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Abstract: The conjugate gradient method is widely used to solve large 
scale unconstrained optimization problems. However, the rate of 

convergence conjugate gradient method is linear unless it restarted. In this 

study, we present a new spectral conjugate gradient modification formula 

with restart property obtains the global convergence and descent 

properties. In addition, we proposed a new restart condition for Fletcher-Reeves 

conjugate gradient formula. The numerical results demonstrated that the 

modified Fletcher-Reeves parameter and the new CG formula with their 

restart conditions are more efficient and robustness than other 

conventional methods. 
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Introduction 

We consider the following problem: 

 

min ( ), ,nf x x R  (1) 

 

where, f: Rn  R is continuous and differentiable function 

and its gradient g(x) = f(x) is available. Iterative methods 
are usually used to solve (1), as follows: 

 

1 , 1,  2,  ...,k k k kx x d k     (2) 

 

starting from initial point x1  Rn, where k is obtained by 
some line search. The search direction dk is defined by: 

 

1

, 1,

, 2,

k

k

k k k

g k
d

g d k 

 
 

  
 (3) 

 

where, gk = g(xk) and k is known as the conjugate gradient 
parameter. 

The exact line search can be used to find the steplength 

k. Suppose that () = f(xk+dk) which is problem that 
departs from xk to find a step length in the direction dk such 

that () <  (0). If the step length is defined such that the 
search direction minimized i.e., this line search is called 

exact line search where this line search is expensive. 

Therefore, using the inexact line search with less 
computation load is better. The inexact line search in 

particular Strong Wolfe-Powell (SWP) line search inherits 

the advantages of exact line search and computationally 

inexpensive. Thus, to reduce the computation cost of 

exact line search and also to reduce evaluations of the 

objective function and gradient function, usually the 

inexact line search is employed. SWP line search is more 

preferable than other line searches. The SWP line search 

is defined by: 

 

   min ,  0,k k k k kf x d f x d       (4) 

 

    T

k k k k k k kf x d f x g d     (5) 

 
and: 

 

 T T

k k k k k kg x d d g d    (6) 

 

 where, 0 <  <  < 1. The Weak Wolfe-Powell (WWP) 
(Wolfe, 1969; 1971) line search given by (5) and: 
 

   .
T T

k k k k k kg x d d g d    (7) 

 

The convergence of CG method will not be linear if 
we restart CG method (Powell, 1977). Beale (1972) 
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recommended the use of the two-term CG method instead 

(dk = -gk, k  1) as the restart search direction. Powell 
(1984) recommended restarting dk using Beale’s method if: 

 
2

1
0.2 ,T

k k k
g g g   (8) 

 

Dai and Yuan (1998) present the following restart 

criterion: 
 

2

1
 , (0,  1).T

k k k
g g g     (9) 

 

The famous formulas for k are the Hestenes-Stiefel 

(HS) (Hestenes and Stiefel, 1952) , Fletcher-Reeves (FR) 
(Fletcher and Reeves, 1964) and Polak-Ribière-Polyak 

(PRP) (Polak and Ribiere, 1969) formulas, which are 

defined as follows:  

 

2 2

1 1 1

,
T T T

HS FR PRPk k k k k k
k k kT

k k k k

g y g g g y

d y g g
  

  

  

 

 

where, yk = gk – gk-1. 

Polak and Ribière (1969) proved CG method with the 

PRP formula and by using exact line search is convergent. 

Powell (1984) show that the PRP fail to satisfy the 

convergence by using an example even the exact line is 

used. Powell recommended to use the non-negative of PRP 

formula to satisfy the convergence analysis. Gilbert and 

Nocedal (1992) suggest to use PRP as follows: 

 

 max 0,  PRP PRP

k k  
 

 

Zoutendijk (1970) obtain the global convergence of 

FR formula with CG method and the exact line search. 

Al-Baali (1985) proved FR method with SWP line search 

when  < 1/2 and SWP line search is employed, Guanghui et 

al. (1995) extended the proof to the case for   1/2. 
 

