

 © 2021 Hend Fakhri Noureldin and Mai Fadel. This open access article is distributed under a Creative Commons

Attribution (CC-BY) 4.0 license.

Journal of Computer Science

Original Research Paper

Rationalizing Resource Utilization in Cloud Computing Using

Coalition Formation Strategy

1Hend Fakhri Noureldin and 2Mai Fadel

1Center of Excellence in Genomic Medicine Research, Bioinformatics Unit, King Abdulaziz University, Jeddah, Saudi Arabia
2Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia

Article history

Received: 15-03-2021

Revised: 19-04-2021

Accepted: 27-05-2021

Corresponding Author:

Mai Fadel

Faculty of Computing and

Information Technology, King

Abdulaziz University, Jeddah,

Saudi Arabia

Email: mfadel@kau.edu.sa

Abstract: Even though the contribution of cloud computing towards the

Sustainable Development (SD) of communities is still under research

investigation, cloud computing has become an integral part of many ICT

solutions that shape our daily lives. Thus, some researchers recommend

taking considerable actions to point cloud computing development towards

supporting SD. In this research, an approach to designing energy efficient

cloud architecture as a way of supporting SD is proposed. Resource

allocation is a challenging process in cloud management, the goal is to

allocate the exact amount of resources needed throughout the service

duration; tight enough to avoid unnecessarily wasting resources and loose

enough to prevent any degradation in Quality of Service (QoS) that may lead

to the violation of the Service Level Agreement (SLA) between the service

provider and the cloud user. This study aims to achieve the desired balance

by benefiting from the history of the user’s behaviour and from sharing

resources – more specifically Virtual Machines (VM) – among a coalition of

users. Coalition formation strategy is used to build groups of cloud users

based on their cloud behaviour history. Users are grouped in a way that their

usage patterns complement each other, either to avoid the loss stemming

from VM excess reserved space or from idle times. A type of architecture

that fulfils this improvement process is proposed and implemented on Google

Compute Engine (GCE). The contribution of this research is that it applies

the Coalition formation strategy in cloud computing resource management in

a novel way and experiments show that there are scenarios where the

efficiency of resource management has improved. Evaluation of the

performance of the proposed architecture is done by comparing resource

utilization for both the cloud following this architecture and the cloud that

runs the basic GCE strategy. In conclusion, it is observed that

improvements depend on accuracy of the prediction of usage pattern of the

user. Results show that in certain scenarios, improvements can be made to

up to 24% of VM usage and, in other scenarios, it can minimize the number

of required VMs, thus contributing to green computing.

Keywords: Sustainable Development, Cloud Computing Middleware,

Resource Utilization, Service Level Agreement, Resource Utilization, Virtual

Machine, Coalition Formation, IaaS, Resource Allocation

Introduction

ICT solutions has become an integral part of people’s

daily living, actually there is a line of research called

Activities of Daily Living (ADL) covering many topics

such as the one found in (Thakur and Han, 2021). Cloud

computing is part of ICT solutions as it provides users

with computing power and applications delivered via the

Internet. It shifts much of the provisioning of

applications, configuration and maintenance to the

responsibility of cloud providers rather than cloud users.

Efficient computing strategies are provided by

centralizing storage, memory, processing and bandwidth

to form the cloud. Cloud architecture is composed of

Hend Fakhri Noureldin and Mai Fadel / Journal of Computer Science 2021, 17 (6): 539.555

DOI: 10.3844/jcssp.2021.539.555

540

three layers: Software as a Service SaaS, Platform as a

Service PaaS and Infrastructure as a Service IaaS

(Sunyaev, 2020). In addition, the computer software,

middleware, operates in different parts within this

architecture. This research focuses on middleware on the

IaaS level which is responsible for managing resources,

such as memory and Central Processing Unit (CPU)

among other functionalities.

Resource management allocates resources to user

requests and ensures they are suitably matched by

respecting the QoS terms specified in the Service Level

Agreement (SLA); a process called Resource Allocation

(RA). Resource management is responsible for keeping

track of these terms and reserving additional resources to

avoid violating SLA’s terms. Management also releases

unused resources to cut unnecessary costs. As cloud

computing embraces the business model of pay-as-you-

use, this poses additional challenges. For example, RA

can hinder efficiency if it does not consider changes in

the available environment, the users’ requests, or

network traffic. Consequently, RA should be

dynamically configured to achieve resource

optimization. Resource management should consider

how to avoid common pitfalls such as presence of

deadlock, starvation, significant response time, that may

lead to violating the terms of SLA.

Resource allocation has been extensively studied by

researchers as reported in several surveys (Dewangan et al.,

2020; Saidi et al., 2019; Barán and López-Pires, 2017),

some of the techniques used are auction-based,

optimization-based and Autonomic-based techniques. Other

techniques focus on monitoring or improving certain aspect

of the resource allocation process such as SLA-base,

QoS-based and cost-based techniques (Dewangan et al.,

2020). Clustering techniques such as k-means clustering are

also used (Barán and López-Pires, 2017).

In this research, an architecture of middleware that is

based on coalition formation strategy, to improve the

efficiency of the RA process is proposed. The rationale

behind this idea is that forming groups of users will

assist in the specification of more accurate resource sizes

when reserving resources. Additionally, these groups are

derived from analysing the characteristics of the history of

users’ requests. Furthermore, allocation of resources will

change periodically based on predicted incoming requests,

thus satisfying the dynamic requirement described above.

The contributions of this study are as follows:

 Applying coalition formation strategy that is based

on predicting users’ behaviour to improve the

efficiency of the resource allocation process

 Identifying scenarios where the strategy provided

improvement up to 24% of VM usage and also

being able to minimize the number of required

VMs, thus contributing to green computing

The new architecture is implemented with Google

Compute Engine (GCE). The effect of implementing this

new strategy within both the execution time and resource

utilization is explored. Synthesized workload will be used

to test the effectiveness of the proposed middleware.

The paper is organized in the following sections. After

the introduction will follow the next section which presents

the literature review, followed by section III that describes

the rationale behind the stated solution. In Section iv, the

proposed coalition formation-based resources management

architecture is explained. A description of our algorithm is

given in Section V and evaluation of our proposed

algorithm and experiment results are detailed in section VI.

Findings and limitations are discussed in section VII.

Finally, section VIII concludes this work.

Literature Review

Researchers have done extensive work regarding

improving resource allocation in cloud computing. In

this section, resource allocation research is organized on

the following topics: Workload profiling and

characterization, improving resource utilization, resource

usage prediction and coalition formation.

Some researchers have focused on workload

characterizing and analysis as they provide useful

insights into cloud performance (Singh and Chana, 2014;

2015; Moreno et al., 2014; Ravi et al., 2018). Such

information supports cloud providers in making decisions

concerning daily operations and enables them to benefit

from it when making resource usage predictions.

Observations of these researchers and the related

findings are reported here. Singh and Chana (2014) have

identified types of workload such as web apps, online

transaction processing etc. In their study, they clustered

them based on workload patterns and identified their QoS

requirements. These researchers then continued with the

analysis further and presented a shorter list consisting of:

Compute, storage, communication and administration

clusters (Singh and Chana, 2015). During investigation,

Moreno et al. (2014) conducted an analysis of large cloud

workload trace logs, in order to identify and quantify the

diversity of behavioural patterns for users and tasks.

