

 © 2021 Sikha Bagui, Debarghya Nandi, Subhash Bagui and Robert Jamie White. This open access article is distributed

under a Creative Commons Attribution (CC-BY) 4.0 license.

Journal of Computer Science

Original Research Paper

Machine Learning and Deep Learning for Phishing Email

Classification using One-Hot Encoding

1*Sikha Bagui, 2Debarghya Nandi, 3Subhash Bagui and 4Robert Jamie White

1Department of Computer Science, The University of West Florida, United States
2Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, United States
3Department of Mathematics and Statistics, University of West Florida, United States
4AppRiver, Pensacola, FL, United States

Article history
Received: 01-05-2021
Revised: 24-06-2021
Accepted: 28-06-2021

Corresponding Author:
Sikha Bagui
Department of Computer
Science, The University of
West Florida, United States
Email: bagui@uwf.edu

Abstract: Representation of text is a significant task in Natural Language
Processing (NLP) and in recent years Deep Learning (DL) and Machine
Learning (ML) have been widely used in various NLP tasks like topic
classification, sentiment analysis and language translation. Until very
recently, little work has been devoted to semantic analysis in phishing detection
or phishing email detection. The novelty of this study is in using deep semantic
analysis to capture inherent characteristics of the text body. One-hot encoding
was used with DL and ML techniques to classify emails as phishing or non-
phishing. A comparison of various parameters and hyperparameters was
performed for DL. The results of various ML models, Naïve Bayes, SVM,
Decision Tree, as well as DL models, Convolutional Neural Networks (CNN)
and Long Short Term Memory (LSTM), were presented. The DL models
performed better than the ML models in terms of accuracy, but the ML models
performed better than the DL models in terms of computation time. CNN with
Word Embedding performed the best in terms of accuracy (96.34%),
demonstrating the effectiveness of semantic analysis in phishing email detection.

Keywords: One-Hot Encoding, Phishing Email Classification, Deep Learning,
Machine Learning, Convolutional Neural Networks, Long Short Term Memory

Introduction

Phishing email attacks are intelligently crafted social
engineering email attacks in which victims are conned by
email to websites that impersonate legitimate sites.
Phishing websites are generally well camouflaged.
Victims of phishing email attacks perceive these sites to
be associated with trusted companies such as Amazon or
Google and hence are tricked into logging into such sites
and sharing sensitive information. An estimated 269
billion emails are sent every day (Danny, 2020), with
about one in every 2,000 being a phishing email, totaling
135 million phishing attacks attempted every day. Though
the exact cost is very difficult to estimate, FBI has
suggested that the impact of phishing attacks could be
costing US businesses somewhere around $5 billion a
year1. The Anti-Phishing Working Group (APWG)2
reports that the most targeted sector is off course the
payment sector (39.4%), webmail being the second
highest (18.7%) and financial institutions being the third
most targeted (14.2%) (APWG, 2021). Since phishing
attacks affect millions of internet users (individuals as

well as companies) and since APWG is reporting a
continuous increase in unique phishing sites, it is
becoming extremely important to seek ways to secure
ourselves. Existing defense mechanisms need to be
greatly improved (Behdad et al., 2012). Although many
anti-phishing tools and techniques have been developed,
phishing is still difficult to effectively defend, which puts
the individual as well as organizations at risk (Fette et al.,
2007). Behdad et al. (2012) points out that improving the
defense mechanism is not enough and that systems should
also be forward looking and intelligent to be able to identify
fraudulent activities and prevent them from occurring.

Defense against phishing attacks is one of the hardest
confronts faced (Thakur and Kaur, 2016). Though many
email filters have been developed for spam emails, very
few phishing email filters have been developed (Zhang et al.,
2017). Of the phishing email filters that have been
developed (Prakash et al., 2010; Cao et al., 2008; Ma et al.,
2009a; Bergholz et al., 2010), ML filters (Bergholz et al.,
2010) have achieved the best results so far.

Several traditional approaches for defense against
phishing email attacks use various features that are static

Sikha Bagui et al. / Journal of Computer Science 2021, 17 (7): 610.623
DOI: 10.3844/jcssp.2021.610.623

611

in nature. Static features are not robust enough to handle
new and emerging phishing patterns. Fraudsters are not
static in their activities and are constantly changing the
mode of operation to stay undetected. This motivates
researchers into seeking effective techniques that can
handle both known and emerging fraudulent patterns,
hence the focus on machine learning algorithms
(Akinyelu and Adewumi, 2014).

The novelty of this study is in applying deep semantic
analysis with Deep Learning (DL) and Machine Learning
(ML) to capture inherent characteristics of email text to
classify emails as phishing or non-phishing. Until very
recently, little work has been devoted to semantic analysis
in phishing detection (Zhang et al., 2017), let alone
phishing email detection. Representation of text is a
significant task in Natural Language Processing (NLP)
and in recent years DL has been widely used in various
NLP tasks like topic classification, sentiment analysis and
language translation (Zhang et al., 2017; LeCun et al.,
2015). Word representations in NLP can be categorized
into four classes: One-hot representations, distributional
representations, clustering based word representations and
distributed representations (Zhang et al., 2017; Lai et al.,
2016). This study focuses on one-hot representations.
Hence in this study, semantic analysis using one-hot
encoding was used to preprocess the data, before using
DL and ML techniques to classify emails. A comparison
of the parameters and hyperparameters was performed for
DL, Convolutional Neural Networks (CNN) and Long
Short Term Memory (LSTM). The results of various ML
algorithms, Naïve Bayes, SVM, Decision Tree and DL
algorithms, CNN and LSTM, were presented in terms of
accuracy and computation time. A comparison was also
performed using CNN with Word Embedding,
demonstrating the usefulness of semantic analysis using
Word Embedding versus one-hot encoding.

The rest of this study is organized as follows. Section two
presents the related works. Section 3 presents an overview of
the methodology used. Sections four and five present the DL
and ML algorithms respectively and sections six and seven
present the results and conclusions respectively.

Related Works

Since phishing emails are becoming a significant
threat, there are several recent works on phishing email
detection. Yang et al. (2019) looked at phishing email
detection based on 18 hybrid features including email-
header structure, email-URL information and email-script
function. SVM was used for classification and a
classification accuracy of 95% was reached. Rawal et al.
(2017) compared various classifiers, SVM, Random
Forest, Logistic Regression, Naïve Bayes and Voted
Perceptron, to classify emails as phishing or ham and
received a maximum accuracy of 99.87%. Yasin and
Abuhasan (2016) proposed an intelligent classification

model of phishing email detection using a concept of
phishing term weighting, which evaluates the weights
of phishing emails in each email. Text stemming and
WordNet ontology was also used. They achieve an
accuracy of 99.1% using Random Forest and 98.4%
using J48. Rastenis et al. (2021) presents a solution
based on the email message body using text
classification, classifying emails into spam and
phishing emails. Fang et al. (2019) presented a
recurrent CNN model with multilevel vectors and
proposed a new phishing email detection model,
Themis. Themis was used to model emails as email
header, email body, character level and word level
simultaneously. They reached a very high classification
accuracy of 99.84%. Verma et al. (2020) looked at the
classification of phishing emails using NLP.

