

 © 2021 Attia Nehar, Slimane Bellaouar, Djelloul Ziadi and Khaled Moulay Omar . This open access article is

distributed under a Creative Commons Attribution (CC-BY) 4.0 license.

Journal of Computer Science

a

Original Research Paper

Arabic Personal Name Matching: Names Written using

Latin Alphabet

1,2Attia Nehar, 2,3Slimane Bellaouar, 4Djelloul Ziadi and 5Khaled Moulay Omar

1Department of Computer Science, Ziane Achour University - Djelfa, Algeria
2Faculty of Science Laboratoire d’Informatique et de Mathematiques (LIM), Universite de Laghouat, Laghouat, Algeria
3Laboratoire de Mathematiques et Sciences Appliquees (LMSA)´ Faculty of Science and Technology,

Universite de Ghardaia, Ghardaia, Algeria
4Groupe de Recherche Rouennais en Informatique Fondamentale (GR2IF), Algeria
5Universite de Ghardaia, Ghardaia, Algeria

Article history

Received: 11-05-2021

Revised: 15-07-2021

Accepted: 13-08-2021

Corresponding Author:

Attia Nehar

Department of Computer

Science, Ziane Achour

University - Djalfa, Algeria

Email: nehar.attia@gmail.com

Abstract: In many Arab countries’ public administrations, Arabic personal

names are written with Latin alphabet, generally, in various ways by different

writers. This has led to many problems when it comes to connecting these

administrations. The aim of this study was to propose two new

approaches for the pairwise matching of Arabic personal names. The first

approach is based on string alignment and phonetic transcription.

Appropriate scoring functions were defined to catch similarity between

Arabic personal names. In the second approach, we use machine learning

techniques to derive a suitable model for this problem. Precisely, we

suggest using a Multi-Layer Perceptron (MLP) architecture and

experiment with different configurations. Performances of the new models

compare well with the best-performing similarity measures (Jaro, Jaro-Winkler,

Double Metaphone and Edit Distance) in terms of precision, recall and F1. Even

though the work was carried out for the (Algeria/French Alphabet) case, it can

be adapted to any other (country/script) case, like (Egypt/English).

Keywords: Personal Name Matching, Phonetic Transcription, Phonetic

Encoding, Sequence Alignment, Machine Learning

Introduction

An increasing amounts of data are being generated

every day, especially, textual data which is at the core of

usage in public administrations. Personal names are

written in the Latin script in most Algerian public

administrations, such as civic administration, banks and

insurances. Writing the same person’s personal name in

different administrations by many persons has led to many

problems, such as when transferring money between

banks without verifying transcribed personal names.

Everyone is using his own cultural knowledge to map

the original listen or written personal name from Arabic

to Latin script, without relying on transliteration rules;

leading to different spellings for the same person’s

name. People from diverse cultural contexts may spell

the same Arabic personal name differently in the Latin

language. For example, the Arabic name (عبدالرحمن)

could be spelled differently as: (Abderrahmane,

Abderrahman, Abdourrahmane, Abd al-rahman, . . .).

This situation makes searching, retrieving and

matching Arabic names very difficult when they are

written in Latin script. It is worth noting that this

problem is not limited to Algerian personal names, it is

touching all countries influenced by French

colonization, such as the North African countries.

Different techniques have been developed to solve

English name matching cases. An early work by

Van Berkel and De Smedt (1988) aimed to do

typographical and orthographic corrections (Van Berkel and

De Smedt, 1988). Christen (2006) gave a detailed

discussion of personal name characteristics and

presented a comprehensive number of commonly used

name matching techniques. Even though the author

claims that there is no clear best technique to choose,

he provides series of recommendations that help to

select a name matching technique. However, matching

Arabic names written in Latin script is even more

complicated, since “there are no rules for the translation of

proper names” from Arabic script to Latin one (Halimah,

2016; Dweik and Al-Sayyed, 2016).

Attia Nehar et al. / Journal of Computer Science 2021, 17 (9): 776.788

DOI: 10.3844/jcssp.2021.776.788

777

In this study, we propose two new approaches for

pairwise matching of Arabic personal names written in

Latin script (French case). The first approach is based

on the use of phonetic transcription and sequence

alignment. First, we start by applying phonetic rules

(a function h) in order to bring together two different

writings (u = Mustapha, v = Mustafa) of the same

personal name (مصطفی) by: h(u) = [Mustapha] and

h(v) = [Mustafa]. Then, we introduce a new similarity

measure (score function) based on sequence alignment.

