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Abstract: Automatic Music Transcription (AMT) is becoming more and 

more popular throughout the day, it has piqued the interest of many in 

addition to academic research. A successful AMT system would be able to 

bridge multiple ranges of interactions between people and music, including 

music education. The goal of this research is to transcribe an audio input to 

music notation. Research methods were conducted by training multiple 

neural networks architectures in different kinds of cases. The evaluation used 

two approaches, those were objective evaluation and subjective evaluation. 

The result of this research was an achievement of 74.80% F1 score and 

73.3% out of 30 respondents claimed that Bidirectional Long Short-Term 

Memory (BiLSTM) has the best result. It could be concluded that BiLSTM is 

the best architecture suited for automatic music transcription. 
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Introduction 

Artificial intelligence has been a hot topic as of late 

due to its powerful capabilities in helping humans, as 

such, a lot of applications are now applying it as their 

base program. Multiple products of artificial intelligence 

could be seen in various fields, one of its best features is 

data mining, analyzing chunks of massive data then 

returning a particular characteristic from that data. 

The popular feature of extracting characteristics is 
also widely used in other scopes of artificial 
intelligence. Currently, there has been a lot of research 
that also challenges artificial intelligence in the topic of 

voice processing. As the name suggests, voice 
processing is the ability of artificial intelligence to 
retrieve useful information or any characteristic that it 
could extract from the input, which here is a signal that 
was converted from the given audio (Joshi et al., 2017). 
The program is going to receive the audio which then 

analyzed and turned into a chain of signals so that the 
machine could understand and process. This field has a 
close relation with Automatic Music Transcription 
(AMT). AMT focuses on how to compute and convert a 
given audio input into a music signal which later 
transforms into music notation (sheet music). In respect 

to voice processing, AMT is called the musical 
equivalent of automatic voice recognition, in the sense 
that both tasks involve converting signals to symbolic 

sequences (Benetos et al., 2018). It has been one of the 
many challenging tasks even for an artificial 

intelligence model to discern the audio input regardless 
of the noises, frequency, etc. and finally return the 
expected music notation. 

Furthermore, AMT is also closely associated with 

image processing, as sometimes, musical objects, 

usually music notation, could be recognized as a   

two-dimensional pattern with respect to time and 

frequency, widely known as a spectrogram. From the 

spectrogram that audio generated, it was then treated as 

the input of an image processing artificial intelligence 

where the characteristic of the spectrogram is going to 

be extracted and identified. 
As AMT becomes more and more popular throughout 

the day, it has piqued the interest of many in addition to 
academic research. A successful AMT system would be 
able to bridge multiple ranges of interactions between 
people and music, including music education (by 
producing sheet music, it helps in the process of 
education), music creation, music production, music 
search, musicology (Benetos et al., 2018). 

Problem Definition 

The ability to transcribe music audio into music 

notation (sheet music) is one of many fascinating 

examples of human intelligence. It requires perception in 
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analyzing complex auditory scenes, cognitive ability 

(recognizing musical objects), previous knowledge of 

the corresponding theory and interference when testing 

new combinations in music notation (Benetos et al., 

2018). However, not many have that kind of capability, 

some people are still struggling to even define what note 

the audio is playing on. Furthermore, when listening to 

music by ear, it is quite hard to pin-point the exact and 

correct note. This is also the same as how different 

artificial intelligence’s architectures or algorithms will 

have the result, not all artificial intelligence has the 

capabilities to process audio and have a great result at 

the end. Therefore, this research will address which of 

the available algorithms available will be able to give the 

best result to perform an audio processing task. The 

problems that could be derived from the statements 

above are: What is the difference in the F1-score used 

between Convolutional Neural Network (CNN), Long 

Short-Term Memory (LSTM), Multilayer Perceptron 

(MLP), Deep Neural Network (DNN) and Bidirectional 

Long Short-Term Memory (BiLSTM)? And 

subsequently what is the most suitable neural network 

architecture in processing sequential data (music) for 

automatic music transcription? 

Related Works 

In the first paper from (Sigtia et al., 2016), the paper 

proposed an architecture for an end-to-end approach of 

transcribing a piece of piano music into music notes. The 

proposed model is a combination of an acoustic model of 

CNN with the addition of music language model RNN 

NADE which is later compared with other architectures. 