The rest of this section focuses on works related to
other techniques used in detecting phishing emails. These
works can be divided into four broad categories: (i) Works
that used black-list phishing detection methods; (ii) works
that used heuristic phishing detection methods; (iii) works
that used visual phishing detection methods; and (iv)
works that used machine learning approaches.

Works that used Blacklist-based Phishing Detection

Methods

The blacklist approach depends on building and
maintaining a list of phishing websites. Though blacklist-
based methods are easy to implement, they have the
obvious deficiency of not being able to detect zero-hour
phishing attacks, that is, attacks that have never happened
before (Zhang et al., 2017).

Works that used Heuristic Phishing Detection

Methods

Heuristic phishing detection identifies unknown web
pages using features extracted from phishing attacks, but
heuristic phishing rules are difficult to update because the
rules are derived from statistical features or manual
summaries (Zhang et al., 2017).

Yu et al. (2009) and Zhang et al. (2007) developed
heuristic-based phishing detection systems achieving
relatively low False Positive (FP) and False Negative
(FN) rates. Prakash et al. (2010) used a combination of
blacklist and heuristic methods to achieve low levels of
FP and FN rates.

Works that used Visual Similarity Methods

Cao et al. (2008) and Bergholz et al. (2010) made use
of features involving processing of images (for example,
a company logo, copyright and other visual elements) to
determine visual similarity, but this leads to higher run
time and space needs.

Sikha Bagui et al. / Journal of Computer Science 2021, 17 (7): 610.623
DOI: 10.3844/jcssp.2021.610.623

612

Works that used Machine Learning Based Phishing
Detection Methods

The key point of ML based phishing detection
methods is to capture inherent patterns of phishing sites,
hence the use of features. Basnet et al. (2008) used
structural features in phishing emails, like the HTML
format, IP-based address, age of domain name, number of
domains, number of sub-domains, presence of Java Script,
presence of form tags, number of links, URL based image
source, matching domains and keywords, to classify
emails using ML methods like SVM, neural networks,
Self Organizing Maps (SOMs), K-means and ROC
curves. Using k-means clustering, they achieved an
accuracy of around 90%.

Chandrasekaran et al. (2006) extracted a total of 25
structural features for the classification of emails using
SVM. They achieved 95% accuracy. Sarju and Thomas
(2014) also used structural properties to detect spam
emails, using Naïve Bayes, Adaboost and Random Forest
for classification and comparison. Using a majority voting
algorithm (using J48, SVM and IB1), they achieved a high
accuracy of 99.8%. Bergholz et al. (2008) determined a
feature set and used Random Forest and SVM to measure
accuracy of detection. Ma et al. (2009b) extracted 43
features and used six different classifiers and found
Random Forest outperforming the rest. Akinyelu and
Adewumi (2014) also used a group of 15 features to
classify emails using Random Forest. Fette et al. (2007)
made use of ML techniques to receive a very low False
Positive and False Negative rate.

Blum et al. (2010; Ma et al., 2009a; 2009b; Feroz and
Mengel, 2014; 2015) proposed URL-based phishing
detection methods, claiming accuracy of over 90%, but
such measures turn out to be unstable since URLs can be
manipulated easily. Xiang et al. (2011) proposed an
improved URL-based method, but this method was overly
dependent on third-party services.

Zhang et al. (2017) applied semantic analysis in
phishing detection. This study focused on phishing
websites rather than phishing emails and extracted various
semantic features through word2vec to better describe the
features of phishing sites. The authors achieved very low
error rates and though semantic features analyzed with
ML algorithms do a good job of analyzing phishing
websites, little attention had been paid to semantic
analysis before this study.

Eckhardt and Bagui (2021) used deep neural networks,
Long Short Term Memory (LSTM) and Convolutional
Neural Networks (CNN) for phishing email classification.
Though this study performed comparably to our method,
this study did not take into account the processing time.

Though many of the above works have achieved high
accuracy, none of them have analyzed the run time
component, which we also do in this study. So, the main
contributions of this study are:

 Determining if one-hot encoding is a useful pre-
processing measure for phishing email classification

 Determining if Word Embedding is useful in
phishing email classification (though this was only
done with CNN)

 Using one-hot encoding, determining if ML or DL
models are better in phishing-email classification

 Determining which parameters and hyperparameters
would give better results in DL

 Determining which ML or DL models perform the best
in terms of computation time using one hot-encoding

Methodology

Data

For this study, an email dataset, collected from App
River, a company headquartered in Pensacola, Florida, USA,
that offers secure cloud-based cybersecurity solutions, was
used. This dataset contained 18,366 labelled emails, of which
3,416 were phishing emails and 14,950 were regular emails.
The emails were collected across US industries - insurance,
law, medical, hotel, school, banking and real estate
marketing. Each of these emails contained a subject as well
as body text and the number of users that this email was
sent to. This study focuses on analyzing the text content
of the emails and classifying them as to whether they
were phishing emails or not. 70% of the data was used
for training and the rest for testing.

Data Preprocessing: One-hot Encoding

ML algorithms cannot operate directly on textual data.
Data has to be numeric. Hence, in this study, for data
preprocessing, the email text was encoded as one-hot
vectors. One-hot encoding uses a sparse vector in which
one element is set to 1 and all other elements are set to 0
and is a commonly used technique to represent strings that
have a finite set of values. Using one-hot encoding, high
cardinality will lead to high dimensional feature vectors.
But since one-hot encoding is simple, it is a widely-used
encoding method (Davis, 2010; Cerda et al., 2018). One-
hot encoding is effective for sentences or tweets that do
not contain many repeated elements and is usually applied
to models that have good smoothing properties. One-hot
encoding is commonly used in neural networks, whose
activation functions require input to be in the discrete
range of [0,1] or [-1,1] (O’REILLY, 2021).

A one-hot vector is a 1  N matrix (vector) consisting
of 0s in all cells of the vector with the exception of a single
1 in a cell used to uniquely identify a word. One hot
encoding allows for more expressive representation of
categorical data. A sample word range of [good, good,
bad] would be represented in 3 such encodings [0, 0, 1],
as shown in Table 1.

