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Abstract: Forecasting directional movement of stock price using machine 

learning tools has attracted a considerable amount of research. Two of the 

most common input features in a directional forecasting model are stock 

price and return. The choice between the former and the latter variables is 

often subjective. In this study, we compare the effectiveness of stock 

price and return as input features in directional forecasting models. We 

perform an extensive comparison of the two input features using 10-year 

historical data of ten large cap US companies. We employ four popular 

classification algorithms as the basis of the forecasting models used in our 

study. The results show that stock price is a more effective standalone 

input feature than return. The effectiveness of stock price and return 

equalize when we add technical indicators to the input feature set. We 

conclude that price is generally a more potent input feature than return 

value in predicting the direction of price movement. Our results should 

aid researchers and practitioners interested in applying machine learning 

models to stock price forecasting. 
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Introduction 

Stock price prediction is a classical problem in 

finance. It has attracted a significant amount of attention 

from various fields including the machine learning 

community. Popular economic theory in the form of 

Efficient Market Hypothesis postulates that financial 

markets are unpredictable as all the publicly available 

information is already incorporated in the current asset 

prices (Fama, 1970; Fama and French, 1988). On the 

other hand, the proponents of behavioral economics 

argue that irrational human behavior can create 

opportunities for arbitrage. The ability to correctly 

anticipate the future asset prices has enormous 

investment implications. As a result, a significant 

amount of research has been aimed at this topic. The 

recent advances in machine learning have provided new 

tools for stock market forecasting. Most notably, 

recurrent neural networks such as Long Short-Term 

Memory (LSTM) models have the ability to process 

sequential data such as stock prices. Despite the great 

promise of machine learning to uncover the hidden 

patterns that govern stock price movements there 

remains a number of gaps in our understanding of 

machine learning as applied to financial forecasting. 

One of the main issues in constructing a forecasting 

model is the choice of input features. Researchers use 

stock prices, returns, technical indicators, news and 

other variables as inputs. However, there is often little 

justification for the choice of particular features used in 

a forecasting model. Our goal in this study is to 

compare the effectiveness of two primary input features 

- stock price and return - in forecasting the direction of 

stock price movement. 
Stock prediction tasks can be divided into two major 

categories: Price prediction and directional movement 

prediction. Although related, the two tasks are 

fundamentally different in nature. Price prediction is a 

regression task whereas directional movement prediction 

is a classification task. In this study, we study 

directional prediction. It is an actively researched field 

that is of interest to both researchers and practitioners 

(Borovkova and Tsiamas, 2019; Fischer and Krauss, 

2018; Liew and Mayster, 2017; Kamalov et al., 2020a; 

2020b). In particular, we are interested in the input 

features used in directional prediction. There are two 

main types of input features in most of the existing 

forecasting models. The first type of feature is the 
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historical stock price. Prior stock prices are the most 

natural predictors of the future price movement. The 

existing models use stock price from one or several 

time steps prior to forecast the directional movement 

in the next time step (Borovkova and Tsiamas, 2019). 

The second type of input feature is the stock return. 

The argument for using returns states that human 

traders often perceive price changes in percentage 

terms. Stock returns of different types and time 

horizons are used to predict directional movement 

(Fischer and Krauss, 2018). We note that in addition to 

stock price and returns many models use a range of 

technical indicators as input features. 

Despite the wide use of stock price and returns as 

input features in forecasting models the choice input 

features is often subjective. Both types of features are 

justified in the context of directional movement 

prediction. Since stock returns are directly related to 

stock price, it is often assumed that the two are 

interchangeable. However, it can be easily shown that 

if price direction movements are governed by raw 

prices then forecasting models that use returns as input 

features do not perform well (Fig. 4). Conversely, if 

price direction movement is determined by prior returns 

then forecasting models based on price do not perform 

well. Furthermore, the distribution of stock prices is not 

the same as the distribution of stock returns. Whereas 

the latter has always a near normal distribution the 

former can vary depending on a particular stock Fig. 1. 

Since the distribution of the features affects the 

optimization process of the underlying cost function, 

classifiers based on stock price may differ from 

classifiers based on returns. 

The goal of our paper is to study and contrast the 

effectiveness of the two sets of features in price direction 

prediction. To this end, we carry out an extensive 

analysis using 10-year data on 10 large cap US stocks. 