Alhawarat et al. (2017) presented the following formula: 

 
2

21

12

1

,if    ,

0, otherwise,

T

k k k k T

AZPRP k k k k

k k

g g g
g g g
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 (10) 

 

where, k is defined as follows: 

 

1k k

k

k

x x

y
 

  

 

Kaelo et al. (2020) proposed the following CG formula: 

 

 

2

21

1

1 1 1 1
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As we know that in the case of the function is quadratic 

i.e.,  f(x) = gTx+(1/2)xTHx and the step size obtained by exact 

line search (3), the CG method satisfy the conjugacy 

condition i.e., 0,
T T

i jd Hd i j   . By using the mean value 

theorem and exact line search with Eq. (2) we can obtain HS

k


. From quasi-Newton method, BFGS method and the limited 

memory (LBFGS) method and using (2), Dai and Liao 

(2001) present the following conjugacy condition: 

 

1 1
,

T T

k k k k
d y tg s  

 
 

where, Sk-1 = xk – xk-1 and t  0. In the case of t = 0 Eq. 
(8) becomes the classical conjugacy condition. By 

using (2) and (8), (Kaelo et al., 2020) proposed the 

following CG formula: 

 

1 1

1 1 1 1

.
T T

DL k k k k
k T T

k k k k

g y g s
t

d y d y
  

   

 
 

 

However, DL

k
  face the same problem as PRP

k
  and HS

k


i.e., DL

k
 is not non-negative in general. Thus (Dai and 

Liao, 2001) replaced Eq. (9) by: 

 

  1

1 1

max ,0 .
T

DL HS k k
k k T

k k

g s
t

d y
  

 

 
 

 

Hager and Zhang (2005; 2013) presented a modified 

CG parameter that satisfies the descent property for any 

inexact line search with   2
7 / 8T

k k kg d g  . This formula 

is given as follows: 

 

  max ,  HZ N

k k k    

 

where, 

2

1
2

T

kN

k k k kT T

k k k k

y
y d g

d y d y


 
  
 
 

, 

 
1

 min ,  
k

k k
d g




   and  > 0 is a constant. 

Notes that if 

2

2 k

T

k k

y
t

s y
 then .N DY

k k
   

The positive scalar denoted by k. Hence, dk given as: 

 

1.k k k k kd g d      
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when, k = 1, the search direction is a classical CG 

method. If k = 0, then there are two possibilities of k. If 

k = 2f(xk)1 or an approximation of it, then the search 
direction is Newton or Quasi-Newton, respectively. 

The New Formula and the Algorithm 

Here, we construct the following new modification to 

improve the efficiency and robustness of DY CG formula 

and robustness of PRP CG method. 

For k = 1, dk = -gk. 

 

For k  2: 
 

1 1

1

,  0,

, .

DY T

k k k k k kATAZ

k PRP

k k k

g d if g d
d

g d else

 


 




   
 

 (11) 

 
where, ||.||means the Euclidean norm and 

1

1 1

1
T

k k
k T

k k

g d

g d
 

 

   and: 

 

 

2

1 1

.
kDY

k T

k k k

g

d g g


 




 

 

Algorithm 1 

Step 1 Provide a starting point .1x  Set the initial search 

direction d1 = -g1. Let k: = 1. 

Step 2 If a stopping criteria is satisfied, then stop. 

Step 3 Compute dk  based on (2) with (11).Error! 

Reference source not found. 

Step 4 Compute k using (4) and (6). 
Step 5 Update xk+1 based on (1). 

Step 6 Set k: = k+1 and go to Step 2. 

 

In Algorithm1, note that after the step k = k+1, the 
iterates xk = xk+1 takes place after every iteration. The other 

iterations are updated in a similar manner as xk. 

In following section, we present the global 

convergence property of the new formula (11). In case of 

0,ATRZ

k
d   then the search direction becomes the steepest 

descent (negative gradient) which mean the stationary 

point is obtained.  