The second approach relies on the use of machine

learning techniques, precisely, a Multi-Layer

Perceptron (MLP) architecture is proposed. A set of

configurations is experimented with to determine the

best performing model. To the best of our knowledge,

no study has focused on this problem.

Source and Target Systems

Public administrations, in many Arabic countries, use

the Latin alphabet to write personal names. As said

above, this may lead to many problems, since writers

do not use a consistent way to transcript these personal

names. One source of inconsistency is due to the

variation in writing the personal name in the source

script itself. The Arabic name (فاطمۃ, Fatima) may be

written in many different ways like: (،فاطنۃ ،فطیمۃ

 Another source of variation is related to .(فاطیمۃ، فاطمۃ

the lack of consistency when writing Arabic names in

the Latin alphabet. Writers don’t use transliteration

rules or don’t use the same rules if any. In addition, the

peculiarities of source and target languages make

things even worst. Both Arabic and French lack some

of each other’s sounds and letters. For instance, there

is not a match for (ض ط ظ خ ع غ ق ہ) in French and

“P,G” in Arabic.

To cope with this, most of the developed approaches

are based on phonetic encoding, pattern matching, or a

combination of these two approaches (Christen, 2006).

Phonetics is a science that studies the characteristics of

human speech. It provides methods for the description,

classification and transcription of speech sounds

(O’Grady, 2012). The use of sequences of phonetic

symbols to represent speech is known as transcription.

The production of speech looks at the interaction of

different vocal organs, for example, the lips, tongue

and teeth, to produce particular sounds. By

classification of speech, the focus is on the sorting of

speech sounds into categories which can be seen in

what is called the International Phonetic Alphabet

(IPA), which is a framework that uses a single symbol

to describe each distinct sound in the language. It is

1Soundex System - National Archives, https://www.

archives.gov/research/census/soundex

based primarily on the Latin alphabet. The IPA is maintained

by the International Phonetic Association (also IPA) which

provides the academic community worldwide with a

notational standard for the phonetic representation of all

languages (IPAIPAS, 1999).

Phonetic encoding methods are used to convert the

original name string into a code based on its phonetic

transcription or by the way this name is pronounced

(Christen, 2006). One of the widely known phonetic

encodings is the Soundex algorithm (Biot, 1956), which

encodes names based on the way they sound rather than

the way they are spelled so that names like (‘Ahmad’) and

(‘Ahmed’) will have the same code. The generated

code for a name consists of a letter and three numbers,

such as A530 for the name string (‘Ahmed’). The letter

is always the first character of the name. Numbers are

assigned to the remaining letters of the name according

to Soundex rules. Zeroes are added at the end if

necessary to produce a four-character code1.

A more advanced phonetic encoding algorithm was

created by Lawrence Philips called metaphone (Philips,

1990). Like the Soundex algorithm, it tries to produce an

encoding of a string name based on how it is

pronounced. But it uses a sequence of letters rather than

just one letter to assign values. Besides, it uses the

entire string name and does not truncate it after

considering only some initial part. The main drawback

with this system and other Soundex-derived phonetic

encoding algorithms, is that they rely only on the

English pronunciation of the name. To cope with this,

Lawrence Philips introduced another enhanced version

called double metaphone, which accounts for other

foreign language pronunciations (Philips, 2000).

Sequence Similarity

Measuring the similarity between two sequences or

two words consists of evaluating to what extent these

sequences are close and even identical. This task is

often used in several important fields, including

information retrieval, bioinformatics, language and

speech processing, machine translation, etc. In this

section, we will illustrate some similarity measures and

briefly explain their calculation methods. We will

explore a number of similarity measures and distance

metrics, namely the Jaro, Jaro-Winkler and the Edit

Distance metric or Levenshtein distance. Let’s first

start by giving some preliminary definitions.

An alphabet (denoted by ) is a finite set of symbols.