The companies are chosen to represent a wide cross-

section of the economy. Accordingly, the results of the 

study are representative of the overall stock market. In 

addition, we employ synthetic data to illustrate the 

deficiency of using an incorrect feature set. In our 

experiments, we utilize four standard machine learning 

classifiers: Logistic regression, random forest, multilayer 

perception and LSTM. The four algorithms represent 

different approaches to classification which leads to 

better generalization of the experimental results. The 

effectiveness of stock price and return values are 

compared in two different scenarios. First, stock price 

and return values are used individually as inputs to the 

forecasting models. Second, the two features are tested 

in conjunction with technical indicators. As the 

performance metric for classifiers we employ area under 

receiver operating characteristic curve. The results of 

numerical experiments show that price is a more 

effective standalone input feature than return. The results 

are consistent across the four classification algorithms. 

The difference between the two features is particularly 

evident when using the LSTM algorithm. The results are 

mixed when technical indicators are added to the models. 

The paper is structured as follows. In section 2, we 

review the current literature on directional price 

movement prediction. In section 3, we describe the 

classifiers used in the study. In section 4, we present the 

results of numerical experiments. We end with 

concluding remarks in section 5. 

 

 

 
Fig. 1: Distribution of daily stock price and return values for Nike Inc. The price distribution is irregular while the return distribution 

is bell-shaped 

800 

 
600 

 
400 

 
200 

 
0 

D
ay

s 

-0.10 -0.15 -0.00 -0.05 

Return 

5 10 15 20 25 30 

Price 

250 

 
200 

 
150 

 
100 

 
50 

 
0 

D
ay

s 



Firuz Kamalov et al. / Journal of Computer Science 2021, 17 (3): 251.264 

DOI: 10.3844/jcssp.2021.251.264 

 

253 

Literature 

There exists a large amount of literature devoted to 

financial forecasting. Most of the current research efforts 

are directed towards price forecasting and directional 

movement forecasting. Forecasting models that deal with 

directional movement employ a variety machine learning 

methods and input features. The input features used in 

the existing models can be broadly divided into four 

groups: Stock price, return, technical indicators and 

news. Stock price and return are the most widely used 

inputs and are the focus our study. 

Stock price is used in a number of forecasting 
models. It is used alone as well as in conjunction with 
technical indicators and news. Borovkova and Tsiamas 
(2019), the authors applied an ensemble of LSTM 
models to predict directional movements for 22 large cap 
US stocks. The authors used high-frequency 1-year 
historical data. Concretely, the input features consisted 
of basic price based variables such as Open, Close, High, 
Low and others as well as more advanced technical 
indicators such as RSI. The proposed model is found to 
perform better than lasso and ridge logistic regression 
models. Patel et al. (2015), the authors apply ANN, 
SVM, random forest and naive Bayes classifiers to 
predict directional movement in Indian stock market. 
The authors use price based indicators to generate ten 
technical parameters input features. The results indicate 
that RF outperforms the other tested methods. Pyo et al. 
(2017) use ANN and SVM to predict the trend of the 
Korea Stock Price Index. The authors use price based 
indicators such as moving average as input features for 
classification. The authors obtain mixed results that are 
not consistent with previous research. Kamalov (2020), 
authors investigate the efficacy of various neural 
network designs such as CNN and LSTM in forecasting 
significant significant changes in stock price. The 
authors conclude that LSTMs can be used to successfully 
anticipate significant changes in share price for several 
large cap publicly traded companies. Li et al. (2016) 
applied extreme machine learning to forecast trading 
signal in H-share market. The authors used the intra-day 
tick-by-tick data and news archives for their analysis. 
The results have shown that the proposed method 
achieves both high accuracy and fast prediction speed 
compared to other benchmark methods. Nti et al. 
(2020a), the authors propose a fusion forecasting model 
based on a combination of Support Vector Machine and 
Genetic Algorithms (GASVM). The proposed model is 
used to forecast 10-day-ahead stock price movement of 
the Ghana Stock Exchange. The results show that the 
proposed method outperforms the standard classifiers 
including random forest, decision tree and neural 
network. Nti et al. (2020b) show that ensemble 
techniques can achieve robust performance. In particular, 
stacking and blending ensemble techniques offer higher 
prediction accuracy. 