Sikha Bagui et al. / Journal of Computer Science 2021, 17 (7): 610.623
DOI: 10.3844/jcssp.2021.610.623

613

Fig. 1: Experimental flow

Table 1: One-hot encoding

1 0
1 0
0 1

In this study, the email text was cleaned, lemmatized

and represented in the form of one-hot encoded vectors.
Lemmatization is the process of grouping together the
various forms of a word so that they can be analyzed as a
single item (Allahyari et al., 2017).

Typically the length of the vector would depend on the
total number of unique tokens. But, emails are of varying
lengths and this is difficult to feed into the machine
learner or neural network. Therefore, an arbitrary length
of 100 was selected for this study and padding was done
to convert all vectors to a fixed length. Sequences shorter
than that length were padded with a pre-fixed value at the
end and sequences longer than the threshold were
truncated so that they would fit the desired length. These
matrices were fed into the machine learner or neural
network where these vectors were mapped to a low
dimensional space. In the neural network, this low
dimensional space is represented by a hidden layer where
the number of words is lower than the vocabulary size.

Experimental Flow

Figure 1 presents the experimental flow for this study.

Deep Learning Algorithms

 Two DL Algorithms, Long Short Term Memory
(LSTM) and Convolutional Neural Networks (CNN) were
used. For these algorithms, experimentation was
performed using the keras python library. Keras is built
on the top of Tensor flow designed for fast testing of deep
neural networks.

Long Short Term Memory

LSTM is an emerging and scalable model for learning
sequential data (Palangi et al., 2016; Greff et al., 2017).
LSTM has shown to be successful in sequence prediction
(Adi et al., 2016), sequence labeling (Sak and Beaufays,
2014), syntactic structure (Linzen et al., 2016) and long
range semantic dependencies (He et al., 2017). LSTM’s
have an edge over CNN and Recurrent Neural Networks
(RNN) in many ways (Otte et al., 2014). RNNs are
effective when working with short term dependencies, but
fail to recognize context or chronologically widely spaced
input events or long-term dependencies. RNNs cause the
problem of the vanishing gradient. The vanishing gradient
problem takes place when the weights in the matrix are so
small that learning either becomes very slow or stops
altogether. Conversely, if the weights in this matrix are
large, it can lead to a situation where the gradient is so
large that it can cause learning to diverge and this is called
the exploding gradient problem. This mainly motivates the
use of the LSTM model which introduces a new structure
called the memory cell, protected from outer influences
through surrounding gates.

The memory cell works with three dependencies: The
previous cell state (that is, the information that was
present in the memory after the previous time step),
previous hidden state (the output of the previous cell) and
input in the current step (new information that is being fed
in). The memory cell performs the function of retaining
values for periods of time. This is achieved by applying
the no activation function on the memory cell unit, which
in turn does not cause the gradient diminishing factor over
time (Greff et al., 2017).

The memory cell is composed of four elements: An
input gate, a neuron with a self-recurrent connection, a
forget gate and an output gate. The self-recurrent
connection of this memory cell has a weight of 1.0 that

Emails
(raw data)

Email body (text)
extracted into csv file

Email text is cleaned
and lemmatized

Cleaned + lemmatized
email text is put into one-

hot vectors of size 100

Classification is
performed

Vectors (matrices) are fed
into Machine Learner or

Deep Learner

If vector size is not
100, vector is padded
to convert vector to
fixed length of 100;

else vector goes
straight to next step

Sikha Bagui et al. / Journal of Computer Science 2021, 17 (7): 610.623
DOI: 10.3844/jcssp.2021.610.623

614

prevents any outside interference, hence the state of the
memory cell can remain constant from one time step to
another (Srivastava, 2017). The gates use a logistic
function to control the flow of data into and out of a cell. An
input gate controls the extent to which new values flow into
the cell, the forget gate controls the extent to which old values
are retained in the cell and the output gate is the extent to
which the value in the function is used to compute the output
activation of the LSTM unit (Greff et al., 2017).

Architecture of our LSTM Model

Figure 2 presents the base LSTM model used in this
study. The model consists of 2 LSTM layers with hidden
nodes, followed by a dense layer of 1 node and a sigmoid
activation layer.

Convolutional Neural Networks

CNN, a class of deep neural networks, has been widely
used in classification in NLP. CNN consists of some
combination of convolutional layers, pooling layers and a
fully connected layer. The convolutional and pooling
layers act as feature extractors and the fully connected
layer acts as a classifier. One of the main advantages of
CNN is that training can be performed without the need
for engineered features. It is designed to effectively model
multidimensional input data. It can learn intrinsic features
in the raw dataset through the many layered structures
which represent the different levels of abstraction of
features. The layers are briefly explained below.

Convolutional Layer

In this study, the input is emails, represented as one-
hot vectors and convolutions are used over the input layer.
A convolutionary layer consists of multiple neurons or
feature maps. Filters slide over rows of the matrix
(words), performing convolutions on the one-hot vector
and generating feature maps. Since all neurons in the
feature map scan the same feature of the previous layer
but from different locations, different feature maps detect
different types of features (Choong and Lee, 2017).

Nonlinearity

The convolutional layer is typically followed by the
non-linear activation function. The three most commonly
used activation functions are sigmoid, tanh and Rectified
Linear Unit (ReLU). ReLU(x) = max(0, input). ReLU is
the most commonly used because of the non-vanishing
gradient in the positive region and faster convergence
compared to the other two activation functions
(Akhtyamova et al., 2017). ReLU is an element wise
operation (applied per pixel) and replaces all negative
pixel values in the feature map by zero
(https://ujjwalkarn.me/2016/08/11/intuitive-
explanation-convnets/).

Pooling

The pooling layers are typically applied after the
convolutional layers. Pooling subsamples the input and
this is commonly done by taking an average or maximum
of small blocks of data, hence pooling reduces the spatial
size of the representation. It also reduces the
dimensionality of the output and provides a fixed size
output matrix, which is typically required for
classification. Pooling also controls overfitting.

Fully Connected Layer

Fully Connected means that every neuron in the
previous layer is connected to every neuron in the next
layer (https://ujjwalkarn.me/2016/08/11/intuitive-
explanation-convnets/). After several convolutional and
max-pooling layers, the outputs of these layers can be
treated as new data representation. This can be flattened
into a one-dimensional vector and used for classification.
This layer is used for classification.

Kim (2014) used CNN to perform sentiment analysis
and topic categorization. Johnson and Zhang (2014)
applied convolutions directly to one-hot vectors, using a pre-
training model that used word vectors like word2vec and
GloVe. Johnson and Zhang (2015) extended Johnson and
Zhang (2014)’s model with additional unsupervised region
embeddings. Zhang and Wallace (2015) studied the effects
of varying hyperparameters. Gao et al. (2019) and Shen et al.
(2014) dealt with semantic representations of sentences.

