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conventional methods.

Introduction

We consider the following problem:
min f(x),x € R", (1

where, f: R” — R is continuous and differentiable function
and its gradient g(x) = Af(x) is available. Iterative methods
are usually used to solve (1), as follows:

X, =x+ad k=12, .., 2)

starting from initial point x; € R”", where ¢ is obtained by
some line search. The search direction dy is defined by:

—-& ,k=1,
d, :{ ! > (3)
-g, +pd._,, k=2,

where, gr = g(xx) and S is known as the conjugate gradient
parameter.

The exact line search can be used to find the steplength
ar. Suppose that @) = flxitadi) which is problem that
departs from x; to find a step length in the direction d; such
that g(@) < ¢(0). If the step length is defined such that the
search direction minimized i.e., this line search is called
exact line search where this line search is expensive.
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scale unconstrained optimization problems. However, the rate of
convergence conjugate gradient method is linear unless it restarted. In this
study, we present a new spectral conjugate gradient modification formula
with restart property obtains the global convergence and descent
properties. In addition, we proposed a new restart condition for Fletcher-Reeves
conjugate gradient formula. The numerical results demonstrated that the
modified Fletcher-Reeves parameter and the new CG formula with their
restart conditions are more efficient and robustness than other
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Therefore, using the inexact line search with less
computation load is better. The inexact line search in
particular Strong Wolfe-Powell (SWP) line search inherits
the advantages of exact line search and computationally
inexpensive. Thus, to reduce the computation cost of
exact line search and also to reduce evaluations of the
objective function and gradient function, usually the
inexact line search is employed. SWP line search is more
preferable than other line searches. The SWP line search
is defined by:

f(x,+ad,)=minf(x, +ad,), a20, €))
f(xk +akdk)sf(xk)+é‘akgzdk (5)
and:

‘g(xk +oyd, )T d,

<olgld] (6)

where, 0 < 0 < o< 1. The Weak Wolfe-Powell (WWP)
(Wolfe, 1969; 1971) line search given by (5) and:

g(xk+akdk)TdeO-glfdk' (7)

The convergence of CG method will not be linear if
we restart CG method (Powell, 1977). Beale (1972)
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recommended the use of the two-term CG method instead
(dr = -gr, Yk > 1) as the restart search direction. Powell
(1984) recommended restarting dj using Beale’s method if:

2

: (®)

‘glz-gk—l‘ >02 Hgk

Dai and Yuan (1998) present the following restart
criterion:

z,r (0, 1).

)

‘glz-gk—l‘ >7 Hgk

The famous formulas for S are the Hestenes-Stiefel
(HS) (Hestenes and Stiefel, 1952) , Fletcher-Reeves (FR)
(Fletcher and Reeves, 1964) and Polak-Ribiére-Polyak
(PRP) (Polak and Ribiere, 1969) formulas, which are
defined as follows:

T T T
,BHS _ 8k prr _ 8i 8k ,BPRP _ &k ,
S A A R P

where, yr = gk — g-1.

Polak and Ribiere (1969) proved CG method with the
PRP formula and by using exact line search is convergent.
Powell (1984) show that the PRP fail to satisfy the
convergence by using an example even the exact line is
used. Powell recommended to use the non-negative of PRP
formula to satisfy the convergence analysis. Gilbert and
Nocedal (1992) suggest to use PRP as follows:

PRP+ __
A =

max{O, ,B,fRP}

Zoutendijk (1970) obtain the global convergence of
FR formula with CG method and the exact line search.
Al-Baali (1985) proved FR method with SWP line search

when ¢ < 1/2 and SWP line search is employed, Guanghui et
al. (1995) extended the proof to the case for o< 1/2.