This paper used full musical pieces from the MIDI 

Aligned Piano Sounds (MAPS) (Emiya et al., 2010) 

dataset which contained 270 pieces of classical music 

and MIDI annotations for training and testing the models 

in which 210 of the pieces are synthesized recordings 

and the rest are real recordings. The configuration for the 

training and testing was 80% of the data for training 

(216 musical pieces) and the remaining 20% is for 

testing (54 pieces). The paper transforms the input 

audio to a time-frequency representation where the 

representation chosen is Constant Q Transform (CQT) 

over Short Time Fourier Transform (STFT). There are 2 

reasons for choosing CQT over STFT, the first reason is 

that CQT has much lower dimensional representation 

than the STFT in which it is useful when using neural 

network acoustic models as it reduces the number of 

parameters in the model and the second reason is that 

CQT is better suited as time-frequency representation for 

music signals, since the frequency axis is linear in pitch.  

The next paper is by (Li et al., 2017) which 

observed DNN and LSTM in music transcription tasks. 

The authors claimed that it is inefficient to deal with 

the audio files directly and therefore it will be 

transformed into spectrograms to extract features. The 

method used in this research is CQT due to its 

advantages as it provides a logarithmic frequency 

domain and is better in other reports. 

This research also uses the MAPS dataset specifically 

the MUS part (pieces of music) as the authors claim it is 

an outstanding dataset due to each .wav file having a 

corresponding text document with ground truth for all 

pitches. The total number of pieces of music is 270 

(around 11 GB) and the data is split into training, 

validation and test sets with 60:20:20 percentage ratio. 

Using the MAPS dataset, music files are down sampled 

to 16 kHz providing a 32-millisecond duration per 

frame. There are 252 features which account for 36 

features per octaves. Labels are also generated with 88 

labels for each frame. The DNN architecture uses a 

ReLU activation function for hidden layers and a 

sigmoid activation function for the output. LSTM uses 

hyperbolic tangent activation function hidden layers and 

sigmoid activation function for the output layer. 

Another paper is from (Hawthorne et al., 2017), in 

this paper tried to make a transcription pipeline from an 

audio into a MIDI file. It uses two architectures to 

predict two different things which are combined on a 

certain stage to not only predict when notes are played 

but also the onset of those notes. The paper itself uses 

MAPS datasets which consists of music created with 

synthesizers and music created with digital piano and the 

authors of this paper also ensure that the same music 

piece was not present in more than one set. 

The onset and frame detectors used in this study are 

built upon the convolutional layer and will be followed by 

a bidirectional LSTM with 128 units in both directions 

(forward and backward) and then connected to a fully 

connected sigmoid layer with 88 outputs to represent the 

88 piano keys. The output of the onset detector is then 

concatenated with the output of a fully connected sigmoid 

of the frame activation detector which is then followed by 

BiLSTM. Finally, the output of it is followed by a fully 

connected sigmoid layer with 88 outputs. 

The authors also compared the proposed 

architecture with other similar works and had the best 

result. Furthermore, the authors also discussed the need 

for more data and more rigorous evaluation. In this 

paper, the authors claimed that MAPS dataset has the 

main drawback of not providing the needed large 

dataset to best measure transcription quality and 

therefore will not be able to further improve the result. 

There are a lot of papers restricting the data used in 

evaluation by only using the first 30 sec or less of each 

file. This is due to only using the “close” collection 

from each of the test sets and improving the evaluation 

score. However, this method was believed to result in 

an evaluation that is not representative to transcript the 

real-world transcription task. 
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Kelz et al. (2016) attempted to explore the limitation 