Architecture of our CNN Model

Figure 3 presents the architecture of the CNN model
used in this study. The input is one-hot vectors. The
architecture consists of two convolutional_1D layers. The
first convolutional layer has a filter size of 5 with a stride
of one, with a total of 32 filters and the second
convolutional layer has a filter size of 2 with a stride of
one and the number of filters were increased to 64. Feature
maps have been set to 4 in the first convolution layer and
8 in the second convolution layer and, the Relu activation
function was used in the convolutional layers.

Followed by each convolution_1D layer is a
maxpooling_1D layer. The max-pooling_ID layer
performs down sampling using a spatial size of 2, with
default stride. Max-pooling is the concept of taking
windowed samples from the output of a convolutional
layer and subsampling them to create a single output.
The subsampling reduces the dimensionality of the
input after each layer.

Followed by this is a fully connected dense layer with
a single hidden node. The output of the previous layer is
flattened to a [None by 1] shape. The Sigmoid activation
function was used in the dense connected layer. This
produces a total of 149 trainable parameters.

Sikha Bagui et al. / Journal of Computer Science 2021, 17 (7): 610.623
DOI: 10.3844/jcssp.2021.610.623

615

Fig. 2: Architecture of LSTM model

Fig. 3: Architecture of CNN model

Input layer
Input: (none, 80)

Output: (none, 10,8)

Input: (none, 10,8)

Output: (none, 10,4)
Lstm_1: LSTM

Input: (none, 10,4)

Output: (none, 10,4)

Lstm_2: LSTM

Flatten_1: Flatten Output: (none, 40)

Input: (none, 40)

Output: (none, 1)
Dense_1:

Input layer
Input: (none, 80)

Output: (none, 10,8)

Dense_1

conv1d_1
Input: (none, 10,8)

Output: (none, 9,4)

max_pooling1d_1
Input: (none, 9,4)

Output: (none, 4,4)

conv1d_2
Output: (none, 3,8)

Input: (none, 4,4)

max_pooling
1d_2 Output: (none, 1,8)

Input: (none, 3,8)

Flatten_1: Flatten Output: (none, 8)

Output: (none, 1)

Sikha Bagui et al. / Journal of Computer Science 2021, 17 (7): 610.623
DOI: 10.3844/jcssp.2021.610.623

616

Fig. 4: Architecture of CNN with Word Embedding

Table 2: Word embedding semantic representation
Word This is a sample CBOW example
sample 0 0 1 0 0 0
sample 0 0 0 0 1 0

CNN with Word Embedding

CNN was also applied with Word Embedding. Word
Embedding is a technique where individual words are
represented as sparse vectors based on the context
window and then mapped to a low dimensional vector
space. Due to its inability to represent idiomatic phrases,
vector representations of individual words are used to
make the model more expressive. Continuous Bag of
Words (CBOW) is a popular form of Word Embedding.
Using Word Embedding, words with similar meaning will
have similar representation. To understand the semantic
representation of words in the email text, that is, the
representation of the context of the word, CBOW, was
used. A context may be a single word or a group of words
based on the context window. Each word, represented in
the form of one-hot encoding, can have multiple data
points as context, as shown in Table 2. In Table 2,
“Sample” in the text “This is a sample CBOW example”
would have two contexts with a 1-word context window.
Another example demonstrating semantic representation
would be, in the sentence “Taj Mahal in India is one of the
seven wonders of the world,” “Taj Mahal” has a high
probability of having a semantic similarity with ‘India’ rather
than any other country, because they usually appear in the
same context. This allows it to distinguish words with
different meanings, for example ‘crane’ (a bird; an
instrument used to lift heavy objects; to crane your neck etc.)

Architecture of our CNN with Word Embedding

Model

The CNN architecture with Word Embedding used in
this study is represented in Fig. 4. This consists of an input
layer, an embedding layer with hidden nodes and finally
a dense layer with a single hidden node. A sigmoid
activation function is used in the final layer.

Machine Learning Models

The machine learning algorithms, Naïve Bayes, SVM
and Decision Tree, that have been previously used in text
classification, were used for comparison with the DL
methods. These algorithms were implemented using
(https://www.cs.waikato.ac.nz/ml/weka/).

Naive Bayes

The Naïve Bayes classifier assumes class
independence. That is, an attribute value on a given
class is independent of the values of the other attributes
(Han et al., 2011). In a sense, this simplifies the
computations involved and being relatively robust,
easy to implement, fast and accurate, naïve Bayes
classifiers have been used in many different fields
including text classification (Zhang and Gao, 2011;
Gupta and Lehal, 2009) and sentiment analysis
(Vadivukarassi et al., 2017). Vadivukarassi et al.
(2017) used an auxiliary feature to reclassify the text
space for classification.

Input layer

Input: (none, 80)

Output: (none, 10,8)

Embedding_1: Embedding

Input: (none, 10,8)

Output: (none, 80,4)

Flatten_1: Flatten Output: (none, 320)

Output: (none, 1) Dense_1: Dense

Sikha Bagui et al. / Journal of Computer Science 2021, 17 (7): 610.623
DOI: 10.3844/jcssp.2021.610.623

617

Support Vector Machines

Support Vector Machines (SVM) is a supervised
learning model widely used for classification, known to be
efficient in high dimensional spaces. Even with a small
training set, SVM can provide high performance. Each
sample is viewed as a data point in space. It constructs a
hyperplane or a set of hyperplanes, which are used to
categorize data into multiple classes. The larger the margin
of separation, the lesser is the generalization error of the
model. In some cases, the points are aligned in such a manner
that it is physically impossible to separate them in space. In
such cases, the points are mapped to a much higher
dimension, thus increasing the scope for separation.

With a training data set of the form (x1, y1), … , (xn,
yn), each point is represented as a p-dimensional real
vector. The “maximum margin hyperplane” divides the
group of points xi into different class values so that the
distance between the points in different segments and the
hyperplane is maximized as much as possible.

A hyperplane can be defined by the formula: ω x - b =
0, where ω is the normal vector to the hyperplane.

The parameter (b/ω) is the offset of the hyperplane
from the origin.