Alhawarat et al. (2017) presented the following formula:

2 T
il — Mk |8k 8| .
kgkzk“,lf lel > 1 |2i g0
k-1

0, otherwise,

- (10)

IBAZPRP _
A =

where, 4 is defined as follows:

_ ka _xk—lH

7
ol

Kaelo et al. (2020) proposed the following CG formula:

599

leil - gl gis
max {dkrflyk,l s _glz;ldkfl

} Jf0<gig,, < Hngz

PKT _
i =

eI

, otherwise.
T T
max {dk—lyk—l =&y }

As we know that in the case of the function is quadratic
i.e., fix)=glx+(1/2)x"Hx and the step size obtained by exact
line search (3), the CG method satisfy the conjugacy
condition i.e., d/Hd; =0,Vi= j. By using the mean value
theorem and exact line search with Eq. (2) we can obtain B/

. From quasi-Newton method, BFGS method and the limited
memory (LBFGS) method and using (2), Dai and Liao
(2001) present the following conjugacy condition:

T T
d v, =185,

where, Si-1 = xx — xr1 and ¢ > 0. In the case of t = 0 Eq.
(8) becomes the classical conjugacy condition. By
using (2) and (8), (Kaelo et al., 2020) proposed the
following CG formula:

T T
ﬂDL _ & ¢ 8k Skt
k _T77 Tio
d
1Yk 1Yk

However, g face the same problem as g™ and g*

i.e., B’ is not non-negative in general. Thus (Dai and
Liao, 2001) replaced Eq. (9) by:

T
s
Bl = max{ﬂkHS,O} 7[78; L
1Yk

Hager and Zhang (2005; 2013) presented a modified
CG parameter that satisfies the descent property for any

inexact line search with g/d, <—(7/8)|g,| . This formula

is given as follows:

7 = max {,BkN, qk}
bl Y
. 1 Vs
where, No |y g ML ,
ﬂk dkTyk [yk k dkfyk] gk
; ! and 77> 0 is a constant.

el min o e )

2
Notes that if 7= zHy%H then g’ = 4"
Sk Vi

The positive scalar denoted by &,. Hence, di given as:

d,=—6g +pd,
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when, & = 1, the search direction is a classical CG
method. If ;= 0, then there are two possibilities of . If
6 = N*f(x;)"! or an approximation of it, then the search
direction is Newton or Quasi-Newton, respectively.

The New Formula and the Algorithm

Here, we construct the following new modification to
improve the efficiency and robustness of DY CG formula
and robustness of PRP CG method.

For k=1, dk = -gi.

For k> 2:
44T -6,8, + B di_sif gid,, 20, a1
BT PRP+
-g, + B, d,_else.
where, ||.]|means the Euclidean norm and
T
6, =1+ 7ng iy and:
giady
2
el
K .
dlz-—l(gk _gk—l)

Algorithm 1

Step 1 Provide a starting point x;. Set the initial search
direction d; = -g1. Let k: = 1.

Step 2 If a stopping criteria is satisfied, then stop.

Step 3 Compute d; based on (2) with (11).Error!
Reference source not found.

Step 4 Compute o using (4) and (6).

Step 5 Update x4+ based on (1).

Step 6 Set k: = k+1 and go to Step 2.

In Algorithml, note that after the step k = k+1, the
iterates x; = xx+| takes place after every iteration. The other
iterations are updated in a similar manner as x;.

In following section, we present the global
convergence property of the new formula (11). In case of
d/™ =0, then the search direction becomes the steepest

descent (negative gradient) which mean the stationary
point is obtained.

Convergence of CG Algorithm with the
Search Direction 4"

Assumption 1

A. The level set QO = {x|f{x) <f(x1)} is bounded, that is,
a positive constant M exists such that

|x|< M, vxeq.

600

B. In some neighbourhood n of Q, fis continuously
differentiable and its gradient is Lipschitz continuous; that
is, for all x, y € N, there exists a constant such that:

lg(x) - g < Llx—y-

This assumption implies that there exists a positive
constant B such that:

lg(w)|<B.vueN.
The descent condition:

P Vi1,

gid, <lg. (12)

Al-Baali (1985) modified (12) to the following form
and used it to prove the FR method:
gld, <—c|g.| vk =1, (13)
where, ¢ € (0,1). Equation (13) is the sufficient descent

condition. Note that the general form of the sufficient
descent condition is (14) with ¢ > 0.

Descent and Convergence Properties ford™ with
the SWP Line Search

In fact, we have two types of global convergence;
weak global convergence and strong global
convergence both of them imply the stationary point for
optimization problem. However, the convergence and
the descent properties will not give any sense in terms
of the efficiency for CG methods; for example, FR
formula has global convergence properties with poor
efficiency. Thus, to improve the efficiency when the
method cycle does not reach a solution the CG
algorithm should be restarted. In the following section,
we will present a new CG method with restart property
by using the steepest descent method.