Convergence of CG Algorithm with the 

Search Direction ATAZ

k
d  

Assumption 1 

A. The level set  = {x|f(x)  f(x1)} is bounded, that is, 
a positive constant M exists such that 

 

, .x M x  
 

B. In some neighbourhood n of , f is continuously 

differentiable and its gradient is Lipschitz continuous; that 

is, for all x, y  N, there exists a constant such that: 
 

( ) ( ) .g x g y L x y    

 
This assumption implies that there exists a positive 

constant B such that: 
 

( ) , .g u B u N  
 

 
The descent condition: 

 
2
, 1,T

k k kg d g k     (12) 

 
Al-Baali (1985) modified (12) to the following form 

and used it to prove the FR method: 
 

2
, 1,T

k k kg d c g k     (13) 

 

where, c  (0,1). Equation (13) is the sufficient descent 
condition. Note that the general form of the sufficient 

descent condition is (14) with c > 0.  

Descent and Convergence Properties for ATAZ

k
d  with 

the SWP Line Search  

In fact, we have two types of global convergence; 

weak global convergence and strong global 

convergence both of them imply the stationary point for 

optimization problem. However, the convergence and 

the descent properties will not give any sense in terms 
of the efficiency for CG methods; for example, FR 

formula has global convergence properties with poor 

efficiency. Thus, to improve the efficiency when the 

method cycle does not reach a solution the CG 

algorithm should be restarted. In the following section, 

we will present a new CG method with restart property 

by using the steepest descent method. 

The following lemma is called Zoutendijk condition 

(Al-Baali, 1985). 

Lemma 3.1 

Suppose assumption 1 is holds. Suppose method in the 

form (1), (2) and k satisfies the WWP line search (5) and 
(6), where the search direction satisfied. Then  
 

 2

2
0

.

T

k k

k k

g d

d





   (14) 

 

Also we can extended Eq. (14) to the following form: 

 
4

2
0

.k

k k

g

d





   (15) 
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Kaelo et al. (2020) present the following theorem for 

global convergence properties: 

Theorem 3.1 

Let assumption 1 holds. Suppose any CG method in 

the form (1) and (2), where dk is a descent direction and 

k is obtained by the SWP line search. If: 
 

2
1

1
,

k k
d





 
 

 
then: 
 

 
lim  inf  0.

k
k

g



 

 

Theorem 3.2 

Let the sequence {gk}and {dk}are generated by the 

methods (2), (3) and (11), then (13) holds. 

Proof. By using proof by induction. From (3) for k = 

1, 
2

1 1 1

Tg d g  . Suppose that it is true until k - 1, i.e., 

1 1
0T

i i
g d   , for i = 1,2,…, k - 1 then we have the following 

two cases: 

Case 1 
1 0

k

T

kg d   : 

 

 

2

1
1

1 1 1 1

,
T

kk k
k k k kT

k k k k k

gg d
d g g d

g d d g g




   

   


 
 

Multiply both sides by T

k
g : 

 

   

2

2 21
1

1 1 1 1

,
k k

T
kT Tk k

k k k k

k k k k k k

gg d
g d g g g d

d g g d g g




   

   
 

 
 

Since 
1 0

k

T

kg d   : 

 
2

k

T

k kg d g   

 

Case 2 1 0
k

T

kg d  
: 

 

1
,PRP

k k k k
d g d 

  
 

 

Multiply both sides by T

k
g : 

 
2

1,k k

T PRP T

k k k kg d g g d 
  

 
 

By using 
1 0

k

T

kg d    and 0PRP

k
   , we obtain 0.

k

T

kg d   

Theorem 3.3 

Let assumption 1 holds. Assume {gk}and {dk}are 

obtained by algorithm 1 in which k is obtained by the 

WWP line search and (13) holds. Then the lim inf 0.
k

k
g
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1
1

1 1 1 1

2

1

1 1

2

1

,
T

kk k
k k k kT

k k k k k
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k k k
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g d d g g
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since 1k    

 

2

1

k

k k k
k k

g
d g g

g g




  


 
 

By using assumption 1: 

 
2

1 0.
k

d where


 


   
 

 

Let: 
2

1M





   ||dk||  M. 

By using Theorem 3.1 We obtain the 
 

lim inf  0k
k

g


 . 

The New Restart Criteria for FR Family  

Fletcher-Reeves formula is simple CG method and has 

a global convergence property with SWP line search and 

it satisfies the descent property. However, FR formula is 

not efficient as PRP

k
  which the later has a problem in 

convergence properties for some optimization functions. 