The primary aim is to reduce this function:

   2

1

1
max 0,1 ,

n

i i

i

y x b
n

  


 
    

 


r rr

Many works have used SVM for text categorization
(Joachims, 1998; Shin and Paek, 2018; Pilászy, 2005;
Fatima and Srinivasu, 2017; Tong and Koller, 2001). SVM
was used in this project because of the following SVM
features (Joachims, 1998), which are applicable to our work:

(i) SVM can handle high dimensional input space
(ii) SVM does not need to remove irrelevant features

through feature selection - it can use all the features,
since in this case most of the features will contain
some information

(iii) SVM works well with sparse vectors
(iv) Text categorization is linearly separable

Decision Tree

Decision Tree is a popular ML tool that uses a tree-like
structure to represent all the chance events and their
possible outcomes in different conditions. The advantages
of decision tree are fast speed, relatively high accuracy
and easily understood classification model. But, decision
trees have a problem with high dimensional data, leading
to low algorithm efficiency. Decision tree calculations are
based on Information Gain and the attribute with the
highest information gain is at the root of the tree, the
attribute with the next highest information gain is at the
next level of the tree and so forth. The leaves of the tree
are the final decisions of the classifier (Han et al., 2011).

Results and Discussion

In this section, first we present an analysis of the hyper
parameters. Then the results of the LSTM, CNN and CNN
with Word Embedding are presented. Each of the results
presented are an average of ten runs.

Analysis of Hyper Parameters

Proper estimation of hyperparameters is the key to
optimizing any DL model. As pointed out in (Sarju and
Thomas, 2014), selection of hyperparameters like
context window, filter size, number of feature maps and
pooling strategies, are completely dependent on the
nature of the dataset. Plenty of trial runs were
performed to come up with optimal values suited for
the phishing dataset. The optimal values were:

For LSTM

The number of hidden nodes mattered the most. To
determine the best accuracy, the number of hidden nodes
was changed with each run.

For CNN

The optimum filter size (2), pool size (2), strides (1)
and an activation function of ‘relu’ has been used for the
convolution layers. Accuracy gradually improved with
the increase in the number of feature maps.

For CNN with Word Embedding

The number of embedding nodes played a primary role
in this accuracy.

All DL models were compiled using the Adam
Optimizer and a loss function of Binary Cross Entropy.
Though Relu has been the most effective activation
function because it does not suffer from the diminishing
gradient problem, sigmoid was used for the end-Dense
layer. It performed well for the binary data.

Long Short Term Memory Results

To determine the performance of the LSTM model, the
number of hidden nodes were varied and accuracy was
determined with and without dropouts. Dropout refers to
removing a random selection of units (hidden as well as
visible) in a network layer for a single gradient step. The
more units dropped out, the stronger the regularization.
Dropouts prevent overfitting. In the simplest case, each
unit is retained with a fixed probability p independent of
other units, where p can be chosen using a validation set
or can simply be set at 0.5, which seems to be close to
optimal for a wide range of networks and tasks. For input
units, however, the optimal probability of retention is usually
closer to 1 rather than to 0.5 (Srivastava et al., 2014). The
LSTM experimental results are presented in Table 3.

Sikha Bagui et al. / Journal of Computer Science 2021, 17 (7): 610.623
DOI: 10.3844/jcssp.2021.610.623

618

Table 3: LSTM results

Hidden_nodes Parameters Computation_time Accuracy (w/o dropout) Accuracy (with dropout)
4 393 202.3 88.41 89.18
8 1169 204.9 91.8 89.05
16 3873 193.7 93.79 94.08
32 13889 244.5 94.77 94.68
64 52353 328.6 95.25 95.54
128 203009 696.1 95.7 95.91
Accuracy is defined as: (True Positives + True Negatives)/Total Number

The highest accuracy was achieved without dropout at
95.7% and with dropout at 95.91%, at 128 hidden nodes.
The lowest computational time, however, was at 16
hidden nodes, at 193.7 ms. LSTM generally performed
better with dropouts.

Convolutional Neural Network Results

Proper estimation of hyperparameters is the key to
optimizing a CNN model. Selection of hyperparameters
like context window, filter size, number of feature maps and
pooling strategies are dependent on the nature of the dataset.
Tables 4-7 present experimentation results with various
context window sizes, filter sizes, embedding window sizes
and pooling sizes, using the baseline model.

Baseline Model used

One-hot-size = 100
Filter Size = 5
Pool Size = 2
Activation Function = Relu
Feature Maps = 32

Base Model Structure used

Embedding Layer -- Conv1D -- MaxPool1D --
Conv1D -- MaxPool1D -- Flatten -- Dense (1)

A stride of one was used. Stride is how much the filter
is shifted at each step. If the stride is 1, the filters overlap.
A larger stride leads to fewer applications of the file and
a smaller input size. From Tables 4-7, the following can
be observed:

 The filter size of 7 produces the best accuracy
 Increasing the size of context window improves

accuracy, but increasing it beyond a certain limit
tends to increase computation time

 Increasing the pool size up to a size of 4 increases the
accuracy, after which the accuracy drops.

Hence, for the final runs, varying the feature map sizes, a

filter size of 7, context window of 100, embedding window
of 80 and pooling size of 4 was used. The computation time
and accuracy (with and without dropouts) was determined
for various feature map sizes, as presented in Table 8.

The lowest computation time of 46.9 ms was with
feature map size of 4 with 149 parameters. The highest

accuracy, both without and with dropouts, at 94.98% and
95.97% respectively, was at feature map size of 64 with
17,729 parameters. Using CNN with one-hot encoding,
the accuracy did not generally improve with dropouts.

Convolutional Neural Networks with Word

Embedding

Table 9 presents the accuracy of varying the
embedding nodes, with and without dropouts when CNN
was performed with Word Embedding.

The lowest computation time of 45.7 ms was achieved
with 4 Embedding Nodes and 721 parameters. The highest
accuracy without dropout was at 96.1% with 32 embedding
nodes and 5,761 parameters and at 96.34% with 64 nodes
and 11,521 parameters. For CNN with Word Embedding, the
accuracy generally improved slightly with dropouts.

Comparison of the Machine Learners as well as

Deep Learners

Figure 5 graphically presents a comparison of the
accuracy of the various models used for classification,
Naïve Bayes, SVM, Decision Tree, LSTM, CNN and
CNN with Word Embedding. One-hot encoding was
used with the Naïve Bayes, SVM, Decision Tree,
LSTM and CNN models. CNN with one-hot encoding
achieved the highest classification accuracy of all the
models using one-hot encoding, with an accuracy of
95.97%. However, CNN with Word Embedding
performed better than CNN with one-hot encoding,
with the highest overall accuracy of 96.34%.

Figure 6 presents the computation time taken for the
various models. One-hot encoding was used to run Naïve
Bayes, SVM, Decision Tree, LSTM and CNN. Naïve
Bayes had the lowest computation time at 17.7 ms and
LSTM had the highest computation time at 696.1 ms and,
in this case CNN with Word Embedding did not perform
particularly better.