Additionally, they identified and later validated model

parameters and their values for simulation purposes. The

researchers then emphasized that realistic workload models

must include parameters describing user behaviour and their

links to tasks. Part of their findings is that user behaviour

varies a lot and therefore it is recommended that predictions

should better depend on recent historical data.

Some researchers have pointed out certain

mismanagement in dealing with workload characteristics

and subsequently designed RA algorithms avoiding the

perceived problems (Wei et al., 2015; Singh and Chana,

2015; Dezhabad et al., 2019; Deng et al., 2013). In their

study, Wei et al. (2015) emphasized that even though

Hend Fakhri Noureldin and Mai Fadel / Journal of Computer Science 2021, 17 (6): 539.555

DOI: 10.3844/jcssp.2021.539.555

541

resources are provisioned based on the assumption that

workload is homogenous, in fact, they are not. They

therefore designed and evaluated a RA algorithm that

corrects this assumption and takes into consideration

that the algorithm does not result in skewness among

the multi-resources. In their evaluation, Wei et al.

considered 3 types of synthesized workloads: Growing,

pulse and curve (resembles a bell shape to some

extent), that can describe the shape of the incoming

requests with respect to time.

Dezhabad et al. (2019) gave another example of

heterogeneity where they described the workload of

Alibaba Cluster Dataset, as containing both online

services and batch jobs. The former requires a short

response time and quick recovery from failure whereas

the latter requires intensive processing. Batch instance

workload is characterized into low, medium and high

profiles according to the following measures: CPU

usage, memory usage and job duration. In addition, the

researchers’ algorithm makes use of the arrival pattern

for each type of requests in time.

Deng et al. (2013) addressed the problems that arise

from executing scientific applications by using portfolio

scheduling. Prolonged execution of such applications

results in varying application requirements and increases

the need to handle requests dynamically. Their algorithm

should select the best policy for workload execution

based on an abstract model introduced by their research.

Part of the workload uses measurements related to job

wait time, job runtime and the number of processors

requested by a job; however, no description of the

workload used for evaluation was found.

Significantly, resource allocation has been

thoroughly investigated in previous research. In this

study, some of the work focusing on improving resource

utilization has been reviewed.

The goal of the research done by Maurer et al. (2013) is

to confirm to SLA while allocating resources by

considering the two issues involving efficient use of

resources and improved resource utilization, thus ensuring

that the process is done with as little human intervention as

possible. In their investigation, they made use of autonomic

control to govern the cloud infrastructure. In addition, these

researchers introduced the concept that the gradual

scaling-up of the level of action to be taken to efficiently

allocates resources, such as when reconfiguring VMs,

migrating applications, migrating VMs, etc. The results

have shown that experiments that applied the rule-based

approach yield better performance, with respect to the

number of violations as well as utilization and time.

Gong et al. (2019) also used Control Theory (CT) for

RA. They deal with uncertainty and unexpected

workload by using Multiple Input Multiple Output type

of CT to ensure that any influence between different

resource types is embodied within their RA system. In

their study, the researchers make use of Generalized

Prediction Control (GPC) that provides feedback

correction to make the workload prediction part of their

algorithm adaptable. Additionally, Chen (2018)

addressed the situation of emergency and sudden

demand of workload, in which users/service providers

are aware of the urgency of their presence and the

subsequent need to take appropriate action.

During their probe into the subject matter, Bi et al.

(2015) explained that uniformly treating all kinds of

workloads, results in a waste of resources as some

workloads require intensive computing power, whereas,

other workloads have a high demand for storage. Their

research aims to maximize the profit of service

providers by meeting SLA requirements. These

researchers benefit interested parties in their definitions

of two levels of services - Gold services and Silver

services –when dealing with different resource-intensive

workloads. To clarify, achieving this fine-grained

resource provisioning requires defining it as an

optimization problem and using a probabilistic model to

determine workload request arrival rates.
In a research done by Xiao et al. (2012), special

attention has been given to multiplexing virtual
resources into the physical hardware. In their study, they
introduced the concept of skewness, which is used to
measure the unevenness of the consumption of a
resource type on a server with respect to other types of
resources, the goal being to minimize skewness to
improve resource utilization. In addition, they also
designed their algorithm to dynamically allocate virtual
resources to adapt to the heterogeneity of workload.
Significantly, the work of Xiao et al. predicts the future
demands of VMs based on past statistics.

The topic of resource usage and workload prediction

has gained the attention of the scientific community as seen

in the interest taken by Amiri and Mohammad-Khanli

(2017 and Vashistha and Verma (2020) in their reports.

The main goal of both of these studies was to improve

the accuracy of prediction. Similarly, an earlier work

done by Islam et al. (2012) addressed the problem of the

delay caused by initializing a new virtual instance in a

cloud by developing prediction-based resource

management. They built two models; one using Linear

Regression (LR) and the other using Neural Networks

(NN); they also used Sliding Window to improve the

accuracy of the system. Data gathering were conducted

using TPC-W workload generator mimicking a number of

simultaneous user sessions for an e-commerce website.

The experimental results show that the Neural Network

model produced more accurate results while the sliding

window increased the accuracy. In the analysis, mean

Absolute Percentage Error (MAPE) and Root Mean

Squared Error (RMSE) were used as evaluation metrics.

The work done by Kaur et al. (2019) focused on

running scientific applications while using Genetic

Hend Fakhri Noureldin and Mai Fadel / Journal of Computer Science 2021, 17 (6): 539.555

DOI: 10.3844/jcssp.2021.539.555

542

Algorithm (GA) to select features in order to minimize

search space. They explained that GA is a greedy algorithm

that is designed with the goal of selecting the best input to

produce the best output, thus, forming a good candidate for

performing the task of feature selection. In their analytic

study, they ensembled eight regression models to improve

the accuracy of the results and gathered experimentation

data from running a scientific application called

Cybershake. It has been thus concluded that, in comparison

to machine learning regression models, their model

outperforms them, enhancing accuracy by 2% and reducing

execution time by 16.2%. The model has also been seen to

perform well with respect to error rate compared to the

learning automata-based ensemble approach.
Kholidy (2020) study, a new Swarm Intelligence

Based Prediction Approach (SIBPA) was developed for
resource needs prediction. His research illustrates use of
Multiple Support Vector Regression (MSVR) and
ARIMA for non-linear and linear feature selection,
respectively and integrates the Particle Swarm
Optimization (PSO) and the Kernel Adatron (KA)
algorithms to enhance the prediction of ARIMA and
MSVR models by estimating their parameters. In the
investigative study, experiments were done by conducting
150 user requests on a bookstore online system via the
TPC-W emulator. The results show that the accuracy of
SIBPA has outperformed LR, NN and Support Vector
Machines approaches in terms of CPU utilization,
response time and throughput memory utilization.

The idea of the system presented by the analytic
research in this study is based on forming coalitions
among cloud users. The strategy of coalition formation
is applied in cloud computing to support cloud
federations. As cloud federation enables a group of
cloud providers to cooperate and dynamically share
their resources, coalition formation in this context is
used as one means to deal with an elastic demand of
resources in the environment, as described in the work
done by Hadjres et al. (2018). Bairagi et al. (2016)
extended the concept further to allow for a cloud
provider to participate in more than one coalition instead
of being limited to a single one, to overcome the problem
of resource under-utilization. Li et al. (2019), cloud
federation is used to support hosting of the fifth
Generation (5G) of networks. The authors have made use
of Bayesian Coalition Formation Game, to address the
problem of insufficient amount of information that is
needed by the coalition of cloud providers.