We denote the size of alphabet  by ||. A string S = s1 s2

... sn over  is a finite sequence of symbols drawn from 

with length |S| = n and si denotes the ith element of S. The

Attia Nehar et al. / Journal of Computer Science 2021, 17 (9): 776.788

DOI: 10.3844/jcssp.2021.776.788

778

symbol  ∗ denotes the set of all strings over the alphabet

, whereas n is the set of strings with length equals to n.

The symbol ε denotes empty string

A string T is a sub-string of a string S if there are

strings U ∈  ∗ and V ∈  ∗ such that S = UTV (U and

V can be empty strings). Let U and V be two strings. The

concatenation of U and V is the string UV formed by

writing symbols of U first, then writing the symbols of V.

Let us start with the Levenshtein distance, also

referred to as edit distance, which is a string metric for

measuring the difference between sequences. It allows

insertions, deletions and replacements to start from one

string and get to the other one. In its simplified form, each

operation costs 1. So the Levenshtein distance between

two sequences is the minimal number of insertions,

deletions and replacements to make the two sequences

equal (Levenshtein, 1966). This distance is symmetric and

it holds 0 ≤ d_lev(S, T) ≤ max(|S|,|T|).

The Jaro metric [Jaro, 1989] is a widely used similarity

measure in the community of record-linkage (Cohen et al.,

2003). It was used mainly for duplicate name detection.

For two strings U and V, let U' be the characters in U that

are common with V (the meaning of common here is that

the matching character must be within half the length of

the shorter string) and inversely let V' be the characters in

V that are common with U. Let T_{UV} measure the

number of transpositions of characters in U' relative to V'.

The Jaro similarity simj is given by:

  ,1
,

3 2

U V

j

U TU V
sim U V

U V U

   
    

 
 (1)

A variant of Jaro similarity is proposed by William E.

Winkler which gives more favorable rating p to strings that
shares a long common prefix of length l (Winkler, 1990):

      , , 1 ,w j jsim U V sim U V l p sim U V     (2)

The standard value for the constant p is 0.1 and l is

considered up to a maximum of 4 prefix characters.

String Alignment Based Approach

The edit distance is formalized as a general parametric
method that is calculated with a specific set of allowed
edit operations and each operation is assigned a cost. This
can be further generalized by sequence alignment
algorithms which make the operation’s cost depends on
its context. In this study, we propose a new approach for
pairwise matching of Arabic personal names written in the
Latin alphabet. It is based on the use of phonetic
transcription and sequence alignment, which uses all the
allowed edit operations with a specific cost for each one.
These costs are chosen carefully to match personal names
with different spellings.

Let  be an alphabet and U, V two strings over . An

alignment of U and V is a word w ∈ ((Ս{−}×Ս {−})\

{(−,−)}) ∗ with:

     1 2,U w V w    

where Π1, Π2 are, respectively, the first and second

projections and Φ is a function that replaces every

occurrence of ‘−’ in a string by ε.

The size of an alignment w, denoted the by |w|, is the

number of symbols in w,

We illustrate this by an example. Let Σ = {A, C, G , T}

an alphabet and U = GAT GAG, V = GTCGAAG two strings

over Σ. A possible alignment of U and V is given by:

        , , , , , , , ,w G G A T T G C G A A A G G   

So that:

U' = 1(w) = G A T G − − A G

V' = 2(w) = G − T C G A A G

We can check that: Φ(U') = U and Φ(V') = V.

Definition: Let x, y ∈ . An edit operation is a symbol

(x, y) ∈ ((Ս {−} ×Ս {−}) \ {(−,−)}). It is called:

 Substitution if x ≠ y ≠ ‘-’

 Deletion if x ≠ ‘-’ and y = ‘-’

 Insertion if x = ‘-’ and y ≠ ‘-’

 Identity if x = y

To evaluate an alignment score, we first define a score

function as follow:

    : { } { } \ ,sc       

Given an alignment w = w1 w2 ...wn, the score of this

alignment can be defined as:

   
1

n

i

i

Sc w sc w


 (3)

For two strings U and V, there may be many possible

alignments. We have to find out the best one, i.e., the

alignment with the optimal score. Let W(U, V) be the set

of all possible alignments of two strings U and V. The

optimal alignment is calculated using dynamic

programming method such as:

    max ,optw Sc w w W U V  (4)