of simple approaches in the task of automatic music 

transcription in which the authors conduct an in-depth 

analysis of neural network based framewise transcription 

with detailed analysis of the most suitable input 

representations for transcription systems in neural 

networks and other hyper-parameter tuning that would 

greatly affect the performance of the neural network. The 

dataset used in these experiments is the MAPS dataset. It 

provides MIDI-aligned recordings of a lot of classical 

music pieces. The pieces were rendered using high 

quality piano samples as well as real recording from 

Disklavier. The author claimed that it ensured clean 

annotation and therefore will have almost no label-

noise. The configuration dataset for training and testing 

is split to 80:20| percent of each of the categories. This 

research tested DNN, ConvNet and AllConv with 

different types of hyper parameter tuning for around 

3000 runs with a Tesla K40 GPU and each run was 

roughly 8-9 h resulting in a total of 900 days of 

compute time for this research. The results of all the 

runs were that the most important hyper-parameters are 

learning rate and spectrogram type. This paper also 

used the practical recommendation for training the 

neural networks with Stochastic Gradient Descent 

(SGD) and the author claimed that strategies that 

dynamically adapt the learning rate such as Adam helped 

to a certain extent, but still not spare the tuning of the 

initial learning rate and its schedule. 

A paper from (Dua et al., 2020), also uses RNN-

LSTM model to estimate sheet music generation. The 
highlighted method from this research is, to improve the 
accuracy of generated sheet music by using source 
separation and chord separation. Source separation 
separates the vocal and non-vocal part from the audio. 
Chord estimation can be done by dividing the non-vocal 

part into drums, bass, melodies and etc. This method is 
useful for amateurs who just started in learning music 
and relies heavily on sheet music such as songs that are 
not too popular such as songs from local bands may not 
have sheet music at all.  

The DSD100 dataset has 100 songs with 44.1 kHz 
sample rate each with the non-vocal part separated into 
its component which are bass, drum and other 
components. Features used to train the model are the 

magnitudes of the spectrogram of audio signals. Using 
magnitude spectra of the mixed signal and magnitude 
spectra of the target sources which are bass, drum, music 
and vocal as an input. The output of the network for each 
epoch are the estimated signal of each source (bass, 
drum, music and vocal). 

Mixed signals are passed on to a Multi cell RNN 

containing 3 GRU cells with each of them having 256 

units. This RNN model is connected to a dense layer with 

Rectified Linear Unit (ReLU) as the activation function 

that outputs the estimated signal of each source.  

For chord estimation, pitch is the basic unit of a chord 

which is a function of the sound’s fundamental frequency. 

A set of harmonic pitches that contains two or more 

pitches is called a chord containing the non-vocal part 

obtained from the source separation method makes a 

combination of pitches which means that several chords 

are also played in a series. The pitches are then passed on 

to a trained feature extractor model to estimate the chords. 

Dataset and Features 

Dataset 

In this project, the data that are going to be used for 

training is in the form of music files. The music files or 

dataset are collected from MIDI Aligned Piano Music or 

widely known as MAPS dataset as the current best 

dataset that is available in the formats of music such as 

random chords, random notes and real pieces of music 

from famous composers such as Mozart, Chopin and 

Beethoven. The dataset also provides a different 

recording environment including large room, close and 

digitally recorded music. The dataset which is used will 

be the real pieces of music which include 270 files. 

Music files are in WAV format with its corresponding 

MIDI file and a text file that explains which pitches were 

pressed on the piano and also the onset and offset time. 

On this stage, music file names are looked up and are 

stored in an array. These files will then be opened on the 

next stage to be processed. The data coming from a 

music file can be represented with a one-dimensional 

array for mono and two-dimensional array for stereo (left 

and right channel) of floats with the length of seconds 

times sampling rate. 

 

 
 

Fig. 1: CQT Representation from a music file 
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Features 

Figure 1 is an example of CQT that was generated 

from a music file. Constant-Q Transform (CQT) is 

closely related to the Fourier transform which has the 

same function of mapping frequencies. The difference is 

that CQT has geometrically spaced center frequencies. 

Which is very useful because every MIDI pitch also has 

geometrically spaced frequencies: 

 

 0 2 0,...
k

b
kf f k    (1) 

 

where, b denotes the number of filters per octave. To 

make the filter domain adjacent to each other, the k-th 

filter is chosen as: 
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This calculation resulting in a constant ratio of 

frequency to resolution: 
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The advantages of CQT compared to Fourier 

transform is that if the number of filters per octave is 12 

and f0 which is the minimal center frequency as the 

frequency of MIDI pitch of 0, then the k-th cq-bin will 

correspond to the MIDI pitch of k (Blankertz, 2001). 

When this step is finished, we are left with a similar 

two-dimensional array shape across architectures, which 

shape is 252 features and some number of frames 

depending on time annotated by -1. 