Coalition formation can be viewed as being as simple as

the formulation of groups. From the point of view of

forming groups of cloud users, the work of Alsadie et al.

(2017; 2018) use group clustering to support the process of

RA. However, they differ slightly in that they form clusters

of users’ tasks. Also, they allocate resources to a group of

tasks that are similar although each task is allocated within

an individual VM. In summary, research shows that RA can

be improved by considering workload characterization and

using prediction. Further findings are that multiplexing

CPU-intensive and Memory-intensive workloads improve

resource utilization and user behaviour should be

considered during workload modelling. Additionally, RA

algorithms are seen to use arrival request rates, CPU

utilization and memory utilization as parameters. Finally,

even though coalition formation strategy is used, to our

knowledge, no work has yet used coalition formation to

form groups of users within the same cloud, or even among

users of different clouds.

Rationale Underlying Our Solution

Optimizing resource management stems from

allocating VMs to a group of users (coalition) that has

been defined previously based on their behavioural

patterns. VM utilization is targeted on two levels: The

level of an individual user and the level of coalitions of

users. In both levels, predicting users’ incoming requests

is based on analysis of historical data of their behaviour.

Optimization on the user level is achieved by

computing the average size of the most dominant feature

of its request, such as its CPU size, thus, ultimately

reserving a virtual machine that can deal with the derived

size of the requested CPU. Consequently, resource

optimization becomes higher whenever the predicted

size of VM gets closer to the actual request of the user.

It is noted that forming coalitions helps in optimizing

the use of virtual machines in two ways: One that achieves

space optimization (parallel users’ mode) and the other

achieves time optimization (interchangeable users’ mode).

Regarding parallel users’ mode, cloud service

providers offer a fixed template size of Virtual

Machines (VM), whereas user requests may not fit

these templates. In this case, users either over-reserve

VM capabilities, thus paying extra for unused

resources, or under-reserve VM capabilities and suffer

from delay in accomplishing the task due to scheduling

purposes or boosting a new VM. It is noted that there

may be benefit gained from grouping users so that the

total of their requests matches one of the offered VM’s

templates, thus, achieving space optimization.

On the other hand, Interchangeable user’s mode

allows for the more preferable use of a static VM that

works all day rather than the need to boost a VM with

every request, thus providing benefit from grouping

users that utilize the machine interchangeably. For

example, users that work at night may be grouped with

other users who work during the day. To exemplify,

living in different time-zones may lead to such

compatible needs. Consequently, the machine ends up

working all day, thus, achieving time optimization. In

addition, users do not need to reserve an external disk to

save their data if they are using the same machine –

static VM - contrary to using dynamic VMs when they

get terminated (GCE, 2014).

Hend Fakhri Noureldin and Mai Fadel / Journal of Computer Science 2021, 17 (6): 539.555

DOI: 10.3844/jcssp.2021.539.555

543

Architecture of the Proposed Resource

Management Tool

The resource management tool proposed in this
research uses coalition formation strategy. Its
architecture is composed of the following four
modules, as shown in Fig. 1.

Classifying user behaviour module: This module is
responsible for analysing the behaviour of each cloud
user to classify the user as High-CPU, High-Memory or
Standard consumer. This classification, referred here as
User Class (UC), is based on determining the most
dominant QoS feature specified in user requests during
specified interval. In this research the focus is on two
features of QoS, which are CPU and memory.

Forming user coalitions module: Coalitions are formed
by this module. Members of each coalition are selected
based on the determined UCs and whether the coalition is
anticipated to achieve space optimization or time
optimization as described in Section III. In addition, some
users can remain alone and do not become part of a
coalition as explained in section V. The size of coalitions
can vary between 2 and 5 inclusively. The rationale
underlying this choice is described in Section VI.

VMs creation module: VMs are created periodically by
this module. Each machine is reserved to handle the
requests of a certain coalition or to handle the requests of an
individual user that does not belong to a certain coalition.
Related security concerns are discussed in section V.

Handling of requests module: User requests are
forwarded - as they arrive - to the VM allocated to the user
or to its coalition. This module is also responsible for
recording the cost of each request made by a user based on
the billing policy of the cloud service provider and for
computing their total cost for a specific time interval.

It is important to highlight that in VMs creation and
request handling modules, processing is done online, in the
sense that it is done when user requests are received.

For the other two modules, processing is done offline

and can be conducted on a separate machine that is not

linked to the virtual machines directly.

Proposed Algorithm

A description of the proposed algorithm is given in
this section. The description, divided into the offline
part and online part of the algorithm, is shown in Fig.
2 and 3, respectively:

a. Offline part of the algorithm: As described in the

previous section, analysis of user behaviour and the

determining of coalitions are done offline. As can be

seen in Fig. 2, the algorithm starts by determining

the UC for each user, creating combinations of all

possible coalitions, then goes on to conducting a

series of checks to filter the combinations into a final

set of coalitions and individual users. Details of the

checks will be visited shortly

b. Online part of the algorithm: Figure 3 shows this

part of the algorithm, depicting the steps needed to

form coalitions based on the analysis of users’

behaviour. It determines all possible combinations

of coalitions then excludes coalitions that have the

same users. The algorithm starts with the creation

of VMs for the final set of coalitions and individual

users, then it is ready to receive users’ requests.

When a request arrives, it is treated differently

depending on whether the requesting user is new or

not. Requests of existing users are forwarded to

reserved VMs. However, a new VM is created in

two cases: Whether the user is new, or if the size of

the request is higher than originally predicted,

hence, the size of the reserved VM is not enough to

handle the current request.

Fig. 1: Architecture of the resource management tool

Coalitions’ formation based resource management system

Coalition

formation

Users

usage

analysis

Users

data
Data

Users QoS class & time of usage

VM id

Needed VMs
Check requests

VMs

creation
Handling

of

request

API

API User request

Cloud
computing

system

Hend Fakhri Noureldin and Mai Fadel / Journal of Computer Science 2021, 17 (6): 539.555

DOI: 10.3844/jcssp.2021.539.555

544

Fig. 2: The online part of the algorithm

These extra VMs are considered temporary and are

terminated when they finish fulfilling the requests.

Revisiting the step of VM creation, it is important to

highlight that combining the requests of different users (of

the same coalition) within the same VM provide some

flexibility but, at the same time, may cause security

concerns. Allocating a certain VM capacity to a group of

requests, gives room for drifting of request sizes from

original prediction, for example having one request larger

than expected, while having the other request smaller than

expected. In this research, security concerns are not

addressed as this is a subject for additional research.

However, some insights are given in how to deal with it.

From one aspect, a constrain may be imposed to limit the

degree of user security to be low, i.e., they use the cloud

to perform routine computations only.

Another technical solution is to use containers

(Sunyaev, 2020). Another issue to highlight is that

consideration has been given to whether the request

matches the size of a predefined template or not, even

though there is the opportunity to define customized

sizes of VM. However, a preferred action of the current

researchers is to stick to the template configurations and

exploit the advantages of coalitions, because template

sizes are more likely to yield gaps that are more likely to

fit the needs of other requests.