Stock returns have also been used in directional price 

movement prediction. Fischer and Krauss (2018), the 

authors used LSTM to predict directional movements for 

the constituent stocks of the S&P 500 market index. The 

authors use sequences of one-day returns as inputs for 

the LSTM model. The length of each input sequence is 

240 corresponding to the daily returns over 240 days 

prior to the forecast date. The proposed method is found 

to outperform random forest, deep neural net and logistic 

regression models. Liew and Mayster (2017), the authors 

study the effectiveness of three feature subsets - returns, 

volume and days - on the performance of directional 

forecasting models. The analysis is done on a 5-year ETF 

data using DNNs, RFs and SVMs. The authors discover 

that volume is an important factor in forecasting.  

Kamalov and Gurrib (2020), the authors use a 

combination of principal component analysis and kernel 

density estimate to forecast significant returns in foreign 

exchange markets. The former technique is applied to 

reduce the dimension of the search space whereas the 

latter is employed to estimate the underlying distribution 

of returns. A more traditional approach to forecasting 

using adjusted relative strength index was proposed in 

(Gurrib and Kamalov, 2019). The authors modify the 

original relative strength index using machine learning 

methods to achieve better forecasting results. 

Despite the wide range of forecasting models little 

research has been done regarding the input features. 

Qiu and Song (2016) study two sets of input variables 

for an ANN model used for stock market prediction. The 

two feature sets were created by the authors based on 

their review of the literature. The first set of features 

consists of technical indicators including RSI and 

Momentum that are loosely based on the closing price. 

The second group of features is comprised of technical 

indicators that are loosely based on return. The authors 

compare the effectiveness of the two sets of features in 

the context of predicting the direction of Nikkei 225 

market index. The results show that the second group of 

input variables can generate a higher forecast accuracy. 

One of the issues that arise when analyzing stock data 

is uneven distribution of price changes. If the stock data is 

obtained from a period of economic growth than the 

number of days with positive price change would 

outnumber the number of days with negative price change. 

The skewed distribution of price changes can have a 

negative effect on the performance of the classification 

algorithms (Thabtah et al., 2020). A common approach to 

address class imbalance is to balance the data through 

resampling (Kamalov and Denisov, 2020). 

Machine Learning Models 

In this section, we present a brief background on the 

machine learning algorithms used in our paper. We employ 

four popular classification algorithms in our experiments: 
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Logistic regression, random forest, multilayer perceptron 

and long short-term memory (Ballings et al., 2015; 

Borovkova and Tsiamas, 2019; Kamalov, 2020; Patel et al., 

2015; Wang and Wang, 2017). The four algorithms 

represent different approaches to classification. Thus, we 

obtain a more complete analysis of the research question. 

Logistic Regression (LR) is a simple linear classifier 

given by the equation: 

 

1
ˆ ,

1
Tw x

y
e




  (1) 

 

where, ŷ is the predicted value, w is the vector of model 

weights and x is the vector of features. LR has a convex 

cost function which ensures that a unique global 

minimum exists. Since LR is a linear classifier it is 

robust to overfitting. On the other hand, LR cannot fit 

nonlinear patterns. One way to address this issue is by 

generating nonlinear features from the original ones. 

Although there exist more advanced classification 

algorithms LR remains a standard benchmark method. 

Random Forest (RF) is an ensemble estimator that fits 

a number of decision tree classifiers on various sub-

samples of the dataset. The subsample size is the same as 

the original input dataset with the subsamples drawn with 

replacement from the original data. The RF output is 

determined by taking the mode of decision trees used in 

the ensemble. In this study, we use an RF with 100 trees in 

the forest. The major benefit of RF is its simplicity and 

efficiency. In addition, the averaging procedure helps to 

reduce overfitting. RF is a computationally fast algorithm 

and serves as an excellent off-the-shelf classifier. 

Multilayer Perceptron (MLP) is a classifier that is 

inspired by the neural architecture of the human brain. 