The following lemma is called Zoutendijk condition
(Al-Baali, 1985).

Lemma 3.1

Suppose assumption 1 is holds. Suppose method in the
form (1), (2) and o satisfies the WWP line search (5) and
(6), where the search direction satisfied. Then

(14)

(15)
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Kaelo et al. (2020) present the following theorem for
global convergence properties:

Theorem 3.1

Let assumption 1 holds. Suppose any CG method in
the form (1) and (2), where d; is a descent direction and
o is obtained by the SWP line search. If:

> 1
—— =00,
Z dkHz

k=1

then:

lim infg, || =0.

Theorem 3.2

Let the sequence {gi}and {d;}are generated by the
methods (2), (3) and (11), then (13) holds.
Proof. By using proof by induction. From (3) for &k =

1, g/d,=—|g[ . Suppose that it is true until & - 1, i..,
gld_ <0,fori=12,..., k- 1then we have the following

two cases:
Case 1 g/d, , >0:

Td 2
Multiply both sides by g/ :
e
' (8~ &) di (g —g)™"

Since g/d, , 20

gld, =—Jef

T
Case 2 8,1 <0 :

d,=-g, + ﬁkmmdkfw

Multiply both sides by g/ :

2 +
gf-dk = _Hgk H +:BkPRP gf-dk—li’
Byusing g'd, , <0 and g™ >0, we obtain g'd, <0.

Theorem 3.3

Let assumption 1 holds. Assume {gi}and {di}are
obtained by algorithm 1 in which o4 is obtained by the
WWEP line search and (13) holds. Then the lim inf lg.|=0.

601

d =g, + 55 1”2;1 8t (:_zgkl)dkl,
la.] =16]le], dég>d
AR AN +(gk}ikgz“)
since [6,[|<1-o
ld.]1=lel, - olell, + (g%g)

By using assumption 1:

2
HdkH =1 —cry+%where/1 >0.

2
Let: M:I—cry+77||dk||SM.

By using Theorem 3.1 We obtain the lim inf le.||=0.

The New Restart Criteria for FR Family

Fletcher-Reeves formula is simple CG method and has
a global convergence property with SWP line search and
it satisfies the descent property. However, FR formula is

not efficient as A" which the later has a problem in

convergence properties for some optimization functions.
Powell studied B* formula and show that this method
cycle does not reach a solution when xx1 = xx which
implies that ||gk||/||gk-1]|=]1. To solve this problem we
suggest restarting /" as follows:

(16)

., otherwise.

It is clear that when g/*" will restart when the g/ ~1.

Numerical Results and Discussion

To study the efficiency of the new search direction, we
selected several test problems in Table 1 from Cuter
(Bongartz et al., 1995) and Andrei (2008). The test
functions consist of unimodal and multimodal functions.
We also selected examples according to the similarities in
significant physical properties and shapes. For example,
the Rosenbrock function has a long, narrow shape; the
Himmelblau function, the six-hump function and the
three-hump function have many local minima; the Booth
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function is plate shaped; and the Sum Squares function is
bowl shaped. As the CG method is useful for small-and
large-scale optimisation problems, we also select the
dimensions of the functions, which varied from 2 to
10000. All of the functions are nonlinear. In Table 1,
“Gen” denotes generalised, “Ext” denotes extended,
“Dim” denotes dimension/s.

We employed the MATLAB programming
environment (ver. 7.9). The results are shown in Fig. 1 and
2, in which a performance measure introduced by Dolan
and More (2002) was employed.

The comparison include PRP+, FR, 4, and FR*

methods. ||gx|| < 107° is used as the stopping criteria for all
algorithms. To obtain the step length we used strong
Wolfe-Powell line search with  =0.01 and o= 0.1.

Since we are interested to find the stationary point/s
for optimization problems, we selected more than one
initial point to test every function in Table 1 the dimension
of functions between 2 and 5000. Different initial points
almost will obtain different stationary points, which imply
that more than one solution for multimodal functions.
Hence, we obtain the best solution. In addition, we select
small and large dimensions for every function. The ranges
of dimensions are chosen between 2 and 10000. Thus, we
conclude that using different dimension and different
initial points to obtain the results will be more convince
than using original initials and one dimension. However,
the starting point needs more study.