Next, details of two of the steps of the algorithm are

presented as user’s usage analysis and coalition formation:

A. User’s usage Analysis Step:

1. For each hour in a day, specify usage type according

to frequency usage and determine amount of CPU

and Memory used for each hour. Usage type can be

standard, high memory, or high CPU

2. Then give this hour a score based on its type (1 for

high CPU, 2 for high memory and 3 for standard)

3. After that, compute user power score, which is the

summation of the day, with the hour score and

divide it by number of hours (24) for a day. Use the

formula:

24

summationof hours score
user power score  (1)

To determine UC (standard, high memory, or high

CPU), the type of the VM to create and reserve can

be evaluated as follows:

Start

Create VMs for all accepted

coalitions and individual users

Is it a new

user
No Yes

Yes No
User request

within driven

pattern

Create new VM and

forward request to it,

then terminate it.

Get user VM id and

forward request to it.

Add new user

End

Hend Fakhri Noureldin and Mai Fadel / Journal of Computer Science 2021, 17 (6): 539.555

DOI: 10.3844/jcssp.2021.539.555

545

1. If the user power score is between (0,1) then the

user is high CPU

2. If the user power score is between [1,2) then the

user is high memory

3. Elseif it >= 2, then it refers to standard user

4. Then divide user day to slot of time (such as interval

of 30 min)

1. For each time slot of enumerate value 1

indicating the user is running or 0 indicating it is

not running during this time slot

Fig. 3: The offline part of the Algorithm

Start

Analyze users’ histories

Determine users’ usage type,
CPU and memory volume and

time

Determine all possible

combinations of users to

create coalitions

Create a coalition of users

Exclude current coalition

All users in same

usage type

Each users’ volume
as size of any

available template

No Yes

Yes No

Change to parallel users mode Change to interchangeable

users mode No

No

No
Yes

Total users’
volume as size of a

template (space)

All users volume

as same template

Yes

All users work

in parallel

All users work
interchangeable

(time)

No

Exclude coalition with

redundancy users

More
combination of

coalition to filter

No

Yes
Yes

End

Hend Fakhri Noureldin and Mai Fadel / Journal of Computer Science 2021, 17 (6): 539.555

DOI: 10.3844/jcssp.2021.539.555

546

B. Coalition Formation Step

It is important to note that GCE offers VMs

according to certain template sizes. VM types reflect

the same classes used for users. i.e., High CPU, High

Memory and Standard. Based on the determined UCs,

coalitions are computed as follows (see Algorithm 2

for more details):

1 Create all combinations of users based on a

specific size

2 Exclude any combination that includes users

having different UCs and using different images

(operating system)

3 Exclude any combination that includes users that

use different images

4 If the request of each member of the coalition is

NOT equal to template size, then exclude the

combination in the following cases:

a. The total size of predicted requests of all

members exceeds the size of the reserved

VM. The comparison is done against the

largest feature of the VM type, CPU, or

memory

b. Users are not working at the same time (in

parallel). Each user needs to be running 80% of

the time, for the coalition to be included

5 Else, the request of each member of the coalition is

equal to template size, then exclude the

combinations in the following cases:

a. Any user predicted request size does not match

the size of the template

b. Users are working at the same time (users must

work interchangeably)

6 Eliminate redundancy by excluding any

combinations containing users that are already

members of other registered coalitions

7 After forming all coalitions, determine all

remaining individual users. For each individual

user, determine their VM type according to their

UC. They may be included in a coalition when new

users register and use the cloud

Ultimately, the algorithm will generate a list of

registered coalitions along with their members and VM

type, in addition to the list of all users along with VM

type and coalition number (if any).

Algorithm 1: userUsageAnalysis(users)

 Input: users with their data

 Output: determine users type and used volume of

CPU and Memory

 1. for j = 1 to numOfUser // for each user

 2. for i = 1 to 24 // for each hour

 3. if (CPUfreqUsage[i] >MEMfreqUsage[i])

&& (CPUfreqUsage[i] >STRDfreqUsage[i])

 4. hourType[i]= CPU;

 5. else if

 (MEMfreqUsage[i] > CPUfreqUsage[i]) &&

(MEMfreqUsage>STRDfreqUsage)

 6. hourType[i] = MEM;

 7. else

 8. hourType[i] = STRD;

 9. end for

 10. for i = 1 to 24 // for each hour

 11. if (hourType[i] == CPU)

 12. hourScore[i] = 1;

 13. else if (hourType[i] == MEM)

 14. hourScore[i] = 2;

 15. else

 16. hourScore[i] = 3;

 17. end for

 18. sumHourScore = 0;

 19. for i = 1 to 24 // for each hour

 20. sumHourScore += hourScore[i];

 21. end for

 22. userPowerScore [j] = sumHourScore/24;

 23. end for

 24. for i = 0 to numOfUser//foreach users

 25. if (userPowerScore[i] > 0) &&

(userPowerScore[i]< 1)

 26. userType [i] = CPU;

 27. ComputeCPU_MEM_volume(); // determine the

volume based on frequency used volume.

 28. else if (userPowerScore[i]>=1) &&

(userPowerScore[i]<2)

 29. userType[i] = MEM;

 30. ComputeCPU_MEM_volume();

 31. else

 32. userType[i] = STRD;

 33. ComputeCPU_MEM_volume();

 34. // user's day is divided into slot of time interval

(such as 30 min)

 35. for each slot

 36. If user run

 37. slot[i] = 1

 38. else

 39. slot [i] = 0

 40. end for

 41. end for

Hend Fakhri Noureldin and Mai Fadel / Journal of Computer Science 2021, 17 (6): 539.555

DOI: 10.3844/jcssp.2021.539.555

547

Algorithm 2: CoaliteUser(Users)

 Input: users with their behavior and usage amount
of CPU and memory

 Output: coalitions of users based on their behavior;
each coalition has VMid and each user has VMid.

1. cobinationsArray = CreateCombinations(size);
// Create all combinations of users based on
specific size; each coalition contain the required
volume for it

 2. for i = 1 to cobinationsArray.length // for each
coalition

 3. if (all users in same type && use same image)
 4. cobinationsArray[i].indicator = true;
 // include
 5. else
 6. cobinationsArray[i].indicator = false;
 // exclude
 7. if (!all user usage same as template)
 8. if (cobinationsArray[i].size<=largestSize)
 // determine combination VM volume
 9. if (all user work parallel)
 10. cobinationsArray[i].indicator = true;
 // include
 11. else
 12. cobinationsArray[i].indicator = false;
 // exclude
 13. else

 14. cobinationsArray[i].indicator = false;
 // exclude
 15. else // as template
 16. if (all user in cobinationsArray[i] are
 same size)
 17. if (all user work in different time)
 18. cobinationsArray[i].indicator = true;
 // include
 19. else

 20. cobinationsArray[i].indicator = false;
 // exclude
 21. else

 22. cobinationsArray[i].indicator = false;
 // exclude
 23. end for

 24. for i = 1 to cobinationsArray.length // for each
coalition remove redundancy

 25. if (All user are not inserted collation before)
 26. cobinationsArray[i].indicator = true;
 // include
 27. else

 28. cobinationsArray[i].indicator = false;
 // exclude
 29. end for

 30. for i = 1 to numOfUser
 // for each user check if he does not belong to
 a coalition
 31. if (user is not inserted to coalition)
 32. User.VMRealType=user.getVMGeneralType();
 33. end for

Evaluation and Experimental Results

Google Compute Engine GCE is used to implement and

evaluate the proposed coalition formation-based resource

management tool. In this section, evaluation of three aspects

of the algorithm is presented. First, the evaluation of user-

level optimization is described, followed by the systematic

approach to determine coalition size. After that, an

evaluation of the coalition formation strategy is presented.