Labels 

To generate labels, a different approach is used by 

different code bases. For instance, LSTM and MLP the 

labels are generated by looking at provided text files 

such as Fig. 1 and for CNN, the labels are generated by 

parsing the MIDI files. 

In piano, the number of possible pitches is 88. The 

numbers from the MidiPitch column represent a vector 

that has a dimension of 88. With this, the label of each 

frame can be set to one if the MidiPitch is played in the 

current frame and zero if otherwise. These files are then 

saved with each file having frames corresponding to the 

audio. This means if the audio frames are set to 50000 

frames then the label will also have 50000 frames. With 

this, each audio file has its corresponding label. 

This step will produce a two-dimensional array like 

the generated CQT from the previous step. This matrix 

has the shape of 88 labels and some number of frames 

depending on time annotated by -1. 

Methods 

Multi-Layer Perceptron and Deep Neural Network 

In standardization, the mean and standard deviation 

are calculated for each feature and the values are then 

subtracted by mean and divided by the standard 

deviation resulting in data with a standard deviation of 

one. This is done to avoid common problems known as 

vanishing gradient and exploding gradient where the data 

are too small or too far apart.  

The formula is shown below: 

 

_
i i

i new

i

x x
x

std


  (4) 

 

This is done without modifying the shape of the 

CQT. MLP and DNN are the same. The difference in 

name is made to differentiate the approach used to build 

the model. In MLP a naive approach is used which can 

be used as a basis. By naive, it means that there is no 

consideration to fight back overfitting. In Fig. 2, there is 

only one hidden layer with 100 nodes for each classifier 

or label and this approach is called a one-versus-all 

approach. A one-versus-all approach is basically training 

several binary classifier models simultaneously to each 

predict a certain pattern. As this problem has 88 

expected labels, there are 88 binary classification 

models. Each having a hidden layer with 100 nodes with 

ReLU activation and 1 node output with sigmoid. 

In the case of DNN as shown in the figure, there are 3 

hidden dense layers used for training as shown in Fig. 3 

with Deep Neural Network with each layer having 256 

units paired with a dropout layer at the rate of 0.2. Each 

hidden layer is using ReLU activation function and the 

output was set using a sigmoid function. The loss 

function is Mean Squared Error. 

Convolutional Neural Network 

The model used for CNN is taken from previous 

research of (Bereket and Shi, 2017). As shown in Fig. 4, 

the input is in the form of (252, 7, 1) which is the result 

of a windowed CQT. The input CQT is in the shape of 

(252, 7, 50). The first convolutional layer has 50 filters 

with a kernel size of (5, 25) maintaining its original size 

and activation function of hyperbolic tangent followed 

by a max pooling layer sized (1, 3) reducing the size to 

(84, 7, 50). The second convolutional layer also has 50 

filters with the same max pooling layer size and dropout 

rate but with a different kernel size which is (3, 5) where 

3 and 5 is along the frame axis and frequency axis 

outputting the same shape (84, 7, 50) which then put 

through a max pooling with the shape of (1, 3) for the 

second time down sampling it to (28, 7, 50). After that, it 

will be flattened resulting in the shape of (9800) and 
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followed by two fully connected layers with each layer 

using sigmoid functions. The first fully connected layer 

or the third layer consists of 1000 hidden nodes and the 

second fully connected layer or the fourth layer, consists 

of 200 nodes. The output layer has 88 nodes with 

sigmoid function which is the same as the label 

generated so that the output can be compared to which 

MIDI pitch is activated in the label. Binary cross entropy 

loss function is used for each node. The structures used 

are the exact same as the one used in (Bereket and Shi, 

2017). As the dataset used in the paper is different, the 

models are run again with the same MAPS dataset and 

configurations (epoch and early stops) to unify the input 

and expected output in order to make it comparable. 

 

 
 

Fig. 2: MLP One-Versus-All Architecture 
 

 
 

Fig. 3: DNN architecture 
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Fig. 4: CNN Architecture (Bereket and Shi, 2017) 

 

 
 

Fig. 5: Padding in the CNN model 

 

 
 

Fig. 6: Extracting windows visualization 

 

In the case of CQT, zeros are added to the left and 

right side of the CQT as shown in Fig. 5. This is done to 

predict what is in the middle. The amount of padding 

will depend on the window size used. 