Table 1: A list of test functions

Figure 1 and 2 show that the curve of the new formula
( ﬂ}:ﬂ'AZ

that FR* formula is better than original FR formula which
demonstrates the discussion that presented by Powell and
the program is terminated by the user when the number of
iterations exceeds 1000. The PRP+ formula is efficient
since its curve started uppermost other curves. However,
it is not satisfied the descent property with SWP line
search. Thus, the program is terminated automatically.

In addition we present the following two functions the
first one called Extended Beale function which given by
the following formula:

) is uppermost of all curves. In addition, it is clear

n/2

f(x)= Z(l's X (1 - XZI))Z

+(225—xﬂ4(1—x;»2+(2625—xﬂ4(1—x;)y

Number of variables (n): 500, 1000, 5000, 10000
with initial points: (-1,-1, ..., -1), (.5, .5, ..., .5), (1,
L....1),(2,2,..,2).

This function has only one global minimum
surrounded by a flat plateau. At the four corners lie four
ascending steep walls that become smaller at the tip.
These steep walls become higher as the value of the two
variables increases. The minimum is x* = (3,0.5) and the
function value is f{x*) = 0 for two variable functions (note
Fig. 3 for a three-dimensional graph).

Function

Initial points

Ext. White & Holst function,
Ext. Rosenbrock function,
Six hump function

Ex. Beale function,

Three hump function

Ext. Himmelblau function
Diagonal 2 function
NONSCOMP function

Ext. DENSCHNB function
Shallow function

Booth function
DIXMAANA function, [26]
DIXMAANB function
NONDIA function

Ext. Tridiagonal 1 function
DQDRTIC function
Diagonal 4 function

Raydan 2 function

Ext. DENSCHNB function
A Quadratic function QF2
Zett] function

Extended Cliff

Ext. Powell function
Generalized Quartic GQ1 function
Ext. Block Diagonal BD1 function

(-1.2,1-1.2,1...), (5,5,...,5), (10,10,...,10), (15,15,...15)
(-1.2,1,-1.2,1...), (5,5,...,5), (10,10,...,10),( 15,15,...15)
(L,1), (5.5), (10,10),(15,15)

(-1,-1,.71), (.5,5,...,.5), (L 1., 1),(2.2,...,5), ( 5.5,....5)
(L,1), (5,5), (10,10),(15,15)

(L1,...,1), (5.,5....,5), (10,10...,10),(15,15,...,15)
(0.2,0.2,...,0.2),(0.25,0.25,...,0.25), (0.5,...,0.5), (1, 1,...,1)
(LL..,1), (-1 -1, -1), (-2,2...,2),(-5,75,...,-5)
(L1,...,1), (5.,5,...,5), (10,10...,10),(15,15,...,15)
(-2,2,...,°2), 2.2,...2), (5.,5...,5), (10,10,...,10)

(L,1), (5.5), (10,10),(15,15)

(2.2,...,2), (5.5,...,5), (10,10...,10), (15,15,...,15)
(-2,2,...,2), (-1,-1,....-1), (0,0...,0), (1, 1,...,1)
(-2,2,...,2), (-1,-1,....-1), (0,0...,0), (1, 1,...,1)
(L1,...,1), (5,5,...,5), (10,10...,10),(15,15,...,15)
-1-1,...7D), (L1,..1), (2,2...,2), (3,3,...,3)

(L1,...,1), (5,5,...,5), (10,10...,10),(15,15,...,15)
(L1L,...,1), (5.5,...,5), (10,10...,10),(15,15,...,15)
(L1,...,1), (5.5,...,5), (10,10...,10),(15,15,...,15)
(L1,...,1), (5,5,...,5), (10,10...,10),(15,15,...,15)
(L1,...,1), (5.5,...,5), (10,10...,10),(15,15,...,15)
(L1,...,1), (5,5,...,5), (10,10...,10),(15,15,...,15)
(L1,...,1), (5,5,...,5), (10,10...,10),(15,15,...,15)
(L1,...,1), (5.,5,...,5), (10,10...,10),(15,15,...,15)
(L1,...,1), (5.,5,...,5), (10,10...,10),(15,15,...,15)
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Fig. 1: Performance profile based on the number of iteration