A. Identify user Behaviour (User Level Optimization)

The goal of this experiment is to show that making
accurate predictions of users’ types of requests improves the
utilization of the VM, as a way to validate the designed
User’s Usage Analysis. In this experiment, prediction
accuracy is measured. GCE has been used to create 210

users to identify their behaviours. Each user makes 200
requests during the interval of one day and these requests
are equally divided. One hundred randomly picked requests
have been used to determine the UC (representing the
historical data) and the other 100 requests (representing
new incoming requests that need to be predicted) are used

to evaluate the accuracy of the prediction.
Figure 4 shows the result of applying User’s Usage

Analysis as described in Section V. The columns denote
the user number, UC, number of cores, size of memory
and the image type. From the first row it can be seen that
u1 user is classified as high-CPU, whereas u14 in row
14, is classified as High-Memory. Using this
classification for prediction - i.e., checking the predicted
request against the received one it is noticed that the
accuracy ranges between 90 and 95% and the average hit
rate for all users is 92.086%. Figure 5 shows the number
of hit rates for individual users. The average accuracy of
the prediction remains high as long as the user does not
change their behaviour. More sophisticated prediction
algorithms can be used in future experiments.

B. Selecting Coalition Size

One of the most important design decisions related to
the coalition formation algorithm is to determine the size
of the coalition; to determine the number of coalition
members and whether the size is fixed or variable.
Several experiments have been conducted in this study
where the coalition size is fixed, i.e., all coalitions have
the same size. Another set of experiments have also been
undertaken where the coalition size is variable, i.e.,
where coalitions can be of different sizes, for example, a
variable-size policy having a coalition of size 4 may
include coalitions of sizes 4, 3 and 2. Regardless of the
chosen policy, the goal of the conducted experiments is
to decide the size of the coalition that will improve the
performance of the system. Two conditions have been
considered as indicators of a good candidate coalition
size. The first condition is generating the minimum
number of individual users that do not belong to a
coalition the number must also be less than 50% of the

Hend Fakhri Noureldin and Mai Fadel / Journal of Computer Science 2021, 17 (6): 539.555

DOI: 10.3844/jcssp.2021.539.555

548

number of users. The second condition is to generate the
minimum number of coalitions, in order to minimize the
number of VMs to be created. Again, the experiments
were conducted with the same set of 210 users, used in the
previous section. Table 1 shows the number of individual
users and number of coalitions when a fixed-coalition size
policy is used and Table 2 shows the results of when the
variable-coalition size policy is used.

From the experiments, it turns out found that, as the

size of the coalition increases, the number of individual

users increases as well. i.e., the first condition is not met.

As can be seen in Table 1, having 3 members within a

fixed-size coalition system gives the minimum number of

coalitions with relatively few individual users. However, it

can be seen from Table 2, having 4 members or less per

coalition gives better results for the variable-coalition-size

system. Also, during this investigation, it was found that

the variable-coalition-size system generated better results

in comparison to the fixed-coalition-size system. The

number of individual users of the best system in Table 2 is

73, whereas it is 81 in Table 1. It is also noticed from

Table 2, that even though the size 4 gives a smaller

number of individual users than the coalition size 5, it

gives a higher number of coalitions. After conducting

several additional experiments where the number of users

vary from 30 to 210, it was found that the size 4 gives

better results. Consequently, the decision made is to

choose the policy of variable-coalition-size and 4

members or less per coalition.

Fig. 4: The generated users’ classes UCs

Fig. 5: Users' behaviour expectation rate

96

95

94

93

92

91

90

89

88

87

U
se

r
1

U
se

r
7

U
se

r
1
3

U
se

r
1
9

U
se

r
2
5

U
se

r
3
1

U
se

r
3
7

U
se

r
4
3

U
se

r
4
9

U
se

r
5
5

U
se

r
6
1

U
se

r
6
7

U
se

r
7
3

U
se

r
7
9

U
se

r
8
5

U
se

r
9
1

U
se

r
9
7

U
se

r
1
0

3

U
se

r
1
0

9

U
se

r
1
1

5

U
se

r
1
2

1

U
se

r
1
2

7

U
se

r
1
3

3

U
se

r
1
3

9

U
se

r
1
4

5

U
se

r
1
5

1

U
se

r
1
5

7

U
se

r
1
6

3

U
se

r
1
6

9

U
se

r
1
7

5

U
se

r
1
8

1

U
se

r
1
8

7

U
se

r
1
9

3

U
se

r
1
9

9

U
se

r
2
0

5

Number of correct expectation

Number of hits

Hend Fakhri Noureldin and Mai Fadel / Journal of Computer Science 2021, 17 (6): 539.555

DOI: 10.3844/jcssp.2021.539.555

549

Table 1: Number of coalitions and individual users when using a fixed-coalition-size policy for 210 users

 No. of users outside Percent of users

Coalition size a coalition outside a coalition No. of coalitions No. of needed VMs

2 46 21.90% 82 128

3 81 38.50% 43 124

4 110 52.30% 25 135

5 125 59.50% 17 142

Table 2: Number of coalitions and individual users when using a variable-coalition-size policy for 210 users

 Percent of users

Coalition size No. of individual users outside a coalition No. of coalitions No. of needed VMs

2 30 14.20% 90 120

3 57 27.10% 53 110

4 73 34.80% 38 111

5 93 44.30% 32 125

Table 3: Design of the experiments of the coalition formation strategy

 Anticipated result:
 Achieves resource

 Request size Running mode utilization Goal

Experiment 1 Off-template Parallel Yes This is a promising scenario that shows how forming
 coalitions can result in VM that matches template sizes

Experiment 2 Off-template Not parallel No This scenario shows that the algorithm works as expected, treats

 situations differently and does not always generate positive results
Experiment 3 On-template Interchangeable Yes This is a promising scenario

Experiment 4 On-template Not interchangeable No This scenario shows that the algorithm works as expected, treats

 situations differently and does not always generate positive results

C. Test the System (Group-Level Resource

Optimization)

A number of experiments have been conducted for

this study to evaluate the effect of introducing the

coalition formation strategy on allocating VMs to users’

requests. At the beginning some terminology is defined

to facilitate the description of the experiments. Users

making requests that match the size of the templates

offered by the cloud, will be referred to as on-template

users. On the other hand, users who make requests that

do not match the size of the cloud templates, will be

referred to as off-template users. The design of the

experiments is shown in Table 3.

For each experiment, a proof-of-concept scenario

of 2 or 3 users has been defined, their VM requests

described and the results of the allocated VM via the

cloud compared using two systems. One system is

called the baseline system, a system that does not use

coalition formation and the other is our system. The

workload for all users is multiplying a number by

itself for a specified interval of time programmed in

Python. Following can be found the description of

these experiments in detail.

a. Experiment 1

Experiment settings: For the purpose here, it is
presumed to have 3 users, referred to as U1, U2 and U3.
Table 4 shows the actual requirement of each user.
Subsequently, three VMs will be created in the baseline

system and two of them will match the actual CPU core
requirements for U1 and U2. However, it will also create
a third VM with 2 extra cores as this is the nearest
template size offered by the cloud.

