
 

 
 © 2021 Sikha Bagui, Debarghya Nandi, Subhash Bagui and Robert Jamie White. This open access article is distributed 

under a Creative Commons Attribution (CC-BY) 4.0 license. 

Journal of Computer Science 

 

 

Original Research Paper 

Machine Learning and Deep Learning for Phishing Email 

Classification using One-Hot Encoding 
 

1*Sikha Bagui, 2Debarghya Nandi, 3Subhash Bagui and 4Robert Jamie White 

 
1Department of Computer Science, The University of West Florida, United States  
2Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, United States 
3Department of Mathematics and Statistics, University of West Florida, United States 
4AppRiver, Pensacola, FL, United States 

 
Article history  
Received: 01-05-2021 
Revised: 24-06-2021 
Accepted: 28-06-2021 
 
Corresponding Author: 
Sikha Bagui 
Department of Computer 
Science, The University of 
West Florida, United States 
Email: bagui@uwf.edu 

Abstract: Representation of text is a significant task in Natural Language 
Processing (NLP) and in recent years Deep Learning (DL) and Machine 
Learning (ML) have been widely used in various NLP tasks like topic 
classification, sentiment analysis and language translation. Until very 
recently, little work has been devoted to semantic analysis in phishing detection 
or phishing email detection. The novelty of this study is in using deep semantic 
analysis to capture inherent characteristics of the text body. One-hot encoding 
was used with DL and ML techniques to classify emails as phishing or non-
phishing. A comparison of various parameters and hyperparameters was 
performed for DL. The results of various ML models, Naïve Bayes, SVM, 
Decision Tree, as well as DL models, Convolutional Neural Networks (CNN) 
and Long Short Term Memory (LSTM), were presented. The DL models 
performed better than the ML models in terms of accuracy, but the ML models 
performed better than the DL models in terms of computation time. CNN with 
Word Embedding performed the best in terms of accuracy (96.34%), 
demonstrating the effectiveness of semantic analysis in phishing email detection. 
 
Keywords: One-Hot Encoding, Phishing Email Classification, Deep Learning, 
Machine Learning, Convolutional Neural Networks, Long Short Term Memory 

 
Introduction 

Phishing email attacks are intelligently crafted social 
engineering email attacks in which victims are conned by 
email to websites that impersonate legitimate sites. 
Phishing websites are generally well camouflaged. 
Victims of phishing email attacks perceive these sites to 
be associated with trusted companies such as Amazon or 
Google and hence are tricked into logging into such sites 
and sharing sensitive information. An estimated 269 
billion emails are sent every day (Danny, 2020), with 
about one in every 2,000 being a phishing email, totaling 
135 million phishing attacks attempted every day. Though 
the exact cost is very difficult to estimate, FBI has 
suggested that the impact of phishing attacks could be 
costing US businesses somewhere around $5 billion a 
year1. The Anti-Phishing Working Group (APWG)2 
reports that the most targeted sector is off course the 
payment sector (39.4%), webmail being the second 
highest (18.7%) and financial institutions being the third 
most targeted (14.2%) (APWG, 2021). Since phishing 
attacks affect millions of internet users (individuals as 

well as companies) and since APWG is reporting a 
continuous increase in unique phishing sites, it is 
becoming extremely important to seek ways to secure 
ourselves. Existing defense mechanisms need to be 
greatly improved (Behdad et al., 2012). Although many 
anti-phishing tools and techniques have been developed, 
phishing is still difficult to effectively defend, which puts 
the individual as well as organizations at risk (Fette et al., 
2007). Behdad et al. (2012) points out that improving the 
defense mechanism is not enough and that systems should 
also be forward looking and intelligent to be able to identify 
fraudulent activities and prevent them from occurring.  

Defense against phishing attacks is one of the hardest 
confronts faced (Thakur and Kaur, 2016). Though many 
email filters have been developed for spam emails, very 
few phishing email filters have been developed (Zhang et al., 
2017). Of the phishing email filters that have been 
developed (Prakash et al., 2010; Cao et al., 2008; Ma et al., 
2009a; Bergholz et al., 2010), ML filters (Bergholz et al., 
2010) have achieved the best results so far.  

Several traditional approaches for defense against 
phishing email attacks use various features that are static 
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in nature. Static features are not robust enough to handle 
new and emerging phishing patterns. Fraudsters are not 
static in their activities and are constantly changing the 
mode of operation to stay undetected. This motivates 
researchers into seeking effective techniques that can 
handle both known and emerging fraudulent patterns, 
hence the focus on machine learning algorithms 
(Akinyelu and Adewumi, 2014). 