Powell studied FR

k
  formula and show that this method 

cycle does not reach a solution when xk+1  xk which 

implies that ||gk||/||gk-1||1. To solve this problem we 

suggest restarting FR

k
  as follows: 

 

*
1

0, 0.9 1.1,

, .

k

FR
kk

FR

k

g

g

otherwise







 

 



 (16) 

 

It is clear that when *FR

k
  will restart when the 1.FR

k
   

 

Numerical Results and Discussion 

To study the efficiency of the new search direction, we 
selected several test problems in Table 1 from Cuter 

(Bongartz et al., 1995) and Andrei (2008). The test 

functions consist of unimodal and multimodal functions. 

We also selected examples according to the similarities in 

significant physical properties and shapes. For example, 

the Rosenbrock function has a long, narrow shape; the 

Himmelblau function, the six-hump function and the 

three-hump function have many local minima; the Booth 
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function is plate shaped; and the Sum Squares function is 

bowl shaped. As the CG method is useful for small-and 

large-scale optimisation problems, we also select the 

dimensions of the functions, which varied from 2 to 
10000. All of the functions are nonlinear. In Table 1, 

“Gen” denotes generalised, “Ext” denotes extended, 

“Dim” denotes dimension/s. 

We employed the MATLAB programming 

environment (ver. 7.9). The results are shown in Fig. 1 and 

2, in which a performance measure introduced by Dolan 

and More (2002) was employed.  

The comparison include PRP+, FR, ATAZ

k
d  and FR* 

methods. ||gk||  106 is used as the stopping criteria for all 
algorithms. To obtain the step length we used strong 

Wolfe-Powell line search with   = 0.01 and  = 0.1. 

Since we are interested to find the stationary point/s 

for optimization problems, we selected more than one 

initial point to test every function in Table 1 the dimension 

of functions between 2 and 5000. Different initial points 

almost will obtain different stationary points, which imply 

that more than one solution for multimodal functions. 

Hence, we obtain the best solution. In addition, we select 

small and large dimensions for every function. The ranges 

of dimensions are chosen between 2 and 10000. Thus, we 

conclude that using different dimension and different 

initial points to obtain the results will be more convince 

than using original initials and one dimension. However, 

the starting point needs more study. 

Figure 1 and 2 show that the curve of the new formula 

 ATAZ

k  is uppermost of all curves. In addition, it is clear 

that FR* formula is better than original FR formula which 
demonstrates the discussion that presented by Powell and 

the program is terminated by the user when the number of 

iterations exceeds 1000. The PRP+ formula is efficient 

since its curve started uppermost other curves. However, 

it is not satisfied the descent property with SWP line 

search. Thus, the program is terminated automatically. 

 In addition we present the following two functions the 

first one called Extended Beale function which given by 

the following formula: 

 

  

     

/ 2
2

2 1 2

1

2 2
2 3

2 1 2 2 1 2

( ) 1.5 1

2.25 1 2.625 1

n

i i

i

i i i i

f x x x

x x x x




 

  

     


 

 

Number of variables (n): 500, 1000, 5000, 10000 

with initial points: (-1,-1, ..., -1), (.5, .5, …, .5), (1, 

1,...,1), (2, 2, ..., 2). 
This function has only one global minimum 

surrounded by a flat plateau. At the four corners lie four 

ascending steep walls that become smaller at the tip. 

These steep walls become higher as the value of the two 

variables increases. The minimum is x* = (3,0.5) and the 

function value is f(x*) = 0 for two variable functions (note 

Fig. 3 for a three-dimensional graph).

 

Table 1: A list of test functions  

Function Initial points 

Ext. White & Holst function,  (-1.2,1,-1.2,1…), ( 5,5,…,5), (10,10,…,10), (15,15,…15) 
Ext. Rosenbrock function,  (-1.2,1,-1.2,1…), ( 5,5,…,5), (10,10,…,10),( 15,15,…15) 