On the other hand, in our system, part of the decision

is made prior to receiving the requests, thus, when the

requests from the three users are received, the system

will identify that all users belong to the same coalition

and, consequently, it will forward the requests to the VM

reserved for this coalition.

Running the experiment: As this experiment shows

users running in parallel, U1 and U2 will run in parallel

with U3 for 15 min. U1 will run for 5 min followed by

U2 for 10 min.

In this experiment, measured execution time, CPU

usage and cost for both the baseline system and our

system are all studied.

Discussion: From Table 4, it have been found that

actual execution of the workload is the same for each

user, however, in the baseline system there are an extra

30 sec needed for initializing the VM, whereas our

system only consumes around one second to determine

the group number and the VM id.

Regarding the CPU usage, it can be seen from Table

5 and Fig. 6, that the usage for VM 1 and VM 2 reaches

approximately 99%. however, for VM 3, the CPU

usage reaches 75%. This wastage is due to confirming

the template size provided by the cloud. It is noticed

from Fig. 7 that forming the coalition raised the CPU

usage to 99%.

Hend Fakhri Noureldin and Mai Fadel / Journal of Computer Science 2021, 17 (6): 539.555

DOI: 10.3844/jcssp.2021.539.555

550

Table 4: Execution time and CPU usage for baseline and coalition systems of experiment 1
 CPU Usage Execution Time VM Request Actual VM

requirements

Coalition
System

Baseline
System

Coalition
System

Baseline
System

Coalition System Baseline System User

99.49% 99.14% 600+0.74 =
600.74s

600 s +30 s =
630 s

Standard type VM
that consists of 8

CPU cores and 30

GB RAM

VM 1 consists of
cores as requested

Standard type
VM that consists

of 1 CPU core

and 3.75 GB
RAM

U1

99.3% 300+0.85 =

300.85 s

300 s +30 s =

330 s

VM 2 consists of

cores as requested

Same as U1 U2

74.6% 900+0.77 =
900.77s

900 s +30 s =
930 s

VM 3: Standard
type VM that

consists of 8 CPU

cores and 30 GB
RAM (the nearest

size available as

template that is
provided by GCE)

Standard type
VM that consists

of 6 CPU cores

and 22.5 GB
RAM

U3

Fig. 6: CPU usages of all users of Baseline system in Experiment 1

Fig. 7: CPU usage of all users as a coalition in Experiment 1

User 1

User 2

User 3

100

75

50

25

0

C
P

U
 u

sa
g

e
(%

)

0 200 400 600 800 1000

Time/s

CPU

% CPU

99.49

74.62

49.74

24.87

Apr 15 21:58 Apr 15 22:06 Apr 15 22:15 Apr 15 22:23 Apr 15 22:32 Apr 15 22:40 Apr 15 22:99 Apr 15 22:58

CPU 0.088

Hend Fakhri Noureldin and Mai Fadel / Journal of Computer Science 2021, 17 (6): 539.555

DOI: 10.3844/jcssp.2021.539.555

551

Fig. 8: CPU usage for U3 of our system in experiment 2

Fig. 9: CPU usages for U1 and U2 running and U3 does not run in our system – Worst case of Experiment 2

b. Experiment 2

An interesting negative scenario is when three users
having the same requirements listed in Table 4, however,
U1 and U2 do not run at the same time as U3. The result as
shown in Fig. 8 reveals a potential waste of around 25% of
the CPU usage, as would happen with the baseline system.

One example of the worst case would be when U3 does
not execute. As shown in Table 6 and Fig. 9, the result of
running the coalition would waste 75% of CPU usage.

c. Experiment 3

Experiment settings: Suppose there are 2 users referred
to as U1 and U2. Table 7 shows the actual requirement of
each user. Two VMs will be created in the baseline system.

On the other hand, in our system, again the system
will identify that both users belong to the same coalition
and consequently, it will forward the requests to the VM
reserved for this coalition.

Running the experiment: This experiment shows

users running in an interchangeable mode. For ease of

description, the workload for one hour will be described

as divided into four equal timeslots, i.e., each slot is

15minutes long. For each timeslot, only one user will run

their request. The resulting sequence of users’ workloads

will be as follows: U1-U2-U1-U2.

Table 5: CPU usage of Baseline system and coalition system
in experiment 2

CPU usage
--
User Baseline system Coalition system

User 1 99.14% 74.72%
User 2 99.3%
User 3 74.6%

Table 6: Worst case in CPU usage of our system - Experiment 2

 CPU usage
--
User Baseline Coalition two small user work

User 1 99.14 % 25. 11%
User 2 99.3 %
User 3 74.72%

In this experiment, the measured execution time,

CPU usage and cost for both the baseline system and our
system are measured.

Discussion: From the previous table, it is noticed that
our system still has the advantage of starting execution
earlier by a total of 58 sec (29 sec for each created VM),
after deducting the time for identifying the group No.
and the VM ID.

Regarding the CPU usage, it can be seen from Table

8, Fig. 10 and 11, that, with the baseline system,

CPU

% CPU

74.6

55.95

37.3

18.65

Apr 16 20:14 Apr 16 20:22 Apr 16 20:31 Apr 16 20:39 Apr 16 20:48 Apr 16 20:56 Apr 16 21:05 Apr 16 21:31

CPU 0.14

CPU

% CPU

25.11

18.83

15.56

6.278

Apr 15 22:29 Apr 15 22:37 Apr 15 22:46 Apr 15 22:54 Apr 15 23:03 Apr 15 23:11 Apr 15 23:20 Apr 15 23:28

CPU 0

Apr 15 22:54

Hend Fakhri Noureldin and Mai Fadel / Journal of Computer Science 2021, 17 (6): 539.555

DOI: 10.3844/jcssp.2021.539.555

552

utilization reaches approximately 66%, because each

user becomes idle for 15 minutes in between execution.

In our system, utilization reaches 99.36% as can be seen

in Fig.12, as the coalition takes advantage of the idle

timeslots to run the workload of the other user. 99.36%

as can be seen in Fig. 12.

d. Experiment 4

This experiment uses the same requirements as

described in Table 7; however, the two users work in

parallel. This is an interesting negative scenario where

forming coalitions are seen to perform worse than the

baseline system. As it can be seen from Table 9, execution

time nearly reached double the time of the baseline

system. This is caused by the need for scheduling.

In addition, it is noticed that the CPU usage decreases

from around 99% to approximately 98% as shown in

Table 10 and Fig. 13, because of the CPU becoming idle

while performing context switching from one user to

another (Yuan and Liu, 2011).