Table 4: Accuracy by context window

Context window Accuracy (%)
50 95.739
70 96.27
90 96.43
110 96.048
150 96.44

Sikha Bagui et al. / Journal of Computer Science 2021, 17 (7): 610.623
DOI: 10.3844/jcssp.2021.610.623

619

Table 5: Accuracy by filter size

Filter size Accuracy (%)
3 96.376
5 96.522
7 96.592
9 95.81
11 96.103

Table 6: Accuracy by embedding layer nodes
Embedding window Accuracy (%)
10 95.95
20 96.394
30 96.667
40 96.7
80 97.3
100 96.64

Table 7: Accuracy by pooling size

Pooling size Accuracy (%)
2 96.44
3 96.59
4 96.9
5 96.3

Table 8: Computation time and accuracy by feature map size with and without dropouts
Feature maps Parameters Computation_time Accuracy (w/o dropout) Accuracy (with dropout)
4 149 46.9 85.25 81.6
8 425 52.1 88.65 86.74
16 1361 52.8 92.02 91.27
32 4769 59.4 92.53 93.718
64 17729 75.4 94.98 95.97

Table 9: Computation time and accuracy by embedding nodes with and without dropouts
Embedding nodes Parameters Computation_time Accuracy (w/o dropout) Accuracy (with dropout)
4 721 45.7 94.75 95.41
8 1441 49.8 95.5 95.68
16 2881 53.5 95.99 96.048
32 5761 73.7 96.1 96.23
64 11521 102.9 96.01 96.34

Fig. 5: Accuracy for the various models

Naïve bayes SVM Decision tree LSTM CNN Work embedding

75.72

93.88 94.26 95.91 95.97 96.34

120

100

80

60

40

20

0

Algorithm V/S accuracy

Sikha Bagui et al. / Journal of Computer Science 2021, 17 (7): 610.623
DOI: 10.3844/jcssp.2021.610.623

620

Fig. 6: Computation time for the various models

Conclusion

A comparison of ML and DL models was performed
using one-hot encoding for preprocessing the data. From
an analysis of the hyperparameters, for the CNN model,
the best model was obtained for a filter size of 7, context
window of 100, embedding window of 80 and pooling
size of 4. For LSTM, hidden nodes seemed to matter the
most, hence the hidden nodes were varied to determine the
best accuracy with and without dropouts. LSTM generally
performed better with dropouts. But, for CNN with one-
hot encoding, the accuracy did not improve with dropouts,
while for CNN with Word Embedding, the accuracy
generally improved slightly with dropouts. Using one-hot
encoding, CNN performed the best of all the models, with
an accuracy of 95.97%. But CNN with Word Embedding
performed better than CNN with one-hot encoding
(96.34%). This demonstrates the power of semantic
analysis in classifying phishing emails. As compared to
previous works, these results are on the higher side, but an
exact comparison may not be warranted since different
techniques were used in each work. Moreover, none of the
previous works analyzed the computation time, which
was analyzed in this study in addition to accuracy.

In terms of computation time, Naïve Bayes (with one-
hot encoding) performed the best at 17.1 ms. LSTM (with
one hot encoding) performed very poorly in terms of
computation time, though it’s accuracy was pretty close
to CNN with one-hot encoding. Finally, the DL models
performed better than the ML models in terms of
accuracy, but the ML models performed better than the
DL models in terms of computation time.

Acknowledgement

This work has been partially supported by the Askew
Institute of the University of West Florida.

Author’s Contributions

Sikha Bagui: Formulated the project and the paper.
Debarghya Nandi: Also helped in the formulation of

the project and in the programming part of this project.
Subhash Bagui: Helped in analysis and fine tuning of

the algorithms.
Robert Jamie White: Also helped in the formulation

of the project.

Ethics

No part of this manuscript is being considered for
publication in whole or in part elsewhere. All authors have
read and approved the manuscript.

References

5https://ujjwalkarn.me/2016/08/11/intuitive-explanation-
convnets/

6Weka 3: Machine Learning Software in Java.
https://www.cs.waikato.ac.nz/ml/weka/

Adi, Y., Kermany, E., Belinkov, Y., Lavi, O., &
Goldberg, Y. (2016). Fine-grained analysis of
sentence embeddings using auxiliary prediction
tasks. arXiv preprint arXiv:1608.04207.
https://arxiv.org/abs/1608.04207

Akhtyamova, L., Alexandrov, M., & Cardiff, J. (2017,
August). Adverse drug extraction in twitter data
using convolutional neural network. In 2017 28th
International Workshop on Database and Expert
Systems Applications (DEXA) (pp. 88-92). IEEE.
https://doi.org/10.1109/DEXA.2017.34

Akinyelu, A. A., & Adewumi, A. O. (2014).
Classification of phishing email using random forest
machine learning technique. Journal of Applied
Mathematics, 2014.

Naïve bayes SVM Decision tree LSTM CNN Work embedding

17.7

800

700

600

500

400

300

200

100

0

73.7
18.2

696.1

75.4
102.9

Algorithm V/S computation time (SECS)

Sikha Bagui et al. / Journal of Computer Science 2021, 17 (7): 610.623
DOI: 10.3844/jcssp.2021.610.623

621

Allahyari, M., Pouriyeh, S., Assefi, M., Safaei, S., Trippe,
E. D., Gutierrez, J. B., & Kochut, K. (2017). A brief
survey of text mining: Classification, clustering and
extraction techniques. arXiv preprint
arXiv:1707.02919. https://arxiv.org/abs/1707.02919

APWG. (2021). Phishing activity trends reports
https://apwg.org/

Basnet, R., Mukkamala, S., & Sung, A. H. (2008).
Detection of phishing attacks: A machine learning
approach. In Soft computing applications in industry
(pp. 373-383). Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-540-77465-5_19

Behdad, M., Barone, L., Bennamoun, M., & French, T.
(2012). Nature-inspired techniques in the context
of fraud detection. IEEE Transactions on Systems,
Man and Cybernetics, Part C (Applications and
Reviews), 42(6), 1273-1290.

Bergholz, A., Chang, J. H., Paass, G., Reichartz, F., &
Strobel, S. (2008, August). Improved Phishing
Detection using Model-Based Features. In CEAS.