The novelty of this study is in applying deep semantic 
analysis with Deep Learning (DL) and Machine Learning 
(ML) to capture inherent characteristics of email text to 
classify emails as phishing or non-phishing. Until very 
recently, little work has been devoted to semantic analysis 
in phishing detection (Zhang et al., 2017), let alone 
phishing email detection. Representation of text is a 
significant task in Natural Language Processing (NLP) 
and in recent years DL has been widely used in various 
NLP tasks like topic classification, sentiment analysis and 
language translation (Zhang et al., 2017; LeCun et al., 
2015). Word representations in NLP can be categorized 
into four classes: One-hot representations, distributional 
representations, clustering based word representations and 
distributed representations (Zhang et al., 2017; Lai et al., 
2016). This study focuses on one-hot representations. 
Hence in this study, semantic analysis using one-hot 
encoding was used to preprocess the data, before using 
DL and ML techniques to classify emails. A comparison 
of the parameters and hyperparameters was performed for 
DL, Convolutional Neural Networks (CNN) and Long 
Short Term Memory (LSTM). The results of various ML 
algorithms, Naïve Bayes, SVM, Decision Tree and DL 
algorithms, CNN and LSTM, were presented in terms of 
accuracy and computation time. A comparison was also 
performed using CNN with Word Embedding, 
demonstrating the usefulness of semantic analysis using 
Word Embedding versus one-hot encoding. 

The rest of this study is organized as follows. Section two 
presents the related works. Section 3 presents an overview of 
the methodology used. Sections four and five present the DL 
and ML algorithms respectively and sections six and seven 
present the results and conclusions respectively. 

Related Works 

Since phishing emails are becoming a significant 
threat, there are several recent works on phishing email 
detection. Yang et al. (2019) looked at phishing email 
detection based on 18 hybrid features including email-
header structure, email-URL information and email-script 
function. SVM was used for classification and a 
classification accuracy of 95% was reached. Rawal et al. 
(2017) compared various classifiers, SVM, Random 
Forest, Logistic Regression, Naïve Bayes and Voted 
Perceptron, to classify emails as phishing or ham and 
received a maximum accuracy of 99.87%. Yasin and 
Abuhasan (2016) proposed an intelligent classification 

model of phishing email detection using a concept of 
phishing term weighting, which evaluates the weights 
of phishing emails in each email. Text stemming and 
WordNet ontology was also used. They achieve an 
accuracy of 99.1% using Random Forest and 98.4% 
using J48. Rastenis et al. (2021) presents a solution 
based on the email message body using text 
classification, classifying emails into spam and 
phishing emails. Fang et al. (2019) presented a 
recurrent CNN model with multilevel vectors and 
proposed a new phishing email detection model, 
Themis. Themis was used to model emails as email 
header, email body, character level and word level 
simultaneously. They reached a very high classification 
accuracy of 99.84%. Verma et al. (2020) looked at the 
classification of phishing emails using NLP.  

The rest of this section focuses on works related to 
other techniques used in detecting phishing emails. These 
works can be divided into four broad categories: (i) Works 
that used black-list phishing detection methods; (ii) works 
that used heuristic phishing detection methods; (iii) works 
that used visual phishing detection methods; and (iv) 
works that used machine learning approaches.  

Works that used Blacklist-based Phishing Detection 

Methods 

The blacklist approach depends on building and 
maintaining a list of phishing websites. Though blacklist-
based methods are easy to implement, they have the 
obvious deficiency of not being able to detect zero-hour 
phishing attacks, that is, attacks that have never happened 
before (Zhang et al., 2017).  

Works that used Heuristic Phishing Detection 

Methods 

Heuristic phishing detection identifies unknown web 
pages using features extracted from phishing attacks, but 
heuristic phishing rules are difficult to update because the 
rules are derived from statistical features or manual 
summaries (Zhang et al., 2017). 

Yu et al. (2009) and Zhang et al. (2007) developed 
heuristic-based phishing detection systems achieving 
relatively low False Positive (FP) and False Negative 
(FN) rates. Prakash et al. (2010) used a combination of 
blacklist and heuristic methods to achieve low levels of 
FP and FN rates. 

Works that used Visual Similarity Methods 

Cao et al. (2008) and Bergholz et al. (2010) made use 
of features involving processing of images (for example, 
a company logo, copyright and other visual elements) to 
determine visual similarity, but this leads to higher run 
time and space needs. 
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Works that used Machine Learning Based Phishing 
Detection Methods  

The key point of ML based phishing detection 
methods is to capture inherent patterns of phishing sites, 
hence the use of features. Basnet et al. (2008) used 
structural features in phishing emails, like the HTML 
format, IP-based address, age of domain name, number of 
domains, number of sub-domains, presence of Java Script, 
presence of form tags, number of links, URL based image 
source, matching domains and keywords, to classify 
emails using ML methods like SVM, neural networks, 
Self Organizing Maps (SOMs), K-means and ROC 
curves. Using k-means clustering, they achieved an 
accuracy of around 90%. 