Fig. 10: CPU usage for U1 of Baseline system in Experiment 3

Fig. 11: CPU usage for U2 of Baseline System in Experiment 3

Fig. 12: CPU usage for U1 and U2 in Coalition system in Experiment 3

CPU

% CPU

80

60

40

20

May 13 07:30 May 13 08:30 May 13 09:30 May 13 10:30 May 13 11:30 May 13 13:00

CPU 99.29

CPU

% CPU

80

60

40

20

May 13 11:00 May 13 12:00 May 13 13:00 May 13 14:00 May 13 15:00 May 13 16:27

CPU 99.36

CPU

% CPU

80

60

40

20

May 13 07:00 May 13 08:00 May 13 09:00 May 13 10:00 May 13 11:00 May 13 12:23

CPU 99.29

Hend Fakhri Noureldin and Mai Fadel / Journal of Computer Science 2021, 17 (6): 539.555

DOI: 10.3844/jcssp.2021.539.555

553

Fig. 13: PU usage - worst case (Experiment 4)

Table 7: Execution time and CPU usage for baseline and coalition systems of experiment 3

CPU Usage Execution Time VM Request Actual VM

requirement

Coalition

System

Baseline

System

Coalition

System

Baseline System Coalition System Baseline System User

99.36% (99.29%+0
+99.29%)/

3 =

66.19%

900 s +900 s +
0.80 s =

1800.80 s

900 s +900 s +
30 s = 1830 s

Standard type VM
that consists of 1

CPU core and

3.75 GB RAM

VM 1 consists of
cores as requested

VM of type
standard with 1

CPU core and 3.75

GB RAM

U1

(99.4%+0

+99.4%)/3
= 66.27%

900 s + 900 s

+0.76 s =
1800.76 s

900 s + 900 s +

30 s = 1830 s

VM 2 consists of

cores as requested

Same as U1 U2

Table 8: Execution time for baseline and coalition systems in experiment 3

Execution time
--
User Baseline system Coalition system

User 1 900+900+30 s = 1830 s 900+900+0.80 s = 1800.80 s
User 2 900+900+30 s = 1830 s 900+900+0.76 s = 1800.76 s

Table 9: Execution time for baseline and coalition systems of experiment 4

Execution time

--
User Baseline system Coalition system

User 1 900+900+30 s = 1830 s 1864+1836+0.81 s = 3700.81 s

User 2 900+900+30 s = 1830 s 1743+1886+0.70 s = 3629.70 s

Table 10: Worst case in CPU usage experiment 4

CPU usage
--
User Baseline system Coalition system

User 1 99.29% 98.28%
User 2 99.4%

Discussion

From the above experiments, several ideas are studied,
which are deriving the type of user from their pervious
behaviour, determining the size of the coalition and the
settings of the cases that benefit from the coalition
formation strategy. Firstly, determining the user’s type as
either standard, high-CPU or high-Memory, in this study

requires analysing their behaviour on an hourly basis.
Secondly, trying several coalition sizes, it turns out that
having a coalition size of four members and below and

allowing for variable sizes of coalitions to form yields
better formation among the whole system. This setting
provided a smaller number of users that do not belong to
a coalition, thus, smaller number of VM of individual
users are needed. Thirdly, different cases of cloud users
with different requirements and behaviour are studied as

described in Table 3. It turns out that the case where users
work in parallel mode and they request on-template size of
VMs provided saving of approximately 25% of CPU
usage of one of the used machines. In the case where users
work in interchangeable mode and request off-template
VM sizes, there is an improvement of 34% in CPU Usage.

The limitations of the strategy are shown in the results of
experiment 2 and experiment 4. In experiment 2, both
systems had the same performance, which causes the
waste of 25% of CPU usage. In experiment 4, the
coalition formation system took nearly double the time

CPU

% CPU

80

60

40

20

May 25 19:00 May 25 20:00 May 25 21:00 May 25 22:00 May 25 23:00 May 26 00:37

CPU 98.28

May 25 23:28

Hend Fakhri Noureldin and Mai Fadel / Journal of Computer Science 2021, 17 (6): 539.555

DOI: 10.3844/jcssp.2021.539.555

554

that the base line system needed to run the tasks. This
lack of improvement occurs when the expected
behaviour does not happen.

Finally, comparing the coalition formation system

performance is done against the original GCE system

which we refer to as the baseline system and as can be

seen in some scenarios the proposed system

outperformed the GCE system.

Conclusion and Future Work

Resource allocation is a challenging task. Several

techniques and methods have been proposed to ensure

allocating resources to cloud users that fulfil their

requirements and minimizes waste. However, there is still

room for investigating new approaches to tackle the

resource allocation problem. The contribution of this work

is the novel use of the coalition formation strategy to

tackle the resource allocation problem. It illustrated cases

where using this strategy has been beneficial and also the

negative cases. The promising cases offered improvement

in the efficiency of the process, minimizing the number of

used VM, consequently, contributing to green computing

and minimizing the cost for service provider and users. It is

vivid that the performance of the system is dependent on the

accuracy of the system’s prediction. The limitation of this

strategy is that it is dependent on the user’s behaviour

pattern, in provisioning of the resource, however, in case

one user or more changed the expected behaviour, this will

lead to some complication using the derived coalitions. In

addition, a key question is related to whether there is

enough divergence or convergence among the requirements

of the users to make coalitions successful. This point needs

further investigation on the behaviour of users of existing

clouds. There is also the concern related to serving

coalition members within the same VM. Solutions to this

concern were discussed in Section V. For future work,

evaluating the coalition formation strategy on real data,

such as Google trace log will give better insights

regarding the practicality of the system. In addition, using

more sophisticated prediction algorithms for user

behaviour analysis may provide useful improvements on

the performance of formed coalitions. Finally, the policy

for forming coalitions used in this study join users that

have similar requested VM types in the same coalition, it

would be interesting to study forming coalitions based on

requirements with heterogeneous VM types.

Acknowledgment

Our team wishes to thank Mr. Osama Younis for

providing essential technical support. We would also like

to thank Prof. Fathy Eassa -the head of our research

team- for his continuous guidance. In addition, we would

like to thank Dr. Lamiaa Elrfaei, Prof. Hanan Elazhari

and Dr. Etimad Fadel for their valuable input.

Author’s Contributions

Hend Fakhri Noureldin: Provided the results of the

experiments and laid out the first draft of the paper.

Mai Fadel: Supervised the design of the experiments,

improved the literature review part and re-written some

parts of the papers to be clear.

Both authors revised the final version of the document.

Ethics

This is original work resulting from a Master thesis

done by Hend and supervised by Mai.

References

Alsadie, D., Tari, Z., Alzahrani, E. J., & Zomaya, A. Y.

(2017, October). Energy-efficient tailoring of VM

size and tasks in cloud data centers. In 2017 IEEE

16th International Symposium on Network

Computing and Applications (NCA) (pp. 1-5).

IEEE. https://doi.org/10.1109/NCA.2017.8171339
Alsadie, D., Tari, Z., Alzahrani, E. J., & Zomaya, A. Y.

(2018, January). Dynamic resource allocation for an
energy efficient vm architecture for cloud
computing. In Proceedings of the Australasian
Computer Science Week Multiconference (pp. 1-8).
https://doi.org/10.1145/3167918.3167952

Amiri, M., & Mohammad-Khanli, L. (2017). Survey on
prediction models of applications for resources
provisioning in cloud. Journal of Network and
Computer Applications, 82, 93-113.

 https://doi.org/10.1016/j.jnca.2017.01.016

Bairagi, A. K., Alam, M. G. R., Talukder, A., Nguyen,

T. H., & Hong, C. S. (2016, January). An

overlapping coalition formation approach to

maximize payoffs in cloud computing environment.