MLP and its variants have recently achieved spectacular 

success in image and speech recognition (Szegedy et al., 

2016) which prompted their use in financial modeling 

(Wang and Wang, 2017). The MLP architecture consists 

of three layers: The input layer, the hidden layer and the 

output layer (Fig. 2). The number of hidden layers can 

range from 1 to several thousand. The universal 

approximation theorem states that given a continuous 

function on a compact subset of Rn there exists an MLP 

with a single hidden layer and a finite number of nodes 

that approximates the function with any desired accuracy. 

Thus, MLP is a powerful model that can approximate 

arbitrary patterns. However, excessive fitting may lead to 

high variance. One way to avoid overfitting is to feed a 

large amount of data to the MLP model. In deep MLP 

models, where the number of parameters is greater than 

the training examples, explicit regularization is used to 

address overfitting. In our study, we employ an MLP 

model with two hidden layers with 64 and 32 nodes in 

the first and second layers respectively. Thus, the model 

is unlikely to overfit. In addition, implicit regularization 

that is built in the stochastic gradient descent moderates 

model overfitting (Arpit et al., 2017). 

Long Short-Term Memory (LSTM) models are 

Recurrent Neural Networks (RNN) that is designed to 

process sequential data. The classical neural network 

models are unable to take advantage of the chronological 

structure in sequential data. RNNs use a special network 

structure where the output at each time step depends both 

on the input at that time step and the state in the previous 

time step. However, regular RNNs are susceptible to the 

vanishing gradient problem where the value of the 

gradient decreases exponentially as it is propagated back 

through the network. LSTMs were proposed to solve the 

issue of vanishing gradients. LSTM employs special 

gates which control the flow of the gradient through the 

network in a way that maintains the gradient signal. The 

key concepts of an LSTM cell are cell state, forget gate, 

input gate and output gate. The cell state passes the 

information through the network connecting distant cells.  

 

 
 

Fig. 2: Multi-layer perceptron architecture 

Input layer ℝ3 Hidden layer ℝ6 Hidden layer ℝ3 Output layer ℝ1 
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Fig. 3: The flow of information within an LSTM cell 

 

The three gates control the flow of information inside the 

cell as shown in Fig. 3. The forget gate regulates the 

amount of information that remains in the cell. The input 

gate controls the amount of new information flowing 

into the cell and the output gate determines the next 

hidden state. Since LSTMs include a large number of 

parameters they are more likely to overfit to the training 

data. We employ dropout layers in the network to avoid 

overfitting. Dropout layers randomize the model training 

and reduce overfitting. 

Numerical Experiments 

In this section, we discuss the results of the numerical 
experiments that were carried out to compare the 
effectiveness of stock price and return. To this end, we test 
a range of forecasting classifiers on 10 large cap US stocks. 
We measure the forecasting accuracy of the models with 
input features consisting disjointly of prior stock price and 
return. In addition, we test the forecasting models using 
expanded feature sets that include various financial 
metrics. The results indicate that stock price is generally a 
better standalone predictor of stock price movement 
direction. We note that the performance of stock price and 
return are comparable when complemented by input 
features based on financial metrics. 

Methodology 

All the numerical experiments are carried out in Python 

3.5 using the standard machine learning libraries. We use 

the scikit-learn library (Pedregosa et al., 2011) for the LR 

and RF classifiers. The RF model is based on 100 

estimators. The neural network models MLP and LSTM are 

constructed using the Keras package (Chollet, 2018). The 

MLP model used in the experiments consists of 3 fully 

connected layers, where the first and second hidden layers 

consist of 64 and 32 nodes respectively (Fig. 2). We used 

ReLU activation for the hidden layers and sigmoid 

activation for the output layer. The RMSProp optimizer and 

binary crossentropy loss function were used to compile the 

model. The LSTM model used in the experiments has the 

same architecture as the MLP model. The first hidden layer 

is an LSTM layer with 64 nodes that returns sequence 

outputs. The second hidden layer is an LSTM layer with 32 

nodes that returns a single output. Dropout rate of 0.2 is 

used for each hidden layer. The same activation, optimizer 

and loss functions were used as with the MLP model. 

We applied the default hyperpameter settings in Keras 

and scikit-learn for the machine learning models. Recall 

that our goal is to compare the performance of stock price 

vs return in forecasting models. In other words, we ask that 

given the same model what is the better input feature? 

Therefore, as long as the two input features are tested on the 

same models the comparison results are meaningful. 