Considering Eq. (3) and (4), we derive two similarity

functions. The first one will be used to calculate the similarity

between name strings without any transcription. So we

define a score matrix between different symbols of Latin

Attia Nehar et al. / Journal of Computer Science 2021, 17 (9): 776.788

DOI: 10.3844/jcssp.2021.776.788

779

alphabet. Values will be chosen, with respect to the type of

symbols in wi (consonant/consonant, consonant/vowel or

vowel/vowel), from the set {−10, −7, −5, −3, −2, −1, 0, 1, 2,

3, 4, 5} as shown in Table 1 and 2. For the second similarity

function, it will be used to calculate the similarity of

transcribed names. Also, we define another score matrix

between different symbols of the IPA. Values will be chosen,

with respect to the type of phonemes in wi and their phonetic

similarity, from the set {−10, −5, −4, −2, −1, 0, 1, 2, 3, 4, 5}

as mentioned in Table 3 and 4. Optimal alignment scores

(wopt) are normalized to have values within [0,1]. Then, two

strings are considered similar if the optimal score is greater

than a fixed threshold t.

As mentioned before, score matrix values are

chosen appropriately to account for similarity between

Latin letters when they are used to write Arabic names

(Tables 2 and 4). For example, the Arabic name (طارق)

may be spelled differently as (‘Tarik’) or (‘Tariq’).

Hence, it is wise to have non negative scores for pairs

of letters like (‘j’, ‘g’) and (‘k’, ‘q’). Likewise, some

Latin letters are sometimes used indifferently to spell

Arabic names, like in (عبدالرحمن) which is written as

‘Abdurrahman’ or ‘Abdurrahman’. Thus, a neutral

score for pairs like (‘a’, ‘e’) is more convenient.

Furthermore, this approach can be applied to other

country/script cases, like for Egyptian personal names

written in the Latin alphabet. Indeed, having an idea of

how Egyptian writers pronounce the Latin alphabet

enables us to derive a scoring function adapted to catch

similarity between Egyptian personal names.

Table 1: Alphabetical score principle

Pair of symbols Score

(Letter, −) -5

(Vowel, consonant) -10

(Vowel, vowel) -3, -2, -1, 0, 1, 2, 3, 4

(Consonant, consonant) -10, -7, -5, -3, -2, 0, 2, 3

Similar letters 5

Table 2: Examples of alphabetical scores

Pair of IPA symbols Score

(‘b’, ‘b’) 5

(‘a’, ‘e’) 0

(‘j’, ‘g’) 2

(‘i’, ‘q’) -10
(‘b’, ‘p’) -2
(‘o’, ‘i’) -1

(‘q’, ‘k’) 3

Table 3: Phonetic score principle

Pair of IPA symbols Score

(Vowel, consonant) -10

(Vowel, vowel) -3, -2, -1, 0, 1, 2, 3, 4

(Consonant, consonant) -10, -5, -4, -2, 0, 2, 3

Similar symbols 5

Table 4: Examples of phonetic scores

Pair of symbols Score

(‘b’, ‘b’) 5

(‘œ’, ‘y’) 0

(‘u’, ‘œ’) 2

(‘E’, ‘E’) 5

(‘Z’, ‘Ã’) 5

(‘K’, ‘g’) 1

(‘j’, ‘e’) -2

Machine Learning Based Approach

In the first approach, score matrix values are chosen

by a human expert to account for similarity between

Latin letters when used to write Arabic names. These

matrix values will reflect a point of view that may

differ from expert to expert. To alleviate this

dependence on human expertise, we can derive these

values from data by learning.

The problem of Arabic Personal Names Matching

can be formalized as a machine learning problem as

follows. Let  be the set of French language alphabet

letters with a supplementary symbol ‘−’ and U, V two

Arabic string names written using . We set m to be the

maximal size of Arabic string names. U' and V' are two

strings over  derived, respectively, from U and V by a

lowercase of all symbols and right-padding each string

with the symbol ‘−’ to have | U'| = | V'| = m. Lets now

derive a string W ∈  ∗ as the concatenation of U' and V'

(obviously |W| = m' = 2×m). We define now a function

f(W) as follows:

 
1, .

0, .

if U V
f W

otherwise

 
 


 (5)

Such that U'  V' means that U' and V' are two equal strings

or they represent the same person’s name spelled differently.