1.0 ff———————v e — — -

Py(t)

Fig. 2: Performance profile based on the CPU time

Fig. 3: Extended Beale function in 3D
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And the second function called
Perturbed quadratic function:

I 2
f(x)= Z x; | + ﬁx

Initial points: (0.5, 0.5, ..., 0.5)
This function has a smooth curve, look like dish shape
and has a minimum value at x* = (0,0) and the function

0 T
." \\n\‘\ m‘-‘,\\""

R
1.\‘\‘ ‘.

x2 -5

\\ o u
g l‘ W .:":\“ t
,‘u. .\.o

value is f{x*) = 0. where lies at the bottom for two variable
functions (Fig. 4 for a three-dimensional graph).

Moreover we present another strong comparison
between ATAZ and CG-Descent is given with benchmark
functions in Table 2. The numerical results in Fig. 5, 6 and 7
show that the new modification ATAZ is better than
CG-Descent in term of number of iterations, number of
function evaluations and CPU time. The test functions can
be downloaded from (Bongartz et al., 1995).

x1

Fig. 4: Perturbed Quadratic function in 3D

0 —
¢ -'--d---------
a-"-‘-
2?
’l'
[ 4
[
|
!
. ¢
= !
o 4
o b
T T T
e? e! e? e’
t
— ATAZ
@ e» CG_DESCENT5.3

Fig. 5: Performance profile based on the number of iteration
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Fig. 6: Performance profile based on the function evaluation
&0 -
o a» a» a» an™> &
‘ -- -“
and
o
-
=
o
e
T T T
e’ e’ e? el
t

@» e» CG_DESCENT5.3

Fig. 7: Performance profile based on CPU time
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Table 2: A list of problem functions

ATAZ CG-Descent
No. function No. function

function Dimension No. iteration evaluation CPU time No. iteration evaluation CPU time
AKIVA 2 8 20 0.02 10 21 0.02
ALLINITU 4 9 25 0.02 12 29 0.02
ARGLINA 200 1 3 0.02 1 3 0.02
ARWHEAD 200 6 17 0.02 7 15 0.02
BARD 3 12 32 0.02 16 33 0.02
BEALE 2 11 33 0.02 15 31 0.02
BIGGS6 6 24 64 0.02 27 57 0.02
BOX3 3 10 23 0.02 11 24 0.02
BRKMCC 2 5 11 0.02 5 11 0.02
BROWNAL 200 9 22 0.02 9 25 0.02
BROWNBS 2 10 24 0.02 13 26 0.02
BROWNDEN 4 16 38 0.02 16 31 0.02
CHAINWOO 4000 352 682 0.8 318 619 0.866
CHNROSNB 50 269 549 0.02 287 564 0.02
CLIFF 2 10 46 0.02 18 70 0.02
CUBE 2 17 48 0.02 32 77 0.02
CURLY10 10000 52849 72728 197 47808 67294 173.7
CURLY20 10000 79446 102981 437 66587 89245 383.94
CURLY30 10000 81281 104558 644 79030 102516 639.63
DECONVU 63 390 806 2.00E-02 400 801 2.00E-02
DENSCHNA 2 6 16 0.02 9 19 0.02
DENSCHNB 2 6 18 0.02 7 15 0.02
DENSCHNC 2 11 36 0.02 12 26 0.02
DENSCHND 3 14 46 0.02 47 98 0.02
DENSCHNE 3 12 43 0.02 18 49 0.02
DENSCHNF 2 9 31 0.02 8 17 0.02
DIXMAANA 3000 6 16 0.02 7 15 0.02
DIXMAANB 3000 6 15 0.02 6 13 0.02
DIXMAANC 3000 6 14 0.02 6 13 0.02
DIXMAAND 3000 6 15 0.02 7 15 0.02
DIXMAANE 3000 13 31 0.23 222 239 0.33
DIXMAANF 3000 17 39 0.02 161 323 0.13
DIXMAANH 3000 44 103 0.08 173 347 0.22
DIXMAANIJ 3000 415 494 0.52 327 655 0.36
DIXON3DQ 10000 10000 10007 19.12 10000 10007 19.12
DITL 2 75 1163 0.02 82 917 0.02
DQDRTIC 5000 5 11 0.02 5 11 0.02
DQRTIC 5000 15 32 0.01 17 37 0.03
EDENSCH 2000 26 59 0.08 26 52 0.03
EG2 1000 3 13 0.02 5 11 0.02
EIGENALS 2550 9111 16048 164 10083 18020 178.36
ENGVALI1 5000 24 47 0.08 27 50 0.06
ENGVAL2 3 26 73 0.02 26 61 0.02
EXPFIT 2 9 29 0.02 13 29 0.02
EXTROSNB 1000 23 71 0.8 3808 7759 1.25
FLETCBV2 5000 1 1 0.02 1 1 0.02
FLETCHCR 1000 252 497 0.03 152 290 0.05
FMINSRF2 5625 23 83 1.70E-01 346 693 1.09E+00
FMINSURF 5625 27 86 0.16 473 947 1.51
GENHUMPS 5000 5740 15736 26 6475 12964 20.11
GENROSE 500 1376 2820 0.28 1078 2167 0.17
GROWTHLS 3 109 431 0.02 156 456 0.02
GULF 3 33 95 0.02 37 84 0.02
HAIRY 2 17 82 0.02 36 99 0.02
HATFLDD 3 17 49 0.02 20 43 0.02
HATFLDE 3 13 37 0.02 30 72 0.02
HATFLDFL 3 21 68 0.02 39 92 0.02
HEART6LS 6 375 1137 0.02 684 1576 0.02
HEARTSLS 8 253 657 0.02 249 524 0.02
HELIX 3 23 60 0.02 23 49 0.02
HIELOW 3 13 30 0.03 14 30 0.02
HILBERTA 2 2 5 0.02 2 5 0.02
HILBERTB 10 4 9 0.02 4 9 0.02
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Table 2: Continue