Chandrasekaran et al. (2006) extracted a total of 25 
structural features for the classification of emails using 
SVM. They achieved 95% accuracy. Sarju and Thomas 
(2014) also used structural properties to detect spam 
emails, using Naïve Bayes, Adaboost and Random Forest 
for classification and comparison. Using a majority voting 
algorithm (using J48, SVM and IB1), they achieved a high 
accuracy of 99.8%. Bergholz et al. (2008) determined a 
feature set and used Random Forest and SVM to measure 
accuracy of detection. Ma et al. (2009b) extracted 43 
features and used six different classifiers and found 
Random Forest outperforming the rest. Akinyelu and 
Adewumi (2014) also used a group of 15 features to 
classify emails using Random Forest. Fette et al. (2007) 
made use of ML techniques to receive a very low False 
Positive and False Negative rate. 

Blum et al. (2010; Ma et al., 2009a; 2009b; Feroz and 
Mengel, 2014; 2015) proposed URL-based phishing 
detection methods, claiming accuracy of over 90%, but 
such measures turn out to be unstable since URLs can be 
manipulated easily. Xiang et al. (2011) proposed an 
improved URL-based method, but this method was overly 
dependent on third-party services.  

Zhang et al. (2017) applied semantic analysis in 
phishing detection. This study focused on phishing 
websites rather than phishing emails and extracted various 
semantic features through word2vec to better describe the 
features of phishing sites. The authors achieved very low 
error rates and though semantic features analyzed with 
ML algorithms do a good job of analyzing phishing 
websites, little attention had been paid to semantic 
analysis before this study.  

Eckhardt and Bagui (2021) used deep neural networks, 
Long Short Term Memory (LSTM) and Convolutional 
Neural Networks (CNN) for phishing email classification. 
Though this study performed comparably to our method, 
this study did not take into account the processing time. 

Though many of the above works have achieved high 
accuracy, none of them have analyzed the run time 
component, which we also do in this study. So, the main 
contributions of this study are: 

 Determining if one-hot encoding is a useful pre-
processing measure for phishing email classification 

 Determining if Word Embedding is useful in 
phishing email classification (though this was only 
done with CNN) 

 Using one-hot encoding, determining if ML or DL 
models are better in phishing-email classification 

 Determining which parameters and hyperparameters 
would give better results in DL 

 Determining which ML or DL models perform the best 
in terms of computation time using one hot-encoding 

 

Methodology 

Data 

For this study, an email dataset, collected from App 
River, a company headquartered in Pensacola, Florida, USA, 
that offers secure cloud-based cybersecurity solutions, was 
used. This dataset contained 18,366 labelled emails, of which 
3,416 were phishing emails and 14,950 were regular emails. 
The emails were collected across US industries - insurance, 
law, medical, hotel, school, banking and real estate 
marketing. Each of these emails contained a subject as well 
as body text and the number of users that this email was 
sent to. This study focuses on analyzing the text content 
of the emails and classifying them as to whether they 
were phishing emails or not. 70% of the data was used 
for training and the rest for testing.  

Data Preprocessing: One-hot Encoding  

ML algorithms cannot operate directly on textual data. 
Data has to be numeric. Hence, in this study, for data 
preprocessing, the email text was encoded as one-hot 
vectors. One-hot encoding uses a sparse vector in which 
one element is set to 1 and all other elements are set to 0 
and is a commonly used technique to represent strings that 
have a finite set of values. Using one-hot encoding, high 
cardinality will lead to high dimensional feature vectors. 
But since one-hot encoding is simple, it is a widely-used 
encoding method (Davis, 2010; Cerda et al., 2018). One-
hot encoding is effective for sentences or tweets that do 
not contain many repeated elements and is usually applied 
to models that have good smoothing properties. One-hot 
encoding is commonly used in neural networks, whose 
activation functions require input to be in the discrete 
range of [0,1] or [-1,1] (O’REILLY, 2021). 

A one-hot vector is a 1  N matrix (vector) consisting 
of 0s in all cells of the vector with the exception of a single 
1 in a cell used to uniquely identify a word. One hot 
encoding allows for more expressive representation of 
categorical data. A sample word range of [good, good, 
bad] would be represented in 3 such encodings [0, 0, 1], 
as shown in Table 1.
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Fig. 1: Experimental flow 
 
Table 1: One-hot encoding 

1 0 
1 0 
0 1 

 
In this study, the email text was cleaned, lemmatized 

and represented in the form of one-hot encoded vectors. 
Lemmatization is the process of grouping together the 
various forms of a word so that they can be analyzed as a 
single item (Allahyari et al., 2017).  