The performance evaluation of classifiers is done 

using accuracy and Area Under receiver operating Curve 

(AUC). The AUC is a popular evaluation metric that 

produces a balanced score between the true positive and 

the false positive rates (Borovkova and Tsiamas, 2019; 

Provost and Fawcett, 2001). It represents the probability 

that a classifier will rank a randomly chosen positive 

instance higher than a randomly chosen negative instance. 

The experiments are performed using data on ten 

major publicly traded US companies (Table 2). The 

stock companies selected for the experiments represent a 

broad cross section of the US economy including 

manufacturing, technology, banking automotive, 

healthcare, pharmaceuticals and communications. We 

use adjusted daily stock prices from 2009 to 2019. The 

depth and the breadth of the datasets allow for 

generalization of the reported results. 

The daily return is calculated based on the following 

formula: 
 

1

ln ,t
t

t

p
r

p 

 
  

 
 (2) 

 
where, rt and pt indicate the return and price for day t 

respectively. To ensure the integrity of the experiments 

the data is split temporally into training and testing sets 

using a 75/25% ratio. 
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Table 1: Machine learning forecasting models. 

Name Implementation Details 

Logistic Regression (LR)  Scikit-learn Default settings 

Random Forest (RF)  Scikit-learn Default settings with 100 base estimators 

Multilayer Perceptron (MLP) Keras Default settings with 2 hidden layers 64/32, RMSProp optimizer, 

  ReLU activation 

Long Short-Term Memory (LSTM) Keras Default settings with 2 hidden layers 64/32, RMSProp optimizer, 

  ReLU activation, dropout rate 0.2 

 
Table 2: Stock companies 

 Stock name (symbol)  Sector  Exchange 

1  3M Company (MMM)  Manufacturing  NYSE 

2  Applied Materials, Inc. (AMAT)  Technology  Nasdaq 

3  Caterpillar Inc. (CAT)  Manufacturing  NYSE 

4  Citigroup Inc. (C)  Banking  NYSE 

5  Ford Motor Company (F)  Automotive  NYSE 

6  Intel Corporation (INTC)  Technology  Nasdaq 

7  Johnson & Johnson (JNJ)  Helthcare  NYSE 

8  Oracle Corporation (ORCL)  Technology  NYSE 

9  Pfizer Inc. (PFE)  Pharmaceutical  NYSE 

10  Verizon Communications Inc. (VZ)  Communications  NYSE 

 

Model Specifications 

The goal of the numerical experiments is to compare 

the effects of two different sets of input features - daily 

price and return - on the performance of classification 

models. The classification task at hand is predicting the 

future direction of stock price movement. To this end, 

we create two separate sets of features and train a range 

of classifiers according to the individual feature sets. We 

evaluate the performance of the classifiers on the two 

feature sets and analyze the results. 

In the first approach, we forecast the stock price 

direction based on the previous stock prices (returns) 

over period of p days: 

 

 1 2
ˆ , ,..., ,t t t t py F x x x    (3) 

 

where, yt is the predicted direction of price movement 

valued as 1 or -1, F is the forecasting function which is 

estimated by the given classifier and xt-i is the price 

(return) of the stock at the end of day (t-i). We provide 

the details of the first approach in Approach 1. 
 

Approach 1 

1. Let  
0

N

t t
x


 be the daily stock price of a company 

from Table 2. 

2. Reshape the data into lookback windows 

 1 2, , ,
N

t t t p t p
X x x x   
  , where p is the number of 

previous days used to make the prediction. Set the 

target variable as the directional change of the price 

by  1

N

t t t p
y x x  
  . 

3. Train a model M from Table 1 on 75% of the data (X, y). 

4. Test the model M on the remaining 25% of the data 

(X, y). Calculate accuracy and AUC of the model. 
5. Repeat Steps 1-4 using the corresponding stock 

returns  
0

N

t t
r


. 

 
The second model uses technical indicators in addition 

to basic price (return) data to forecast price direction: 
 

 1 2 1 1 1
ˆ , ,..., , , , ,t t t t p t t ty F x x x z a e       (4) 

 
where, zt-1, at-1 and et-1 are the RSI index, moving 

average and exponential moving average values 

respectively at the end of day t-1. The RSI index is a 

widely used financial indicator that represents the 

momentum of the stock. It is calculated based on the 

ratio of the sum of gains to sum of losses over period of 

14 days. The level of the RSI index above 70 is normally 

interpreted as a sign that the stock is overbought while 

the index level below 30 indicates an oversold stock. The 

moving average is calculated as the average price 

(return) over period p days. The exponential moving 

average is calculated similar to the regular moving 

average using  = 0.2. We provide the details of the 

second approach in Approach 2. 
 