Extracting windows will take several adjacent frames 

according to what window size is set to and put them 

together to a new array. For instance, when the window size 

is seven, then three frames on the left and three frames on 

the right are taken to form a single window as shown in Fig. 

6. This process is then repeated for each and every frame 

resulting in a three-dimensional array with the shape of 252 

features times 7 frames and some number of windows 

depending on time which is annotated by -1. 

Once the preprocessing is done, the data file is opened 

and the data is loaded into memory. The data are then split 

into 5 groups that will then be split into train data which 

contains 4 groups and test data which contains 1 group. 

The models are then fitted 5 times all with different test 

data. At the end of each training session, scores such as 

precision, recall and F1 are recorded which then will be 

averaged when all 5 are done. 

Long Short-Term Memory 

Figure 7 shows that LSTM adds a new mechanism 
called memory block in the hidden layers of RNN. The 
memory blocks may decide which information to 
remember or which information to forget by using a 
special multiplicative unit called gates to control the 
flow of information inside the neural network. Each 
memory block contains an input gate (i) and output gate 
(o). The input gate controls the information that gets 
inside the hidden node and the output gate controls the 
output of a cell activation to the rest of the network. 
Then, the forget gate is added to decide which 
information to keep or to forget. This is what makes the 
LSTM special, because it scales the internal state of the 
cell before adding its calculations into the input stream. 
Thus, adaptively forgetting or resetting the memory of 
the cell network. 
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Fig. 7: An Individual Memory Cell of A LSTM Architecture (Morín, 2017) 

 

 
 

Fig. 8: BLSTM Architecture 

 

In normalization, the maximum and minimum are 

recorded and then the values are capped to 0.0 to 1.0. In 

the case of LSTM and DNN, an extra step is taken which 

is subtracting the mean from the data. This is done 

without modifying the shape of the CQT.  

There are 3 hidden LSTM layers and each layer is as 

shown in the Fig. 8 (Morín, 2017), with each layer 

having 256 units. Using a batch size of 100 frames. The 

input matrix size is then modified from [frames, features] 

to [frames/100, 100, features] which makes the input size 

of the network [100, features]. Using hyperbolic tangent 

as the optimal activation function for LSTM. The output 

layer has 88 units using the sigmoid activation function. 

Mean Squared Error is used for the loss function with a 

dropout rate of 0.2 to avoid overfitting. 

Bidirectional Long Short-Term Memory 

Fs represent inputs whereas the FOs represent outputs. 

The dotted arrows symbolize the direction of the Bi-

LSTM (forward or backward). The solid arrows 

symbolize the data going from one layer to the other layer. 

The Bidirectional LSTM used has the exact same 

number of layers with its LSTM counterpart. There are 3 

Bi-directional LSTM layers with the shape of (100, 256), 

followed by a dense or classification layer with the shape 

of (100, 88). This means that there are 3 LSTM layers 

going forward and 3 LSTM layers going backward with 

the shape of (100, 256) followed by a dense layer. At the 

very end of the BiLSTM layer, both outputs from the 

forward and backward LSTM layer are concatenated 

forming an array with 512 elements before being passed 

to the next layer. This means that not only will it know 

what is in the past but also what will come afterward, 

providing a better context. 

Results  

Table 1 shows the confusion matrix on class 7 of 

BiLSTM on a single music. The model predicted all of 

the true labels as false (false negatives). This happened 

as there is only a fraction of class 7 on the training data. 

Table 2 shows the confusion matrix on class 54 of 

BiLSTM. Here, the model predicted most of the true 

labels as true some of them as false (false negatives) and 

predicted a fraction of false labels as true (false 

positives). The class scored 0.72 on F1-score. But note 

that this can be affected by the sample vector. 