Typically the length of the vector would depend on the 
total number of unique tokens. But, emails are of varying 
lengths and this is difficult to feed into the machine 
learner or neural network. Therefore, an arbitrary length 
of 100 was selected for this study and padding was done 
to convert all vectors to a fixed length. Sequences shorter 
than that length were padded with a pre-fixed value at the 
end and sequences longer than the threshold were 
truncated so that they would fit the desired length. These 
matrices were fed into the machine learner or neural 
network where these vectors were mapped to a low 
dimensional space. In the neural network, this low 
dimensional space is represented by a hidden layer where 
the number of words is lower than the vocabulary size.  

Experimental Flow 

Figure 1 presents the experimental flow for this study.  

Deep Learning Algorithms  

 Two DL Algorithms, Long Short Term Memory 
(LSTM) and Convolutional Neural Networks (CNN) were 
used. For these algorithms, experimentation was 
performed using the keras python library. Keras is built 
on the top of Tensor flow designed for fast testing of deep 
neural networks.  

Long Short Term Memory 

LSTM is an emerging and scalable model for learning 
sequential data (Palangi et al., 2016; Greff et al., 2017). 
LSTM has shown to be successful in sequence prediction 
(Adi et al., 2016), sequence labeling (Sak and Beaufays, 
2014), syntactic structure (Linzen et al., 2016) and long 
range semantic dependencies (He et al., 2017). LSTM’s 
have an edge over CNN and Recurrent Neural Networks 
(RNN) in many ways (Otte et al., 2014). RNNs are 
effective when working with short term dependencies, but 
fail to recognize context or chronologically widely spaced 
input events or long-term dependencies. RNNs cause the 
problem of the vanishing gradient. The vanishing gradient 
problem takes place when the weights in the matrix are so 
small that learning either becomes very slow or stops 
altogether. Conversely, if the weights in this matrix are 
large, it can lead to a situation where the gradient is so 
large that it can cause learning to diverge and this is called 
the exploding gradient problem. This mainly motivates the 
use of the LSTM model which introduces a new structure 
called the memory cell, protected from outer influences 
through surrounding gates.  

The memory cell works with three dependencies: The 
previous cell state (that is, the information that was 
present in the memory after the previous time step), 
previous hidden state (the output of the previous cell) and 
input in the current step (new information that is being fed 
in). The memory cell performs the function of retaining 
values for periods of time. This is achieved by applying 
the no activation function on the memory cell unit, which 
in turn does not cause the gradient diminishing factor over 
time (Greff et al., 2017). 

The memory cell is composed of four elements: An 
input gate, a neuron with a self-recurrent connection, a 
forget gate and an output gate. The self-recurrent 
connection of this memory cell has a weight of 1.0 that 

Emails 
(raw data) 

Email body (text) 
extracted into csv file 

Email text is cleaned 
and lemmatized 

Cleaned + lemmatized 
email text is put into one-

hot vectors of size 100 

Classification is 
performed 

Vectors (matrices) are fed 
into Machine Learner or 

Deep Learner 

If vector size is not 
100, vector is padded 
to convert vector to 
fixed length of 100; 

else vector goes 
straight to next step 
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prevents any outside interference, hence the state of the 
memory cell can remain constant from one time step to 
another (Srivastava, 2017). The gates use a logistic 
function to control the flow of data into and out of a cell. An 
input gate controls the extent to which new values flow into 
the cell, the forget gate controls the extent to which old values 
are retained in the cell and the output gate is the extent to 
which the value in the function is used to compute the output 
activation of the LSTM unit (Greff et al., 2017). 

Architecture of our LSTM Model 

Figure 2 presents the base LSTM model used in this 
study. The model consists of 2 LSTM layers with hidden 
nodes, followed by a dense layer of 1 node and a sigmoid 
activation layer. 

Convolutional Neural Networks 

CNN, a class of deep neural networks, has been widely 
used in classification in NLP. CNN consists of some 
combination of convolutional layers, pooling layers and a 
fully connected layer. The convolutional and pooling 
layers act as feature extractors and the fully connected 
layer acts as a classifier. One of the main advantages of 
CNN is that training can be performed without the need 
for engineered features. It is designed to effectively model 
multidimensional input data. It can learn intrinsic features 
in the raw dataset through the many layered structures 
which represent the different levels of abstraction of 
features. The layers are briefly explained below. 