Six hump function (1,1), (5,5), (10,10),(15,15) 
Ex. Beale function,  (-1,-1,…,-1), (.5,.5,…,.5), (1,1…,1),(2,2,…,5), ( 5,5,…,5) 
Three hump function (1,1), (5,5), (10,10),(15,15) 
Ext. Himmelblau function (1,1,…,1), (5,5,…,5), (10,10…,10),(15,15,…,15) 
Diagonal 2 function (0.2,0.2,…,0.2),(0.25,0.25,…,0.25), (0.5,…,0.5), (1,1,…,1) 
NONSCOMP function  (1,1,…,1), (-1,-1,…,-1), (-2,-2…,-2),(-5,-5,…,-5) 
Ext. DENSCHNB function (1,1,…,1), (5,5,…,5), (10,10…,10),(15,15,…,15) 
Shallow function (-2,-2,…,-2), (2,2,…,2), (5,5…,5), (10,10,…,10) 

Booth function  (1,1), (5,5), (10,10),(15,15) 
DIXMAANA function, [26] (2,2,…,.2), (5,5,…,5), (10,10…,10), (15,15,…,15) 
DIXMAANB function (-2,-2,…,-2), (-1,-1,…,-1), (0,0…,0), (1,1,…,1) 
NONDIA function (-2,-2,…,-2), (-1,-1,…,-1), (0,0…,0), (1,1,…,1) 
Ext. Tridiagonal 1 function (1,1,…,1), (5,5,…,5), (10,10…,10),(15,15,…,15) 
DQDRTIC function (-1,-1,…,-1), (1,1,…,1), (2,2…,2), (3,3,…,3) 
Diagonal 4 function (1,1,…,1), (5,5,…,5), (10,10…,10),(15,15,…,15) 

Raydan 2 function  (1,1,…,1), (5,5,…,5), (10,10…,10),(15,15,…,15) 

Ext. DENSCHNB function (1,1,…,1), (5,5,…,5), (10,10…,10),(15,15,…,15) 

A Quadratic function QF2 (1,1,…,1), (5,5,…,5), (10,10…,10),(15,15,…,15) 

Zettl function (1,1,…,1), (5,5,…,5), (10,10…,10),(15,15,…,15) 

Extended Cliff (1,1,…,1), (5,5,…,5), (10,10…,10),(15,15,…,15) 

Ext. Powell function (1,1,…,1), (5,5,…,5), (10,10…,10),(15,15,…,15) 

Generalized Quartic GQ1 function (1,1,…,1), (5,5,…,5), (10,10…,10),(15,15,…,15) 

Ext. Block Diagonal BD1 function (1,1,…,1), (5,5,…,5), (10,10…,10),(15,15,…,15) 
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Fig. 1: Performance profile based on the number of iteration 
 

 
 

Fig. 2: Performance profile based on the CPU time 
 

 
 

Fig. 3: Extended Beale function in 3D 
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And the second function called 

Perturbed quadratic function: 
 

2

1

2

1
100

)( i

n

i

n

i

i x
i

xxf 
















  

 
Initial points: (0.5, 0.5, …, 0.5) 

This function has a smooth curve, look like dish shape 

and has a minimum value at x* = (0,0) and the function 

value is f(x*) = 0. where lies at the bottom for two variable 

functions (Fig. 4 for a three-dimensional graph). 

Moreover we present another strong comparison 

between ATAZ and CG-Descent is given with benchmark 

functions in Table 2. The numerical results in Fig. 5, 6 and 7 

show that the new modification ATAZ is better than 

CG-Descent in term of number of iterations, number of 

function evaluations and CPU time. The test functions can 

be downloaded from (Bongartz et al., 1995). 
 

 
 

Fig. 4: Perturbed Quadratic function in 3D 

 

 

 
Fig. 5: Performance profile based on the number of iteration 
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Fig. 6: Performance profile based on the function evaluation 
 

 
 

Fig. 7: Performance profile based on CPU time 
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Table 2: A list of problem functions 

  ATAZ   CG-Descent  

  ------------------------------------------------------- ------------------------------------------------------- 

   No. function   No. function 

function Dimension  No. iteration evaluation CPU time No. iteration  evaluation  CPU time 