By looking at Table 3, it can be inferred that 
BiLSTM is superior when compared to the other 
architecture even though DNN has much higher epoch in 
most of the cases.  
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Table 1: Confusion matrix on class 7 of BiLSTM 

 PRED true PRED false 

True 23079 521 

False 0 0 

 
Table 2: Confusion matrix on class 54 of BiLSTM 

 PRED true PRED false 

True 19800 786 

False 884 2130 

 
Table 3: Best evaluation of all the algorithms used 50 epoch 

and 20 early stop. (E - Epoch, A - Accuracy, P - 

Precision, R - Recall, F1 - F-measure) 

Name E A P R F1 (%) 

MLP  13 96.78  69.85 67.08 67.86 

CNN  22 96.68 51.30 14.70 22.85 

LSTM  50 97.50 79.58 63.94 70.88 

Bi-LSTM  93 97.82 83.09 68.06 74.80 

DNN 152 97.63 80.05  66.66 72.74 

 
Table 4: Micro evaluation of CNN 50 epoch and 20 early stop 

Accuracy (%) Precision (%) Recall (%) F1 (%) 

33.38 72.96 37.38 49.44 

 

When seeing MLP which scores around 67% in the 

table, it is quite surprising as the architecture used is 

naive and does not include any form of temporal context 

of the music as input. However, from both tables shown 

above it could be inferred that the MLP architecture is 

showing a massive indication of overfitting with every 

increase of epoch there is a decrease in the F1 score.  
The CNN achieved underwhelming results 22.85 

and 14.24% in micro and macro calculations which is 
below the naive MLP approach, when at least a score of 
50% in the macro calculation was expected according 
to the proposed paper. Therefore, the authors tried out a 
lot of new hyper-parameter tuning and other cases 
solely for CNN architecture ranging from increasing 
the length of music (which easily triples the dataset 
samples), changing optimizer and changing learning 
rate but it only produces an insignificant or no 
improvement of the F1 score. 

After all the tuning and changes that had been tested 
to CNN, the figure is the only one to show significant 
improvement in CNN with 49.44% in the micro 
evaluation and 48.96% in the macro calculation shown 
in Table 4. 

Discussion 

High scores of LSTM and BiLSTM are kind of to be 
expected. The scores matched the scores proposed in its 
original paper with no problem at all. These two 

architectures have a context to learn from. When 
dealing with data that have a temporal dependency, 
context is important to make a prediction. For example, 
each word of a sentence such as this one depends on 

other words either before or after it to make sense. 
Now, a text or temporal prediction is similar to how a 
human makes a conclusion by reading the sentences 
back and forth. When LSTM is used, it can be 
considered as a fill-in-the-blank question with hints up 
to the blank, which depending on the question is 

possible but can be quite difficult even for humans. 
BiLSTM fixes this problem by providing hints not only 
up to the blank but also what comes after the blank 
forming a nearly complete fill-in-the-blank question 
(Ghaeini et al., 2018). 

In theory as stated by (Li et al., 2017), LSTM was 

supposed to perform better than DNN due to the fact 

that LSTM takes temporal dependency into 

consideration, however the result shown in the 

Appendix Table 5 clearly shows that DNN F1 score is 

higher compared to LSTM. This case is similar to the 

result the previous research had found whereas the 

LSTM F1 score is outclassed compared to DNN. 

Similarly, LSTM has a smaller training loss and a 

larger validation loss which indicates an overfitting 

issue when compared to DNN. 

Compared to research that had been done previously 

by (Kelz et al., 2016) and other similar research done by 

(Sigtia et al., 2016), the results that are shown in 

Appendix. Table 5 are definitely higher with a gap in the 

F1 score almost reaching to 7-17% when this research’s 

BiLSTM is compared to their LSTM or DNN 

architecture. This research’s LSTM and DNN also has a 

higher F1 score compared to their F1 score with almost 

2-13% improvement. 

Furthermore, the authors noticed that the highest 

F1 score that BiLSTM achieved (250 epoch case) 

doesn’t improve that much from the previous case 

(100 epoch case), it also stopped around 89-93 epoch 

for both of the cases, this may indicate that BiLSTM 

has peak performance (the lowest validation loss as 

shown in the Fig. 9) that it could reach around that 

epoch and even if more epoch is added to the cases it 

may not help in increasing the evaluation score, worse 

to come, it might end up as an overfitted model 

similar to the MLP case: 

 

9 1weight n    (5) 