Convolutional Layer 

In this study, the input is emails, represented as one-
hot vectors and convolutions are used over the input layer. 
A convolutionary layer consists of multiple neurons or 
feature maps. Filters slide over rows of the matrix 
(words), performing convolutions on the one-hot vector 
and generating feature maps. Since all neurons in the 
feature map scan the same feature of the previous layer 
but from different locations, different feature maps detect 
different types of features (Choong and Lee, 2017). 

Nonlinearity 

The convolutional layer is typically followed by the 
non-linear activation function. The three most commonly 
used activation functions are sigmoid, tanh and Rectified 
Linear Unit (ReLU). ReLU(x) = max(0, input). ReLU is 
the most commonly used because of the non-vanishing 
gradient in the positive region and faster convergence 
compared to the other two activation functions 
(Akhtyamova et al., 2017). ReLU is an element wise 
operation (applied per pixel) and replaces all negative 
pixel values in the feature map by zero 
(https://ujjwalkarn.me/2016/08/11/intuitive-
explanation-convnets/). 

Pooling 

The pooling layers are typically applied after the 
convolutional layers. Pooling subsamples the input and 
this is commonly done by taking an average or maximum 
of small blocks of data, hence pooling reduces the spatial 
size of the representation. It also reduces the 
dimensionality of the output and provides a fixed size 
output matrix, which is typically required for 
classification. Pooling also controls overfitting. 

Fully Connected Layer 

Fully Connected means that every neuron in the 
previous layer is connected to every neuron in the next 
layer (https://ujjwalkarn.me/2016/08/11/intuitive-
explanation-convnets/). After several convolutional and 
max-pooling layers, the outputs of these layers can be 
treated as new data representation. This can be flattened 
into a one-dimensional vector and used for classification. 
This layer is used for classification. 

Kim (2014) used CNN to perform sentiment analysis 
and topic categorization. Johnson and Zhang (2014) 
applied convolutions directly to one-hot vectors, using a pre-
training model that used word vectors like word2vec and 
GloVe. Johnson and Zhang (2015) extended Johnson and 
Zhang (2014)’s model with additional unsupervised region 
embeddings. Zhang and Wallace (2015) studied the effects 
of varying hyperparameters. Gao et al. (2019) and Shen et al. 
(2014) dealt with semantic representations of sentences.  

Architecture of our CNN Model 

Figure 3 presents the architecture of the CNN model 
used in this study. The input is one-hot vectors. The 
architecture consists of two convolutional_1D layers. The 
first convolutional layer has a filter size of 5 with a stride 
of one, with a total of 32 filters and the second 
convolutional layer has a filter size of 2 with a stride of 
one and the number of filters were increased to 64. Feature 
maps have been set to 4 in the first convolution layer and 
8 in the second convolution layer and, the Relu activation 
function was used in the convolutional layers. 

Followed by each convolution_1D layer is a 
maxpooling_1D layer. The max-pooling_ID layer 
performs down sampling using a spatial size of 2, with 
default stride. Max-pooling is the concept of taking 
windowed samples from the output of a convolutional 
layer and subsampling them to create a single output. 
The subsampling reduces the dimensionality of the 
input after each layer. 

Followed by this is a fully connected dense layer with 
a single hidden node. The output of the previous layer is 
flattened to a [None by 1] shape. The Sigmoid activation 
function was used in the dense connected layer. This 
produces a total of 149 trainable parameters.  
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Fig. 2: Architecture of LSTM model 
 

 
 

Fig. 3: Architecture of CNN model 

Input layer 
Input: (none, 80) 

Output: (none, 10,8) 

Input: (none, 10,8) 

Output: (none, 10,4) 
Lstm_1: LSTM 

Input: (none, 10,4) 

Output: (none, 10,4) 

Lstm_2: LSTM 

Flatten_1: Flatten Output: (none, 40) 

Input: (none, 40) 

Output: (none, 1) 
Dense_1: 

Input layer 
Input: (none, 80) 

Output: (none, 10,8) 

Dense_1 

conv1d_1 
Input: (none, 10,8) 

Output: (none, 9,4) 

max_pooling1d_1 
Input: (none, 9,4) 

Output: (none, 4,4) 

conv1d_2 
Output: (none, 3,8) 

Input: (none, 4,4) 

max_pooling
1d_2 Output: (none, 1,8) 

Input: (none, 3,8) 

Flatten_1: Flatten Output: (none, 8) 

Output: (none, 1) 
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Fig. 4: Architecture of CNN with Word Embedding 
 
Table 2: Word embedding semantic representation 
Word This  is a sample CBOW example 
sample 0 0 1 0 0 0 
sample 0 0  0 0 1 0 
 