AKIVA 2 8 20 0.02 10 21 0.02 

ALLINITU 4 9 25 0.02 12 29 0.02 

ARGLINA 200 1 3 0.02 1 3 0.02 

ARWHEAD 200 6 17 0.02 7 15 0.02 

BARD 3 12 32 0.02 16 33 0.02 

BEALE 2 11 33 0.02 15 31 0.02 

BIGGS6 6 24 64 0.02 27 57 0.02 

BOX3 3 10 23 0.02 11 24 0.02 

BRKMCC 2 5 11 0.02 5 11 0.02 

BROWNAL 200 9 22 0.02 9 25 0.02 

BROWNBS 2 10 24 0.02 13 26 0.02 

BROWNDEN 4 16 38 0.02 16 31 0.02 

CHAINWOO 4000 352 682 0.8 318 619 0.866 

CHNROSNB 50 269 549 0.02 287 564 0.02 

CLIFF 2 10 46 0.02 18 70 0.02 

CUBE 2 17 48 0.02 32 77 0.02 

CURLY10 10000 52849 72728 197 47808 67294 173.7 

CURLY20 10000 79446 102981 437 66587 89245 383.94 

CURLY30 10000 81281 104558 644 79030 102516 639.63 

DECONVU 63 390 806 2.00E-02 400 801 2.00E-02 

DENSCHNA 2 6 16 0.02 9 19 0.02 

DENSCHNB 2 6 18 0.02 7 15 0.02 

DENSCHNC 2 11 36 0.02 12 26 0.02 

DENSCHND 3 14 46 0.02 47 98 0.02 

DENSCHNE 3 12 43 0.02 18 49 0.02 

DENSCHNF 2 9 31 0.02 8 17 0.02 

DIXMAANA 3000 6 16 0.02 7 15 0.02 

DIXMAANB 3000 6 15 0.02 6 13 0.02 

DIXMAANC 3000 6 14 0.02 6 13 0.02 

DIXMAAND 3000 6 15 0.02 7 15 0.02 

DIXMAANE 3000 13 31 0.23 222 239 0.33 

DIXMAANF 3000 17 39 0.02 161 323 0.13 

DIXMAANH 3000 44 103 0.08 173 347 0.22 

DIXMAANJ 3000 415 494 0.52 327 655 0.36 

DIXON3DQ 10000 10000 10007 19.12 10000 10007 19.12 

DJTL 2 75 1163 0.02 82 917 0.02 

DQDRTIC 5000 5 11 0.02 5 11 0.02 

DQRTIC 5000 15 32 0.01 17 37 0.03 

EDENSCH 2000 26 59 0.08 26 52 0.03 

EG2 1000 3 13 0.02 5 11 0.02 

EIGENALS 2550 9111 16048 164 10083 18020 178.36 

ENGVAL1 5000 24 47 0.08 27 50 0.06 

ENGVAL2 3 26 73 0.02 26 61 0.02 

EXPFIT 2 9 29 0.02 13 29 0.02 

EXTROSNB 1000 23 71 0.8 3808 7759 1.25 

FLETCBV2 5000 1 1 0.02 1 1 0.02 

FLETCHCR 1000 252 497 0.03 152 290 0.05 

FMINSRF2 5625 23 83 1.70E-01 346 693 1.09E+00 

FMINSURF 5625 27 86 0.16 473 947 1.51 

GENHUMPS 5000 5740 15736 26 6475 12964 20.11 

GENROSE 500 1376 2820 0.28 1078 2167 0.17 

GROWTHLS 3 109 431 0.02 156 456 0.02 

GULF 3 33 95 0.02 37 84 0.02 

HAIRY 2 17 82 0.02 36 99 0.02 

HATFLDD 3 17 49 0.02 20 43 0.02 

HATFLDE 3 13 37 0.02 30 72 0.02 

HATFLDFL 3 21 68 0.02 39 92 0.02 

HEART6LS 6 375 1137 0.02 684 1576 0.02 

HEART8LS 8 253 657 0.02 249 524 0.02 

HELIX 3 23 60 0.02 23 49 0.02 

HIELOW 3 13 30 0.03 14 30 0.02 

HILBERTA 2 2 5 0.02 2 5 0.02 

HILBERTB 10 4 9 0.02 4 9 0.02 
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Table 2: Continue 