Approach 2 

1. Let  
0

N

t t
x


 be the daily stock price of a company 

from Table 2. 

2. Reshape the data into lookback windows and add 

RSI index, moving average and exponential moving 

average values in the feature set 

 1 2 1 1 1, , , , , ,
N

t t t p t t t t p
X x x x z a e      
  . Set the target 
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variable as the directional change of the price by 

 1

N

t t t p
y x x  
  . 

3. Train a model M from Table 1 on 75% of the data 

(X, y). 

4. Test the model M on the remaining 25% of the data 

(X, y). Calculate accuracy and AUC of the model. 

5. Repeat Steps 1-4 using the corresponding stock 

returns  
0

N

t t
r


. 

 

Results 

To illustrate the effect of using ’incorrect’ input 

features on the performance of forecasting model we 

construct the following synthetic example. We 

generate a random sequence of 5000 hypothetical 

daily stock prices and calculate the corresponding 

daily returns. We define the input features of the 

forecasting model to be xt-1, xt-2, xt-3, xt-4, xt-5 for each t 

in the range [5, 5000]. In other words, we assume that 

the price movement direction is based the previous 5 

days. We conduct two sets of experiments, where xt is 

first taken as stock price and then as return value on 

day t. We define the class value for the dataset as the 

direction of change in the moving average of the 

return values: 

1 2

5 6

,
t t

t i i

t t

y sign x x
 

 

 
  

 
   (5) 

 

where, xi is the stock price value on day i. Since the 

response variable is determined by the raw stock price 

(Equation 5) we expect classification algorithms that use 

price values as input parameters to produce better results 

than models that use return values as input features. 

Indeed, as shown in Fig. 4, the models where the input 

features are prior raw price outperform the models based 

on prior return values. The difference in performance is 

significant and exists for all four classifiers. In the case 

of the MLP and RF models, the price based input 

features outperform the return based input features by 

over 40%. The results indicate that it is theoretically 

possible to obtain a dataset, where different input 

features can produce extremely divergent models. 

Although return values are directly related to price 

values they do not always produce the same results. 

Therefore, the correct choice of input features can not be 

underestimated. It is important, to note that the above 

example is artificially generated to illustrate the 

theoretical difference in forecasting effectiveness of 

price and return values as input features. In practice, the 

price direction is determined by a multitude of factors 

and the effectiveness of features will vary case to case. 

 

 
 
Fig. 4: Classifier performance is based on simulated input features xt-1, xt-2, xt-3, xt-4, xt-5, where xt is stock price (return) on day t. The 

output is the predicted direction of price change 
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(d) 

 
Fig. 5: Experimental results as measured by average AUC. Classifier performance is based on input features xt-1, xt-2,…,xt-p, where xt 

is stock price (return) on day t and p = 2, 3 and 5. The output is the predicted direction of price change; (a) Multilayer 

Perceptron (MLP); (b) Random Forest (RF); (c) Logistic Regression (LR); (d) Long Short-Term Memory (LSTM) 

 

In our first experiment with real life stock data, we 

apply the basic model described in Equation 3. We 

assume that the directional movement of the stock price 

depends solely on the previous stock price (return). In 

other words, the input features of the model are prior 

stock price (return) over period of previous p days. We 

train four classification algorithms according to the 

model. The experiments are carried out for periods of p 

= 2, 3 and 5 days using each classification algorithm. We 

calculate the AUC for each period and report the average 

AUC in Fig. 5. The red and blue bars indicate the AUC 

values for the models trained on stock price and return 

values respectively. 

We observe from Fig. 5 that stock price is a more 

effective standalone predictor of price direction 

movement than the return value. The advantage of stock 

price is consistent across different stock companies and 

classification models used in the experiment. The 

difference is particularly evident when using the LSTM 

algorithm (Fig. 5d). In some cases the AUC value 

improves by as much as 0.03 which is a significant gain 

in the current context. We conclude, that using prior 

stock prices is more effective than using return values 

when predicting price movement direction. 