CNN with Word Embedding 

CNN was also applied with Word Embedding. Word 
Embedding is a technique where individual words are 
represented as sparse vectors based on the context 
window and then mapped to a low dimensional vector 
space. Due to its inability to represent idiomatic phrases, 
vector representations of individual words are used to 
make the model more expressive. Continuous Bag of 
Words (CBOW) is a popular form of Word Embedding. 
Using Word Embedding, words with similar meaning will 
have similar representation. To understand the semantic 
representation of words in the email text, that is, the 
representation of the context of the word, CBOW, was 
used. A context may be a single word or a group of words 
based on the context window. Each word, represented in 
the form of one-hot encoding, can have multiple data 
points as context, as shown in Table 2. In Table 2, 
“Sample” in the text “This is a sample CBOW example” 
would have two contexts with a 1-word context window. 
Another example demonstrating semantic representation 
would be, in the sentence “Taj Mahal in India is one of the 
seven wonders of the world,” “Taj Mahal” has a high 
probability of having a semantic similarity with ‘India’ rather 
than any other country, because they usually appear in the 
same context. This allows it to distinguish words with 
different meanings, for example ‘crane’ (a bird; an 
instrument used to lift heavy objects; to crane your neck etc.) 

Architecture of our CNN with Word Embedding 

Model 

The CNN architecture with Word Embedding used in 
this study is represented in Fig. 4. This consists of an input 
layer, an embedding layer with hidden nodes and finally 
a dense layer with a single hidden node. A sigmoid 
activation function is used in the final layer.  

Machine Learning Models  

The machine learning algorithms, Naïve Bayes, SVM 
and Decision Tree, that have been previously used in text 
classification, were used for comparison with the DL 
methods. These algorithms were implemented using 
(https://www.cs.waikato.ac.nz/ml/weka/). 

Naive Bayes 

The Naïve Bayes classifier assumes class 
independence. That is, an attribute value on a given 
class is independent of the values of the other attributes 
(Han et al., 2011). In a sense, this simplifies the 
computations involved and being relatively robust, 
easy to implement, fast and accurate, naïve Bayes 
classifiers have been used in many different fields 
including text classification (Zhang and Gao, 2011; 
Gupta and Lehal, 2009) and sentiment analysis 
(Vadivukarassi et al., 2017). Vadivukarassi et al. 
(2017) used an auxiliary feature to reclassify the text 
space for classification. 

Input layer 

Input: (none, 80) 

Output: (none, 10,8) 

Embedding_1: Embedding 

Input: (none, 10,8) 

Output: (none, 80,4) 

Flatten_1: Flatten Output: (none, 320) 

Output: (none, 1) Dense_1: Dense 
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Support Vector Machines 

Support Vector Machines (SVM) is a supervised 
learning model widely used for classification, known to be 
efficient in high dimensional spaces. Even with a small 
training set, SVM can provide high performance. Each 
sample is viewed as a data point in space. It constructs a 
hyperplane or a set of hyperplanes, which are used to 
categorize data into multiple classes. The larger the margin 
of separation, the lesser is the generalization error of the 
model. In some cases, the points are aligned in such a manner 
that it is physically impossible to separate them in space. In 
such cases, the points are mapped to a much higher 
dimension, thus increasing the scope for separation. 

With a training data set of the form (x1, y1), … , (xn, 
yn), each point is represented as a p-dimensional real 
vector. The “maximum margin hyperplane” divides the 
group of points xi into different class values so that the 
distance between the points in different segments and the 
hyperplane is maximized as much as possible. 

A hyperplane can be defined by the formula: ω x - b = 
0, where ω is the normal vector to the hyperplane. 

The parameter (b/ω) is the offset of the hyperplane 
from the origin.  

The primary aim is to reduce this function: 
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Many works have used SVM for text categorization 
(Joachims, 1998; Shin and Paek, 2018; Pilászy, 2005; 
Fatima and Srinivasu, 2017; Tong and Koller, 2001). SVM 
was used in this project because of the following SVM 
features (Joachims, 1998), which are applicable to our work: 
 
(i) SVM can handle high dimensional input space 
(ii) SVM does not need to remove irrelevant features 

through feature selection - it can use all the features, 
since in this case most of the features will contain 
some information 

(iii) SVM works well with sparse vectors 
(iv) Text categorization is linearly separable 
 

Decision Tree 

Decision Tree is a popular ML tool that uses a tree-like 
structure to represent all the chance events and their 
possible outcomes in different conditions. The advantages 
of decision tree are fast speed, relatively high accuracy 
and easily understood classification model. But, decision 
trees have a problem with high dimensional data, leading 
to low algorithm efficiency. Decision tree calculations are 
based on Information Gain and the attribute with the 
highest information gain is at the root of the tree, the 
attribute with the next highest information gain is at the 
next level of the tree and so forth. The leaves of the tree 
are the final decisions of the classifier (Han et al., 2011).  