HIMMELBB 2 4 18 0.02 10 28 0.02 

HIMMELBF 4 23 59 0.02 26 60 0.02 

HIMMELBG 2 7 22 0.02 8 20 0.02 

HIMMELBH 2 5 13 0.02 7 16 0.02 

HUMPS 2 45 223 0.02 52 186 0.02 

JENSMP 2 12 47 0.02 15 33 0.02 

KOWOSB 4 16 46 0.02 17 39 0.02 

LIARWHD 5000 19 50 0.05 21 45 0.03 

LOGHAIRY 2 26 196 0.02 27 81 0.02 

MANCINO 100 10 21 0.08 11 23 0.08 

MARATOSB 2 589 2885 0.02 1145 3657 0.02 

MEXHAT 2 14 59 0.02 20 56 0.02 

MOREBV 5000 25 102 0.13 161 168 0.41 

NCB20B 500 2044 2288 31 2035 4694 46.36 

NCB20 5010 303 747 4.17 879 1511 11.83 

NONCVXU2 5000 43 81 0.17 6610 12833 15.89 

NONDIA 5000 7 25 0.02 7 25 0.03 

NONDQUAR 5000 66 216 0.17 1942 3888 2.45 

OSBORNEA 5 82 230 0.02 94 213 0.02 

OSBORNEB 11 57 134 0.02 62 127 0.02 

OSCIPATH 10 295029 781729 2.24 310990 670953 2.08 

PALMER1C 8 12 27 0.02 11 26 0.02 

PALMER1D 7 10 24 0.02 11 25 0.02 

PALMER2C 8 11 21 0.02 11 21 0.02 

PALMER3C 8 11 21 0.02 11 20 0.02 

PALMER4C 8 11 21 0.02 11 20 0.02 

PALMER5C 6 6 13 0.02 6 13 0.02 

PALMER6C 8 11 24 0.02 11 24 0.02 

PALMER7C 8 11 20 0.02 11 20 0.02 

PALMER8C 8 11 19 0.02 11 18 0.02 

PENALTY1 1000 14 51 0.02 28 69 0.02 

PENALTY2 200 202 238 0.03 191 221 0.05 

PENALTY3 200 36 102 0.58 99 285 1.78 

POWELLSG 5000 28 70 0.01 26 53 0.02 

POWER 10000 360 736 0.63 372 754 0.76 

QUARTC 5000 15 32 0.02 17 37 0.03 

ROSENBR 2 28 84 0.02 34 77 0.02 

S308 2 7 21 0.02 8 19 0.02 

SCHMVETT 5000 41 72 0.19 43 73 0.23 

SENSORS 100 27 73 0.39 21 50 0.25 

SINEVAL 2 46 181 0.02 64 144 0.02 

SINQUAD 5000 14 45 0.08 14 40 0.09 

SISSER 2 5 19 0.02 6 18 0.02 

SNAIL 2 61 251 0.02 100 230 0.02 

SPARSINE 5000 22306 22552 86 18358 18647 73 

SROSENBR 5000 9 23 0.02 11 23 0.02 

STRATEC 10 170 419 6.22 462 1043 19.98 

TESTQUAD 5000 1580 1587 1.34E+00 1577 1584 1.52E+00 

TOINTGOR 50 118 215 0.02 135 233 0.02 

TOINTGSS 5000 4 9 0.02 4 9 0.02 

TOINTPSP 50 120 262 0.02 143 279 0.02 

TOINTQOR 50 29 36 0.02 29 36 0.02 

TQUARTIC 5000 11 41 0.03 14 40 0.03 

TRIDIA 5000 783 790 0.91 782 789 0.84 

VARDIM 200 9 20 0.02 11 25 0.02 

VAREIGVL 50 24 54 0.02 23 47 0.02 

VIBRBEAM 8 98 255 0.02 138 323 0.02 

WATSON 12 58 219 0.02 49 102 0.02 

WOODS 4000 24 61 0.03 22 51 0.06 

YFITU 3 68 208 0.02 84 197 0.02 

ZANGWIL2 2 1 3 0.02 1 3 0.02 
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Conclusion 

In this study, we proposed a new modification of 

conjugate gradient method  ATAZ

kd  with restart condition 

is presented. In addition, new restart criterion proposed for 

FR CG method. Our numerical results had shown that the 

new coefficients are better than other conventional CG 

methods. Furthermore the efficiency of the FR method 
improved substantially when the new restart criterion is used.  
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