithm 5 shows the

probabilistic choice of policy, as presented. In the

algorithm, the rand function returns a random integer.

Figure 7 shows the union of two trees L and R, in

which the highest value of L is lower than x, while the

lowest value from R is higher than x. The blue node is

the root resulting from the merging operation, which
could be a node from L or a node from R. The larger the

number of nodes in a tree, the greater the expected value

of its height is. For this reason, the algorithm is more

likely to root the tree with the most nodes.

Fig. 7: Example merging of two binary search trees. Source:

The Authors

JoseWagner de Andrade Junior and Rodrigo Duarte Seabra / Journal of Computer Science 2020, 16 (7): 906.915

DOI: 10.3844/jcssp.2020.906.915

913

The merging function eventually allows creating a

delete function of an element in a Cartesian-tree. Due

to the persistent nature of the structure, it is necessary

to copy all the way to the removal of the node, which

is performed by checking line 3 in Algorithm 6.

Algorithm 6 Delete operation in a persistent

Cartesiantree

1 pTreapNode erase(pTreapNode t, K key) {

2 t = copy(t);

3 if (t->key == key) {

4 t = merge(t->l, t->r);

5 }

6 else {

7 if(key < t->key) t->l = erase(t->l, key);

8 else t->r = erase(t->r, key);

9 }

10 return update(t);

11 }

Empirical Analysis

After the implementation, this data structure was

tested under some data sets. In these data sets, the

operations are executed consistently. In other words, any

operation in the timeline is consistent and can be

executed. For example, we do not execute an operation

Pop in an empty data structure. The data sets were

generated such that every possible operation had the

same chance of being executed. These data sets have a

fixed temporal timeline of 105, i.e., all data structure

versions exist in a time interval between 1 and 105 and

all the operations were chosen randomly.

These tests were executed using an Intel Core i5-

4200U CPU@1.60GHz x 4 processor and 8 gigabytes of

memory. For measuring the results, we used the gtest

tool, to obtain the empirical time complexity and

valgrind, to get the memory consumption for each of the

implementations.

All the algorithms used in this article can be found at

https://github.com/juniorandrade1/Master/blob/master/sr

c/Priority_Queue/ and the data sets can be found at

https://github.com/juniorandrade1/Master/tree/master/tes

ts/Datasets/Priority_Queue.

We use this pre-generated data sets to test the

performance of three different implementations of a

fully retroactive priority queue. The first
implementation is the one proposed here, using

checkpoint-tree and persistent binary search trees

based on (Demaine et al., 2015) work. The second is

the implementation of an algorithm proposed by

(Demaine et al., 2007), which used a square-root

decomposition technique with the partial retroactive

priority queue to perform all updates and queries at

time lgO m n . The third implementation is a

brute force algorithm; when a GetPeak(t) operation is

performed, all the edges added at time t < t are added

to the graph and, later, a standard shortest path

algorithm is executed in this graph.

Figure 8 shows the tests performed comparing the

performance among three different implementations of

the fully retroactive priority queue.

Fig. 8: Performance test using random test cases. Source: The Authors

https://github.com/juniorandrade1/
https://github/

JoseWagner de Andrade Junior and Rodrigo Duarte Seabra / Journal of Computer Science 2020, 16 (7): 906.915

DOI: 10.3844/jcssp.2020.906.915

914

Fig. 9: Memory consumption in a fully retroactive priority queue. Source: The Authors

The brute-force algorithm is faster than the second

one in the first 1500 operations and, after that, the

second algorithm is faster. This occurs because the

constants in the brute-force algorithm are lower than the

constants in the second algorithm. Also, the

insertion/deletions in the bruteforce algorithm are faster
than in the retroactive approach. Conversely, the

GetPeak(t) operations is slower than the algorithm that

uses the square-root technique.

The first algorithm has a stable performance when the

number of operations increase and also performed better

than the other two algorithms, on average. This

algorithm only presented a worse performance in very

few cases, whereby the large implicit constant in the

algorithm complexity made the poly-logarithmic

algorithm slower as compared to the other ones.