Since using stock price yields better results across 

different classification approaches there seems to be 

fundamental difference between the predictive 

effectiveness of stock price and return. The exact 

source of the difference is not quite clear and requires 

further research. One explanation could be the human 

psychology that may be more sensitive to the actual 

prices than returns. 

To obtain the overall performance of the classifiers 

based on the input features we calculate the 

cumulative average AUC across all the stocks that are 

presented in Fig. 5. The results are presented in Table 

3. As can be seen from Table 3, the classifiers based 

on the raw price have a considerably better 

performance than the classifiers based on the return 

values. The results show that all four forecasting 

models, on average, perform better with raw price as 

input feature. In particular, the MLP, LR and LSTM 

models, on average, perform better by 2% with raw 

price as input feature which is a significant 

improvement in the given context. 

In Table 4, we present a more detailed look at the 

forecasting effectiveness of prior stock price and return 

using Intel Co stock data. We build forecasting models 

using stock price (return) from the previous 2, 3 and 5 

days as input features. The forecasting models are 

constructed based on four popular classification 

algorithms. The experimental results, presented in Table 

4, indicate that prior price is a more potent predictor of 

price direction than return values. The price based 

models outperform return based models in every tested 

scenario. For instance, we obtain a 6% improvement in 

performance when using the LSTM model with the input 

features consisting of the stock price over the previous 5 

days. A 6% difference in performance is significant in 

stock price prediction (Borovkova and Tsiamas, 2019). 

Although the effectiveness of stock price and return 

varies among stocks, we generally observe a superior 

performance in models using stock price as a standalone 

predictor of price direction. 
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(d) 

 
Fig. 6: Experimental results as measured by average accuracy. Classifier performance is based on input features xt-1, xt-2,…,xt-p, 

where xt is stock price (return) on day t and p = 2, 3 and 5. The output is the predicted direction of price change; (a) 

Multilayer Perceptron (MLP); (b) Random Forest (RF); (c) Logistic Regression (LR); (d) Long Short-Term Memory (LSTM) 

 
Table 3: Average AUC results for each classifier across all the stocks presented in Figure 5. 

MLPp  MLPr  RFp  RFr  LRp  LRr  LSTMp  LSTMr 

0.522  0.498  0.502  0.499  0.519  0.500  0.528  0.505 

 
Table 4: The AUC results using Intel Co stock data. Classifier performance is based on input features xt-1, xt-2,…, xt-p, where xt is 

stock price (return) on day t and p = 2, 3 and 5. The output is the predicted direction of price change 

Days  MLPp  MLPr  RFp  RFr  LRp  LRr  LSTMp  LSTMr 

2  0.558  0.516  0.519  0.495  0.553  0.523  0.556  0.500 

3  0.556  0.503  0.512  0.502  0.548  0.517  0.556  0.528 

5  0.525  0.464  0.512  0.512  0.519  0.485  0.555  0.493 

 
Table 5: Average accuracy results for each classifier across all the stocks presented in Figure 6. 

MLPp  MLPr  RFp  RFr  LRp  LRr  LSTMp  LSTMr 

0.510  0.476  0.527  0.494  0.487  0.459  0.515  0.466 

 
The accuracy results presented in Fig. 6 further support 

the AUC results given above. In fact, the difference in the 

performance of the input features measured by accuracy is 

even more dramatic than measured by the AUC. For 

instance, when forecasting the price direction using the 

Oracle (ORCL) stock data based on the LSTM model the 

difference in accuracy of the input features is over 10%. 

Similar sizable differences can be observed in the case of 

Pfizer (PFE) and Verizon (VZ) stock data. In general, as 

can be seen in Fig. 6, the accuracy of stock price based 

classifiers is better than return based classifiers across 

most of the stocks tested in the experiment. 

In Table 5, we present the aggregate averages across 

all the stocks contained in Fig. 6. As can be seen from the 

table, all four forecasting models have better average 

accuracy using raw price as input feature. The difference 

in performance of input features is particularly striking 

when using the LSTM model. The price based model 

outperforms the return based model by an average of 5%. 