Bergholz, A., De Beer, J., Glahn, S., Moens, M. F., Paaß,
G., & Strobel, S. (2010). New filtering approaches for
phishing email. Journal of computer security, 18(1),
7-35. https://doi.org/10.3233/JCS-2010-0371

Blum, A., Wardman, B., Solorio, T., & Warner, G. (2010,
October). Lexical feature based phishing URL detection
using online learning. In Proceedings of the 3rd ACM
Workshop on Artificial Intelligence and Security (pp.
54-60). https://doi.org/10.1145/1866423.1866434

Cao, Y., Han, W., & Le, Y. (2008, October). Anti-
phishing based on automated individual white-list. In
Proceedings of the 4th ACM workshop on Digital
identity management (pp. 51-60).
https://doi.org/10.1145/1456424.1456434

Cerda, P., Varoquaux, G., & Kégl, B. (2018). Similarity
encoding for learning with dirty categorical variables.
Machine Learning, 107(8), 1477-1494.
https://doi.org/10.1007/s10994-018-5724-2

Chandrasekaran, M., Narayanan, K., & Upadhyaya, S.
(2006, June). Phishing email detection based on
structural properties. In NYS cyber security
conference (Vol. 3).
https://www.albany.edu/wwwres/conf/iasymposium/
proceedings/2006/chandrasekaran.pdf

Choong, A. C. H., & Lee, N. K. (2017, November).
Evaluation of convolutionary neural networks
modeling of DNA sequences using ordinal versus
one-hot encoding method. In 2017 International
Conference on Computer and Drone Applications
(IConDA) (pp. 60-65). IEEE.
https://doi.org/10.1109/ICONDA.2017.8270400

Danny, P. (2020). What is Phishing? Everything you need
to know to protect yourself from scam emails and
more. https://www.zdnet.com/article/what-is-
phishing-how-to-protect-yourself-from-scam-
emails-and-more

Davis, M. J. (2010). Contrast coding in multiple
regression analysis: Strengths, weaknesses and utility
of popular coding structures. Journal of Data Science,
8(1), 61-73.
https://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.464.4179&rep=rep1&type=pdf

Eckhardt, R. & Bagui, S. (2021). Convolutional Neural
Networks and Long Short Term Memory for Phishing
Email Classification. International Journal of Computer
Science and Information Security, 19(5), 27-35.
https://doi.org/10.5281/zenodo.4898110

Fang, Y., Zhang, C., Huang, C., Liu, L., & Yang, Y.
(2019). Phishing email detection using improved
RCNN model with multilevel v
https://doi.org/10.1109/ACCESS.2019.2913705

Fatima, S., & Srinivasu, B. (2017). Text Document
categorization using support vector machine.
International Research Journal of Engineering and
Technology (IRJET), 4(2), 141-147.

Feroz, M. N., & Mengel, S. (2014, October).
Examination of data, rule generation and detection
of phishing URLs using online logistic regression.
In 2014 IEEE International Conference on Big
Data (Big Data) (pp. 241-250). IEEE.
https://doi.org/10.1109/BigData.2014.7004239

Feroz, M. N., & Mengel, S. (2015, June). Phishing URL
detection using URL ranking. In 2015 ieee international
congress on big data (pp. 635-638). IEEE.
https://doi.org/10.1109/BigDataCongress.2015.97

Fette, I., Sadeh, N., & Tomasic, A. (2007, May). Learning
to detect phishing emails. In Proceedings of the 16th
international conference on World Wide Web (pp.
649-656). https://doi.org/10.1145/1242572.1242660

Gao, J., Pantel, P., Gamon, M., He, X., & Deng, L. (2019).
Modeling interestingness with deep neural networks.
https://doi.org/10.3115/v1/D14-1002

Greff, K., Srivastava, R. K., Koutnik, J., Steunebrink, B.
R., & Schmid Huber, J. (2017). LSTM: A Search
Space Oddyssey. IEEE Transactions on Neural
Networks and Learning Systems, 28, pp. 222-2232.
https://doi.org/10.1109/TNNLS.2016.2582924

Gupta, V., & Lehal, G. S. (2009). A survey of text mining
techniques and applications. Journal of emerging
technologies in web intelligence, 1(1), 60-76.
https://doi.org/10.4304/jetwi.1.1.60-76

Han, J., Pei, J., & Kamber, M. (2011). Data mining:
concepts and techniques. Elsevier. ISBN-10:
0123814804.

He, L., Lee, K., Lewis, M., & Zettlemoyer, L. (2017,
July). Deep semantic role labeling: What works and
what’s next. In Proceedings of the 55th Annual
Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers) (pp. 473-483).
https://doi.org/10.18653/v1/P17-1044

Sikha Bagui et al. / Journal of Computer Science 2021, 17 (7): 610.623
DOI: 10.3844/jcssp.2021.610.623

622

Joachims, T. (1998, April). Text categorization with
support vector machines: Learning with many
relevant features. In European conference on
machine learning (pp. 137-142). Springer, Berlin,
Heidelberg. https://doi.org/10.1007/BFb0026683

Johnson, R., & Zhang, T. (2014). Effective use of word
order for text categorization with convolutional
neural networks. arXiv preprint arXiv:1412.1058.
https://doi.org/10.3115/v1/N15-1011

Johnson, R., & Zhang, T. (2015). Semi-supervised
convolutional neural networks for text
categorization via region embedding. Advances in
neural information processing systems, 28, 919.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4
831869/

Kim, Y. (2014). Convolutional Neural Networks for
Sentence Classification. Proceedings of the 2014
Conference on Empirical Methods in Natural
Language Process (EMNLP 2014), pp. 1746-1751.
https://doi.org/10.3115/v1/D14-1181

Lai, S., Liu, K., He, S., & Zhao, J. (2016). How to
generate a good word embedding. IEEE Intelligent
Systems, 31(6), 5-14.
https://doi.org/10.1109/MIS.2016.45

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep
learning. nature, 521(7553), 436-444.
https://doi.org/10.1038/nature14539

Linzen, T., Dupoux, E., & Goldberg, Y. (2016). Assessing
the ability of LSTMs to learn syntax-sensitive
dependencies. Transactions of the Association for
Computational Linguistics, 4, 521-535.
https://doi.org/10.1162/tacl_a_00115

Ma, J., Saul, L. K., Savage, S., & Voelker, G. M. (2009a,
June). Beyond blacklists: learning to detect malicious
web sites from suspicious URLs. In Proceedings of the
15th ACM SIGKDD international conference on
Knowledge discovery and data mining (pp. 1245-1254).
https://dl.acm.org/doi/abs/10.1145/1557019.1557153

Ma, L., Ofoghi, B., Watters, P., & Brown, S. (2009b, July).
Detecting phishing emails using hybrid features. In
2009 Symposia and Workshops on Ubiquitous,
Autonomic and Trusted Computing (pp. 493-497).
IEEE. https://doi.org/10.1109/UIC-ATC.2009.103

O’REILLY. (2021). Applied Text Analysis with Python.
Chapter 4. Text Vectorization and Transformation
Pipelines. One-Hot Encoding.
https://www.oreilly.com/library/view/applied-text-
analysis/9781491963036/ch04.html#atap_ch04_one
_hot_encoding