Figure 9 shows the memory consumption when the

tests were performed.
The brute force algorithm presented a very small

memory consumption compared to the other two

algorithms. The brute force algorithm maintains the

operations performed ordered, consuming a long time

when the queries are executed, but consuming a small

amount of memory. The algorithm Retroactivity- m
proposed by Demaine et al. (2007) consumes a large

amount of memory because, besides storing m partial

retroactive priority queues, when an update operation is

performed, the inserted object will be added in m

partial retroactive priority queues, in the worst case.

The poly-logarithmic algorithm proposed by

(Demaine et al., 2015) maintains a checkpoint-tree

which, in the worst case, modifies lg (m) partial priority

queues. This explains the difference of memory

consumption in these two algorithms.

Conclusion

This article presents an implementation to the fully

retroactive priority queue using the checkpoint-tree

technique proposed by Demaine et al. (2015) and fully

persistent self-balanced binary search tree. The

algorithm implemented in C++ using checkpoint-tree

and persistent binary search trees performed better than

the algorithm implemented using the square-root

technique in terms of time complexity.

Using the persistent self-balanced binary search
tree allowed implementing an algorithm to merge two

partially retroactive priority queues without losing

information about the trees before executing the

operations.

In future researches, we intend to measure the

influence of using other types of persistent binary search

trees when merging two partially retroactive priority

queues and also propose some applications in which we

can use the poly-logarithmic retroactive priority queue

along with the checkpoint tree idea.

Funding Information

This work was supported by the National Council for
the Improvement of Higher Education (CAPES).

Author’s Contributions

All the authors have equally contributed in this work.

Ethics

There are no ethical issues associated with this

research.

JoseWagner de Andrade Junior and Rodrigo Duarte Seabra / Journal of Computer Science 2020, 16 (7): 906.915

DOI: 10.3844/jcssp.2020.906.915

915

References

Chen, L., Demaine, E. D., Gu, Y., Williams, V. V., Xu,

Y. and Yu, Y. (2018). Nearly Optimal Separation

Between Partially and Fully Retroactive Data

Structures. arXiv preprint arXiv:1804.06932.

Demaine, E. D., Iacono, J. and Langerman, S. (2007).

Retroactive data structures. ACM Transactions on

Algorithms (TALG), 3(2), 13-es.

Demaine, E. D., Kaler, T., Liu, Q., Sidford, A. and
Yedidia, A. (2015, August). Polylogarithmic fully

retroactive priority queues via hierarchical

checkpointing. In Workshop on Algorithms and

Data Structures (pp. 263-275). Springer, Cham.

Dickerson, M. T., Eppstein, D. and Goodrich, M. T.

(2010, September). Cloning voronoi diagrams via

retroactive data structures. In European Symposium

on Algorithms (pp. 362-373). Springer, Berlin,

Heidelberg.

Driscoll, J. R., Sarnak, N. and Sleator, D. D. (1989). RE

Tar j an. Making data structures persistent. J ournal

o f C omputer and S ystem S ciences (JCSS), 38(1),
86-124.

Goodrich, M. T. and Simons, J. A. (2011, December).

Fully retroactive approximate range and nearest

neighbor searching. In International Symposium on

Algorithms and Computation (pp. 292-301).

Springer, Berlin, Heidelberg.

Henzinger, M. and Wu, X. (2019). Upper and Lower

Bounds for Fully Retroactive Graph Problems.

arXiv preprint arXiv:1910.03332.
Kaplan, H. (2018). Persistent data structures. In

Handbook of Data Structures and Applications,

pages 511–527. Chapman and Hall/CRC.

Martínez, C. and Roura, S. (1998). Randomized binary

search trees. Journal of the ACM (JACM), 45(2),

288-323.

Sarnak, N. and Tarjan, R. E. (1986). Planar point

location using persistent search trees.

Communications of the ACM, 29(7):669–679.

Sunita and Garg, D. (2018). Dynamizing Dijkstra: A

solution to dynamic shortest path problem through
retroactive priority queue. Journal of King Saud, In

press.

Tangwongsan, G. E. and Blelloch, U. A. (2007).

Nonoblivious retroactive data structures. Technical

report.