Since the average values in Table 5 represent the results of 

extensive experiments such a difference in performance 

cannot be explained by pure chance. It leads us to 

conclude that raw stock price is a significantly better 

standalone predictor of price direction than return values. 

In our second experiment, we include technical 

variables in the forecasting models. We use the RSI 

index, moving average and exponential moving 

average together with the prior stock price (return) to 

predict the future price direction movement. The basic 

model is given the Equation 4. We do not test the data 

with the LSTM algorithm as the new combination of 

features is no longer sequential. The results of 

numerical experiments are shown in Fig. 7. As can be 

seen from the figure, the predictive efficacy of stock 

price and return equalize with addition of the technical 

variables to the forecasting model. In particular, the 

AUC results based on using the MLP classifier show no 

difference between stock price and return inputs. 
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(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 7: Experimental results as measured by average AUC. Classifier performance is based on input features xt-1, xt-2,…,xt-p, zt-1, at-1, 

et-1, where xt is stock price (return) on day t, zt-1, at-1 and et-1 are the RSI index, moving average and exponential moving 

average values respectively at the end of day t-1 and p = 2, 3 and 5. The output is the predicted direction of price change; (a) 

Multilayer Perceptron (MLP); (b) Random Forest (RF); (c) Logistic Regression (LR) 
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The results for MLP are consistent across all 10 

stocks. We conclude that the addition of the technical 

indicators erase the advantage of price over return as a 

standalone feature. One possible explanation would be 

that the technical indicators carry the information that 

was lacking in the return data. 

The results of our study reveal that stock price is a 

better standalone feature than stock return in directional 

forecasting. In other words, stock price is more accurate 

as a single input feature. However, it is important to note 

that stock price and return produce similar results when 

used in conjunction with other input variables. Our 

findings do not support the results of a previous study by 

(Qiu and Song, 2016) who found return-based technical 

indicators to be more effective input variables. The 

reason could be attributed to the difference in data 

employed in their study. While we used the stock price 

data for individual US stock companies, the authors 

(Qiu and Song, 2016) used data for the Japanese Nikkei 

225 composite index. In the future, a study of the input 

features based on a larger dataset that encompasses 

international markets is warranted. 

Conclusion 

In this study, we investigated the difference between 

using prior stock price and return values as input features 

to forecast the directional movement of share price. We 

carried out a range of numerical experiments based on 

10-year historical share price data for ten major US 

companies. The selected companies represent a wide 

cross section of the US economy. We employed four 

popular classification algorithms - MLP, LR, RF and 

LSTM - to build forecasting models. The models were 

run over different time horizons of p = 2, 3 and 5 days. 

The depth and breadth of the data together with the range 

of popular classifiers tested in the experiments allow us 

to generalize our conclusions. 

Although the conventional wisdom dictates that stock 

price and return are closely related and thus should yield 

the same results, our experiments showed that it is not 

necessarily the case. We constructed a synthetic 

experiment where we showed that the forecasting 

efficacy can drastically differ if a ‘wrong’ feature is used 

(Fig. 4). The experimental results based on the real life 

data showed that raw stock price is a superior standalone 

feature than the return value (Fig. 5 and 6). The results 

hold across the datasets and classifiers used in the 

experiments. When using the LSTM classifier the price-

based forecasting model produced AUC results that are 

on average 2.3% better than return-based model. 

Similarly, we observe an average of 5% difference in 

accuracy between price and return-based inputs. We also 

tested the performance of the features in the presence of 

technical indicators. The addition of technical variables 

equalized the performance of the stock and return based 

classifiers. It seems that the technical indicators carry the 

information that was lacking in return values. 

It is evident from the extensive experiments that stock 

price is a better standalone price direction predictor than 

the return. However, the situation is less clear when a 

forecasting model contains additional technical predictors. 

This question requires further analysis and investigation. 

Another future research avenue is investigation of input 

features in the context of hybrid forecasting models. 

The results of the experiments indicate that given a 

choice between raw price-based features and return-

based features the former is generally more 

advantageous though in more complex forecasting 

models the difference between the two feature sets is 

negligible. The range of classifiers and datasets used in 

the experiments suggest that our findings are robust to 

generalization. Our results should be a useful guide to 

researchers and practitioners interested in applying 

machine learning models to stock price forecasting. 
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