HIMMELBB 2 4 18
HIMMELBF 4 23 59
HIMMELBG 2 22
HIMMELBH 2 5 13
HUMPS 2 45 223
JENSMP 2 12 47
KOWOSB 4 16 46
LIARWHD 5000 19 50
LOGHAIRY 2 26 196
MANCINO 100 10 21
MARATOSB 2 589 2885
MEXHAT 2 14 59
MOREBV 5000 25 102
NCB20B 500 2044 2288
NCB20 5010 303 747
NONCVXU2 5000 43 81
NONDIA 5000 7 25
NONDQUAR 5000 66 216
OSBORNEA 5 82 230
OSBORNEB 11 57 134
OSCIPATH 10 295029 781729
PALMERI1C 8 12 27
PALMERI1D 7 10 24
PALMER2C 8 11 21
PALMER3C 8 11 21
PALMER4C 8 11 21
PALMERS5C 6 6 13
PALMER6C 8 11 24
PALMER7C 8 11 20
PALMERSC 8 11 19
PENALTY1 1000 14 51
PENALTY2 200 202 238
PENALTY3 200 36 102
POWELLSG 5000 28 70
POWER 10000 360 736
QUARTC 5000 15 32
ROSENBR 2 28 84
S308 2 7 21
SCHMVETT 5000 41 72
SENSORS 100 27 73
SINEVAL 2 46 181
SINQUAD 5000 14 45
SISSER 2 5 19
SNAIL 2 61 251
SPARSINE 5000 22306 22552
SROSENBR 5000 9 23
STRATEC 10 170 419
TESTQUAD 5000 1580 1587
TOINTGOR 50 118 215
TOINTGSS 5000 4 9
TOINTPSP 50 120 262
TOINTQOR 50 29 36
TQUARTIC 5000 11 41
TRIDIA 5000 783 790
VARDIM 200 9 20
VAREIGVL 50 24 54
VIBRBEAM 8 98 255
WATSON 12 58 219
WOODS 4000 24 61
YFITU 3 68 208
ZANGWIL2 2 1 3
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Conclusion

In this study, we proposed a new modification of
conjugate gradient method (d,‘f“z ) with restart condition

is presented. In addition, new restart criterion proposed for
FR CG method. Our numerical results had shown that the
new coefficients are better than other conventional CG
methods. Furthermore the efficiency of the FR method
improved substantially when the new restart criterion is used.
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