Results and Discussion 

In this section, first we present an analysis of the hyper 
parameters. Then the results of the LSTM, CNN and CNN 
with Word Embedding are presented. Each of the results 
presented are an average of ten runs.  

Analysis of Hyper Parameters 

Proper estimation of hyperparameters is the key to 
optimizing any DL model. As pointed out in (Sarju and 
Thomas, 2014), selection of hyperparameters like 
context window, filter size, number of feature maps and 
pooling strategies, are completely dependent on the 
nature of the dataset. Plenty of trial runs were 
performed to come up with optimal values suited for 
the phishing dataset. The optimal values were: 

For LSTM 

The number of hidden nodes mattered the most. To 
determine the best accuracy, the number of hidden nodes 
was changed with each run. 

For CNN 

The optimum filter size (2), pool size (2), strides (1) 
and an activation function of ‘relu’ has been used for the 
convolution layers. Accuracy gradually improved with 
the increase in the number of feature maps. 

For CNN with Word Embedding 

The number of embedding nodes played a primary role 
in this accuracy. 

All DL models were compiled using the Adam 
Optimizer and a loss function of Binary Cross Entropy. 
Though Relu has been the most effective activation 
function because it does not suffer from the diminishing 
gradient problem, sigmoid was used for the end-Dense 
layer. It performed well for the binary data.  

Long Short Term Memory Results 

To determine the performance of the LSTM model, the 
number of hidden nodes were varied and accuracy was 
determined with and without dropouts. Dropout refers to 
removing a random selection of units (hidden as well as 
visible) in a network layer for a single gradient step. The 
more units dropped out, the stronger the regularization. 
Dropouts prevent overfitting. In the simplest case, each 
unit is retained with a fixed probability p independent of 
other units, where p can be chosen using a validation set 
or can simply be set at 0.5, which seems to be close to 
optimal for a wide range of networks and tasks. For input 
units, however, the optimal probability of retention is usually 
closer to 1 rather than to 0.5 (Srivastava et al., 2014). The 
LSTM experimental results are presented in Table 3. 
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Table 3: LSTM results 

Hidden_nodes Parameters Computation_time Accuracy (w/o dropout) Accuracy (with dropout) 
4 393 202.3 88.41 89.18 
8 1169 204.9 91.8 89.05 
16 3873 193.7 93.79 94.08 
32 13889 244.5 94.77 94.68 
64 52353 328.6 95.25 95.54 
128 203009 696.1 95.7 95.91 
Accuracy is defined as: (True Positives + True Negatives)/Total Number 
 

The highest accuracy was achieved without dropout at 
95.7% and with dropout at 95.91%, at 128 hidden nodes. 
The lowest computational time, however, was at 16 
hidden nodes, at 193.7 ms. LSTM generally performed 
better with dropouts. 

Convolutional Neural Network Results 

Proper estimation of hyperparameters is the key to 
optimizing a CNN model. Selection of hyperparameters 
like context window, filter size, number of feature maps and 
pooling strategies are dependent on the nature of the dataset. 
Tables 4-7 present experimentation results with various 
context window sizes, filter sizes, embedding window sizes 
and pooling sizes, using the baseline model. 

Baseline Model used 

One-hot-size = 100 
Filter Size = 5 
Pool Size = 2 
Activation Function = Relu 
Feature Maps = 32 
 
Base Model Structure used 

Embedding Layer -- Conv1D -- MaxPool1D -- 
Conv1D -- MaxPool1D -- Flatten -- Dense (1) 

A stride of one was used. Stride is how much the filter 
is shifted at each step. If the stride is 1, the filters overlap. 
A larger stride leads to fewer applications of the file and 
a smaller input size. From Tables 4-7, the following can 
be observed: 
 
 The filter size of 7 produces the best accuracy 
 Increasing the size of context window improves 

accuracy, but increasing it beyond a certain limit 
tends to increase computation time 

 Increasing the pool size up to a size of 4 increases the 
accuracy, after which the accuracy drops. 

 
Hence, for the final runs, varying the feature map sizes, a 

filter size of 7, context window of 100, embedding window 
of 80 and pooling size of 4 was used. The computation time 
and accuracy (with and without dropouts) was determined 
for various feature map sizes, as presented in Table 8. 

The lowest computation time of 46.9 ms was with 
feature map size of 4 with 149 parameters. The highest 

accuracy, both without and with dropouts, at 94.98% and 
95.97% respectively, was at feature map size of 64 with 
17,729 parameters. Using CNN with one-hot encoding, 
the accuracy did not generally improve with dropouts. 