 
The above formula is to show the method used in 

improving the F1 score shown in Table 4 which is to use 
sample weight. For every sample, as the true label count 
increases, so does the weight which in this case uses the 
formula of the sum of true labels multiplied by 9 and 
added by one which gives us a weight of 1 for a 
completely silent frame, a weight of 10 for a note 
playing, 19 for two notes playing and so on. Which 
makes sense in a way since multiple notes playing 
together is rarer than a single note playing by itself. As 
shown in the Fig. 10. 
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Fig. 9: BiLSTM 250 epoch data progression loss graph 

 

 
 

Fig. 10: Number of Notes Hit with Respect to Frame Number 

 

Conclusion and Future Works 

There are a few conclusions that could be extracted 
based on this research and the result of both objective 
evaluation and subjective evaluation of this research. 
First, out of all the architectures that were used and 
evaluated in this research, BiLSTM is able to give the 
best result for predicting key notes in a given song with 
F1 scoring as high as 74.80% in 80:20 configuration 
setting. Therefore, it could be concluded that BiLSTM is 
the best architecture suited for automatic music 
transcription. The last conclusion is that increasing the 
number of training epochs will only increase the 
evaluation metrics if the architecture has not reached the 
“limit” of improving with the given epochs. After 
passing a certain number, the said architecture does not 
improve as much or does not improve at all.  

The suggestions that could be given to improve the 
method that is used in this research and the 
application is to improve the Convolutional Neural 
Network architecture into reaching a greater F1 score. 

Then is to improve the F1 score of all the 
architectures by testing out different kinds of hyper-
parameter tuning and other kinds of post-processing 
methods such as RNN Neural Autoregressive Density 
Estimator (NADE). Another possible case is to test 
out different kinds of architecture combinations 
approach to automatic music transcription. 
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Appendix 

Table 5: Micro evaluation of all the architectures in every Scenario 

No Architecture Early stop Epoch Accuracy (%) Precision (%) Recall (%) F1 (%) 

1 MLP (20 Epoch) 10 13 96.78±0.93 69.85±9.42 67.08±3.28 67.86±3.96 

2 MLP (50 Epoch) 15 19 96.76±0.79 68.94±7.78 67.01±3.10 67.58±3.53 

3 MLP (100 Epoch) 20 23 96.66±0.86 67.98±8.75 66.87±2.53 66.95±3.66 

4 CNN (20 Epoch) 10 12 96.67±0.12 50.37±2.60 12.72±1.13 20.28±1.52 

5 CNN (50 Epoch) 15 17 96.68±0.095 51.52±3.16 13.93±0.89 21.93±1.36 

6 CNN (100 Epoch) 20 22 96.68±0.089 51.30±2.93 14.70±0.82 22.85±1.27 

7 LSTM (20 Epoch) 10 20 97.33±0.2 79.34±1.6 59.23±3.7 67.74±2.2 

8 LSTM (50 Epoch) 15 50 97.50±0.2 79.58±2.2 63.94±2.7 70.88±2.2 

9 LSTM (100 Epoch) 20 78 97.46±0.2 77.92±1.7 64.88±2.7 70.75±1.5 

10 LSTM (250 Epoch) 20 73 97.42±0.2 78.08±2.8  63.54±2.9 70.02±2.4 

11 Bidirectional LSTM (20 Epoch) 10 20 97.45±0.2 80.81±2.8 60.70±3.2 69.27±2.5 

12 Bidirectional LSTM (50 Epoch) 15 49 97.72±0.2 82.04±1.3  66.50±3.4 73.41±2.2 

13 Bidirectional LSTM (100 Epoch) 20 89 97.80±0.2 83.01±2.0 67.49±2.9 74.40±1.8 

14 Bidirectional LSTM (250 Epoch) 20 93 97.82±0.2 83.09±1.8 68.06±2.7 74.80±2.1 

15 DNN (20 Epoch) 10 20 97.20±0.22 78.40±2.26  56.42±1.03  65.60±1.16  

16 DNN (50 Epoch) 15 50 97.48±0.24  79.11±1.68  63.69±2.04  70.56±1.87  

17 DNN (100 Epoch) 20 100 97.58±0.25  78.81±1.76  66.94±1.79 72.39±1.80  

18 DNN (250 Epoch) 20 152 97.63±0.26  80.05±2.13  66.66±2.02 72.74±1.90 