In 2016 International Conference on Information

Networking (ICOIN) (pp. 324-329). IEEE.

 https://doi.org/10.1109/ICOIN.2016.7427124

Barán, B., & López-Pires, F. (2017). Resource Allocation

for Cloud Infrastructures: Taxonomies and Research

Challenges. In Research Advances in Cloud

Computing (pp. 263-289). Springer, Singapore.
 https://doi.org/10.1007/978-981-10-5026-8_11
Bi, J., Yuan, H., Tan, W., Zhou, M., Fan, Y., Zhang, J.,

& Li, J. (2015). Application-aware dynamic fine-
grained resource provisioning in a virtualized cloud
data center. IEEE Transactions on Automation
Science and Engineering, 14(2), 1172-1184.

 https://doi.org/10.1109/TASE.2015.2503325

Chen, J. (2018, August). A cloud resource allocation

method supporting sudden and urgent demands. In

2018 Sixth International Conference on Advanced

Cloud and Big Data (CBD) (pp. 66-70). IEEE.

https://doi.org/10.1109/CBD.2018.00021

Hend Fakhri Noureldin and Mai Fadel / Journal of Computer Science 2021, 17 (6): 539.555

DOI: 10.3844/jcssp.2021.539.555

555

Deng, K., Song, J., Ren, K., & Iosup, A. (2013,

November). Exploring portfolio scheduling for long-

term execution of scientific workloads in IaaS

clouds. In SC'13: Proceedings of the International

Conference on High Performance Computing,

Networking, Storage and Analysis (pp. 1-12). IEEE.

https://doi.org/10.1145/2503210.2503244

Dewangan, B. K., Agarwal, A., Choudhury, T.,

Pasricha, A., & Chandra Satapathy, S. (2020).

Extensive review of cloud resource management

techniques in industry 4.0: Issue and challenges.

Software: Practice and Experience. 1–20.

https://doi.org/10.1002/spe.2810

Dezhabad, N., Ganti, S., & Shoja, G. (2019, November).

Cloud Workload Characterization and Profiling for

Resource Allocation. In 2019 IEEE 8th International

Conference on Cloud Networking (CloudNet) (pp.

1-4). IEEE.

 https://doi.org/10.1109/CloudNet47604.2019.9064138

GCE. (2014). Google Compute Engine.

 https://cloud.google.com/compute/docs/disks

Gong, S., Yin, B., Zheng, Z., & Cai, K. Y. (2019).

Adaptive multivariable control for multiple resource

allocation of service-based systems in cloud

computing. IEEE Access, 7, 13817-13831.

https://doi.org/10.1109/ACCESS.2019.2894188

Hadjres, S., Kara, N., El Barachi, M., & Belqasmi, F.

(2018). An SLA-aware cloud coalition formation

approach for virtualized networks. IEEE

Transactions on Cloud Computing.

 https://doi.org/10.1109/TCC.2018.2865737

Islam, S., Keung, J., Lee, K., & Liu, A. (2012).

Empirical prediction models for adaptive resource

provisioning in the cloud. Future Generation

Computer Systems, 28(1), 155-162.

 https://doi.org/10.1016/j.future.2011.05.027

Kaur, G., Bala, A., & Chana, I. (2019). An intelligent

regressive ensemble approach for predicting

resource usage in cloud computing. Journal of

Parallel and Distributed Computing, 123, 1-12.

https://doi.org/10.1016/j.jpdc.2018.08.008

Kholidy, H. A. (2020). An intelligent swarm based

prediction approach for predicting cloud computing

user resource needs. Computer Communications,

151, 133-144.

 https://doi.org/10.1016/j.comcom.2019.12.028

Li, C., Li, J., Li, Y., & Han, Z. (2019). Bayesian

coalition formation game for virtual 5G core

network functions. IEEE Access, 7, 29805-29817.

https://doi.org/10.1109/ACCESS.2019.2902419

Maurer, M., Brandic, I., & Sakellariou, R. (2013).

Adaptive resource configuration for cloud

infrastructure management. Future Generation

Computer Systems, 29(2), 472-487.

 https://doi.org/10.1016/j.future.2012.07.004

Moreno, I. S., Garraghan, P., Townend, P., & Xu, J. (2014).

Analysis, modeling and simulation of workload

patterns in a large-scale utility cloud. IEEE

Transactions on Cloud Computing, 2(2), 208-221.

https://doi.org/10.1109/TCC.2014.2314661

Ravi, K., Khandelwal, Y., Krishna, B. S., & Ravi, V.

(2018). Analytics in/for cloud-an interdependence:

A review. Journal of Network and Computer

Applications, 102, 17-37.

 https://doi.org/10.1016/j.jnca.2017.11.006.

Saidi, K., Hioual, O., & Siam, A. (2019, November).

Resources allocation in cloud computing: a survey. In

International Conference in Artificial Intelligence in

Renewable Energetic Systems (pp. 356-364). Springer,

Cham. https://doi.org/10.1007/978-3-030-37207-1_37

Singh, S., & Chana, I. (2014). Metrics based workload

analysis technique for IaaS. In: International

Conference on Next Generation Computing and

Communication Technologies, (pp. 1–6).

 http://arxiv.org/abs/1411.6753%5Cnhttp://dblp.uni-

trier.de/rec/bib/journals/corr/SinghC14a

Singh, S., & Chana, I. (2015). Q-aware: Quality of

service based cloud resource provisioning.

Computers & Electrical Engineering, 47, 138-160.

https://doi.org/10.1016/j.compeleceng.2015.02.003

Sunyaev, A. (2020). Cloud computing. In Internet

Computing (pp. 195-236). Springer, Cham.

 https://doi.org/10.1007/978-3-030-34957-8_7

Thakur, N., & Han, C. Y. (2021). Multimodal

Approaches for Indoor Localization for Ambient

Assisted Living in Smart Homes. Information,

12(3), 114. https://doi.org/10.3390/info12030114

Vashistha, A., & Verma, P. (2020, January). A Literature

Review and Taxonomy on Workload Prediction in

Cloud Data Center. In 2020 10th International

Conference on Cloud Computing, Data Science &

Engineering (Confluence) (pp. 415-420). IEEE.

https://doi.org/10.1109/Confluence47617.2020.905

7938

Wei, L., Foh, C. H., He, B., & Cai, J. (2015). Towards

efficient resource allocation for heterogeneous

workloads in IaaS clouds. IEEE Transactions on

Cloud Computing, 6(1), 264-275.

 https://doi.org/10.1109/TCC.2015.2481400

Xiao, Z., Song, W., & Chen, Q. (2012). Dynamic

resource allocation using virtual machines for cloud

computing environment. IEEE Transactions on

Parallel and Distributed Systems, 24(6), 1107-1117.

https://doi.org/10.1109/TPDS.2012.283

Yuan, Y., & Liu, W. C. (2011, October). Efficient resource

management for cloud computing. In 2011

International Conference on System science,

Engineering design and Manufacturing informatization

(Vol. 2, pp. 233-236). IEEE.

 https://doi.org/10.1109/ICSSEM.2011.6081285

https://cloud.google.com/compute/docs/disks
https://doi.org/10.1016/j.jnca.2017.11.006
http://arxiv.org/abs/1411.6753%5Cnhttp:/dblp.uni-trier.de/rec/bib/journals/corr/SinghC14a
http://arxiv.org/abs/1411.6753%5Cnhttp:/dblp.uni-trier.de/rec/bib/journals/corr/SinghC14a