Otte, S., Liwicki, M., & Krechel, D. (2014, July).
Investigating long short-term memory networks for
various pattern recognition problems. In International
Workshop on Machine Learning and Data Mining in
Pattern Recognition (pp. 484-497). Springer, Cham.
https://doi.org/10.1007/978-3-319-08979-9_37

Palangi, H., Deng, L., Shen, Y., Gao, J., He, X., Chen, J.,
... & Ward, R. (2016). Deep sentence embedding
using long short-term memory networks: Analysis
and application to information retrieval. IEEE/ACM
Transactions on Audio, Speech and Language
Processing, 24(4), 694-707.
https://doi.org/10.1109/TASLP.2016.2520371

Pilászy, I. (2005, November). Text categorization and
support vector machines. In Proceedings of the 6th
international symposium of Hungarian researchers on
computational intelligence.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=1
0.1.1.106.8812&rep=rep1&type=pdf

Prakash, P., Kumar, M., Kompella, R. R., & Gupta, M.
(2010, March). Phishnet: predictive blacklisting to
detect phishing attacks. In 2010 Proceedings IEEE
INFOCOM (pp. 1-5). IEEE.
https://doi.org/10.1109/INFCOM.2010.5462216

Rastenis, J., Ramanauskaitė, S., Suzdalev, I., Tunaitytė,
K., Janulevičius, J., & Čenys, A. (2021). Multi-
Language Spam/Phishing Classification by Email
Body Text: Toward Automated Security Incident
Investigation. Electronics, 10(6), 668.
https://doi.org/10.3390/electronics10060668

Rawal, S., Rawal, B., Shaheen, A., & Malik, S. (2017).
Phishing detection in e-mails using machine learning.
International Journal of Applied Information Systems,
12(7), 12-24. https://doi.org/10.5120/ijais2017451713

Sak, H., Senior, A. W., & Beaufays, F. (2014). Long
short-term memory recurrent neural network
architectures for large scale acoustic modeling.
https://storage.googleapis.com/pub-tools-public-
publication-data/pdf/43905.pdf

Sarju, S., & Thomas, R. (2014). Spam Email Detection
using Structural Features. International Journal of
Computer Applications, 89(3).
https://doi.org/10.5120/15485-4265

Shen, Y., He, X., Gao, J., Deng, L., & Mesnil, G. (2014,
November). A latent semantic model with
convolutional-pooling structure for information
retrieval. In Proceedings of the 23rd ACM
international conference on conference on
information and knowledge management (pp. 101-
110). https://doi.org/10.1145/2661829.2661935

Shin, H., & Paek, J. (2018). Automatic task classification
via support vector machine and crowdsourcing.
Mobile Information Systems, 2018.
https://doi.org/10.1155/2018/6920679

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., &
Salakhutdinov, R. (2014). Dropout: a simple way to
prevent neural networks from overfitting. The journal of
machine learning research, 15(1), 1929-1958.
https://www.jmlr.org/papers/volume15/srivastava14
a/srivastava14a.pdf?utm_campaign=buffer&utm_co
ntent=buffer79b43&utm_medium=social&utm_sour
ce=twitter.com

Sikha Bagui et al. / Journal of Computer Science 2021, 17 (7): 610.623
DOI: 10.3844/jcssp.2021.610.623

623

Srivastava, P. (2017). Essentials of Deep Learning:
Introduction to Long Short Term Memory.
https://www.analyticsvidhya.com/blog/2017/12/fund
amentals-of-deep-learning-introduction-to-lstm/

Thakur, H., & Kaur, S. (2016). A Survey Paper On
Phishing Detection. International Journal of
Advanced Research in Computer Science, 7(4).
http://www.ijarcs.info/index.php/Ijarcs/article/view/
2706

Tong, S., & Koller, D. (2001). Support vector machine active
learning with applications to text classification. Journal
of machine learning research, 2(Nov), 45-66.
https://www.jmlr.org/papers/volume2/tong01a/tong
01a.pdf

Vadivukarassi, M., Puviarasan, N., & Aruna, P. (2017).
Sentimental analysis of tweets using Naive Bayes
algorithm. World Applied Sciences Journal, 35(1),
54-59.
https://www.academia.edu/download/55083588/7.pdf

Verma, P., Goyal, A., & Gigras, Y. (2020). Email
phishing: Text classification using natural
language processing. Computer Science and
Information Technologies, 1(1), 1-12.
https://doi.org/10.11591/csit.v1i1.p1-12

Xiang, G., Hong, J., Rose, C. P., & Cranor, L. (2011).
Cantina+ a feature-rich machine learning framework for
detecting phishing web sites. ACM Transactions on
Information and System Security (TISSEC), 14(2),
1-28. https://doi.org/10.1145/2019599.2019606

Yang, Z., Qiao, C., Kan, W., & Qiu, J. (2019, April).
Phishing Email Detection Based on Hybrid Features.
In IOP Conference Series: Earth and Environmental
Science (Vol. 252, No. 4, p. 042051). IOP Publishing.
https://doi.org/10.1088/1755-1315/252/4/042051

Yasin, A., & Abuhasan, A. (2016). An intelligent
classification model for phishing email detection.
arXiv preprint arXiv:1608.02196.
https://doi.org/10.5121/ijnsa.2016.8405

Yu, W. D., Nargundkar, S., & Tiruthani, N. (2009, July).
Phishcatch-a phishing detection tool. In Proceedings
of the 2009 33rd Annual IEEE International
Computer Software and Applications Conference-
Volume 02 (pp. 451-456).
https://doi.org/10.1109/COMPSAC.2009.175

Zhang, W., & Gao, F. (2011). An improvement to naive
bayes for text classification. Procedia Engineering,
15, 2160-2164.

 https://doi.org/10.1016/j.proeng.2011.08.404
Zhang, X., Zeng, Y., Jin, X. B., Yan, Z. W., & Geng, G.

G. (2017, December). Boosting the phishing
detection performance by semantic analysis. In 2017
ieee international conference on big data (big data)
(pp. 1063-1070). IEEE.

 https://doi.org/10.1109/BigData.2017.8258030
Zhang, Y., & Wallace, B. (2015). A sensitivity analysis of

(and practitioners' guide to) convolutional neural
networks for sentence classification. arXiv preprint
arXiv:1510.03820. https://arxiv.org/abs/1510.03820

Zhang, Y., Hong, J. I., & Cranor, L. F. (2007, May).
Cantina: A content-based approach to detecting
phishing web sites. In Proceedings of the 16th
international conference on World Wide Web (pp.
639-648). https://doi.org/10.1145/1242572.1242659