Convolutional Neural Networks with Word 

Embedding 

Table 9 presents the accuracy of varying the 
embedding nodes, with and without dropouts when CNN 
was performed with Word Embedding. 

The lowest computation time of 45.7 ms was achieved 
with 4 Embedding Nodes and 721 parameters. The highest 
accuracy without dropout was at 96.1% with 32 embedding 
nodes and 5,761 parameters and at 96.34% with 64 nodes 
and 11,521 parameters. For CNN with Word Embedding, the 
accuracy generally improved slightly with dropouts.  

Comparison of the Machine Learners as well as 

Deep Learners 

Figure 5 graphically presents a comparison of the 
accuracy of the various models used for classification, 
Naïve Bayes, SVM, Decision Tree, LSTM, CNN and 
CNN with Word Embedding. One-hot encoding was 
used with the Naïve Bayes, SVM, Decision Tree, 
LSTM and CNN models. CNN with one-hot encoding 
achieved the highest classification accuracy of all the 
models using one-hot encoding, with an accuracy of 
95.97%. However, CNN with Word Embedding 
performed better than CNN with one-hot encoding, 
with the highest overall accuracy of 96.34%. 

Figure 6 presents the computation time taken for the 
various models. One-hot encoding was used to run Naïve 
Bayes, SVM, Decision Tree, LSTM and CNN. Naïve 
Bayes had the lowest computation time at 17.7 ms and 
LSTM had the highest computation time at 696.1 ms and, 
in this case CNN with Word Embedding did not perform 
particularly better. 

 
Table 4: Accuracy by context window 

Context window Accuracy (%) 
50 95.739 
70 96.27 
90 96.43 
110 96.048 
150 96.44 
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Table 5: Accuracy by filter size 

Filter size Accuracy (%) 
3 96.376 
5 96.522 
7 96.592 
9 95.81 
11 96.103 

 
Table 6: Accuracy by embedding layer nodes 
Embedding window Accuracy (%) 
10 95.95 
20 96.394 
30 96.667 
40 96.7 
80 97.3 
100 96.64 

 
Table 7: Accuracy by pooling size 

Pooling size Accuracy (%) 
2 96.44 
3 96.59 
4 96.9 
5 96.3 

 
Table 8: Computation time and accuracy by feature map size with and without dropouts 
Feature maps Parameters Computation_time Accuracy (w/o dropout) Accuracy (with dropout) 
4 149 46.9 85.25 81.6 
8 425 52.1 88.65 86.74 
16 1361 52.8 92.02 91.27 
32 4769 59.4 92.53 93.718 
64 17729 75.4 94.98 95.97 

 
Table 9: Computation time and accuracy by embedding nodes with and without dropouts 
Embedding nodes Parameters Computation_time Accuracy (w/o dropout) Accuracy (with dropout) 
4 721 45.7 94.75 95.41 
8 1441 49.8 95.5 95.68 
16 2881 53.5 95.99 96.048 
32 5761 73.7 96.1 96.23 
64 11521 102.9 96.01 96.34 

 

 
 

Fig. 5: Accuracy for the various models 
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Fig. 6: Computation time for the various models 

 

Conclusion  

A comparison of ML and DL models was performed 
using one-hot encoding for preprocessing the data. From 
an analysis of the hyperparameters, for the CNN model, 
the best model was obtained for a filter size of 7, context 
window of 100, embedding window of 80 and pooling 
size of 4. For LSTM, hidden nodes seemed to matter the 
most, hence the hidden nodes were varied to determine the 
best accuracy with and without dropouts. LSTM generally 
performed better with dropouts. But, for CNN with one-
hot encoding, the accuracy did not improve with dropouts, 
while for CNN with Word Embedding, the accuracy 
generally improved slightly with dropouts. Using one-hot 
encoding, CNN performed the best of all the models, with 
an accuracy of 95.97%. But CNN with Word Embedding 
performed better than CNN with one-hot encoding 
(96.34%). This demonstrates the power of semantic 
analysis in classifying phishing emails. As compared to 
previous works, these results are on the higher side, but an 
exact comparison may not be warranted since different 
techniques were used in each work. Moreover, none of the 
previous works analyzed the computation time, which 
was analyzed in this study in addition to accuracy.  

In terms of computation time, Naïve Bayes (with one-
hot encoding) performed the best at 17.1 ms. LSTM (with 
one hot encoding) performed very poorly in terms of 
computation time, though it’s accuracy was pretty close 
to CNN with one-hot encoding. Finally, the DL models 
performed better than the ML models in terms of 
accuracy, but the ML models performed better than the 
DL models in terms of computation time.  
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