The function f can be learned using an annotated dataset

of name pairs and an adequate learning model. Indeed, each

instance of the dataset represents a pair of string names which

will be hand-marked as a positive instance (class 1), hence,

representing the same person’s name (eventually spelled

differently), or marked as a negative instance (class 0) when

string names refer to different persons.

Unlike when dealing with a typical learning problem,

where similarity is calculated between instances, in the

problem of Personal Names Matching as formulated

above, similarity accounts for the pairs of string names

within the same instance. A neural network model is

well suited for this situation. We opted for a feed-forward

neural network architecture (a Multi-Layer Perceptron)

with an input layer with 2×m neurons fed by the

characters of W (Fig. 1). This architecture has n (with

n ≥1) hidden layers and a single output neuron with a

sigmoid transfer function.

Attia Nehar et al. / Journal of Computer Science 2021, 17 (9): 776.788

DOI: 10.3844/jcssp.2021.776.788

780

Fig. 1: General architecture of our feed-forward neural network

Results and Discussion

The first set of experiments is devoted to the first

approach. It aims at showing the effect of using an

appropriate scoring model, which ought to catch similarity

between identical Arabic person names written in Latin

alphabet by many writers, hence, spelled differently.

Performances of proposed similarity measures

(abbreviated hereafter: Alpha and phone), are assessed

against four other similarity measures, namely: Edit

Distance (Levenshtein distance), Jaro, Jaro-Winkler

and Double Metaphone, abbreviated as: Edit dist., Jaro,

Jaro wink and dmeta respectively. These measures

were calculated on the original string names, except for

dmeta which is calculated using an edit distance on

codes generated by the Double Metaphone algorithm.

In the second set of experiments, performances of

the proposed neural architecture are assessed with

different settings. First, we consider a Multi-Layer

Perceptron with only one hidden layer and we show the

effect of varying its size, i.e., the number of neurons.

Then, we consider an MPL with two hidden layers and

a grid search is performed over the size of these hidden

layers. All configurations are run for two activation

functions; relu and logistic sigmoid.

Dataset and Experimental Configurations

A large dataset was collected from many lists of personal

names taken from Algerian civic administrations, banks and

insurances. This dataset contains 20868 records representing

more than 5000 unique first and last names. A

pre-processing phase consists of cleaning string names

by removing non-alphabetical symbols and numbers, then

lowercase characters. Because it is infeasible to do a

matching of the entire dataset, consisting of 20868 names,

against itself, a subset was selected by a stratified random

sampling method. Indeed, we choose a size of 1000

entries (approximately 5% of total dataset size) by

dividing the alphabetically ordered dataset into 10 equal

subsets, then 100 entries were randomly drawn from each

subset. The resulting list is carefully hand-matched

against itself to have (1000 × 1000) annotated matrix. A

given entry equals 1 if corresponding names are identical

or represent the same name with different spellings,

otherwise, entry equals 0. To meet the requirements of

equation 5, we have generated from these entries another

dataset where each entry consists of a string W (the

concatenation of U’ and V’) and the corresponding class

value (0 or 1). The resulting dataset consists of 551 775

neatly annotated pairs of name strings and their

corresponding classes. Table 5 shows the dataset details.

Performances are evaluated using four metrics;

accuracy, precision, recall and F1, to account for all usage

contexts (Table 6).

Results and Discussion of the String Alignment

Based Approach

In order to evaluate quality of different measures on

the dataset, first, we show the effect of varying similarity

threshold values. For alpha, phone, jaro and jaro wink

measures, thresholds were taken from the set of values

[0.8, 1] with 0.01 step. Results are reported for each measure

in Fig. 2, 3, 4 and 5. For the edit dist and dmeta, thresholds

are {0, 1, 2, 3}. Results are reported in Fig. 6 and 7. Then, we

report results of each similarity measure with its best

performing threshold based on the F1 metric (Fig. 8).

Attia Nehar et al. / Journal of Computer Science 2021, 17 (9): 776.788

DOI: 10.3844/jcssp.2021.776.788

781

From Fig. 2, 3, 4 and 5, we show that, with an

appropriate threshold, the alpha, phone, jaro and jaro wink

measures achieved their best performances in terms of F1

metric. In Fig. 8, these best performances are compared.

As expected, alpha (with F1 = 94.16%) and phone

(with F1 = 95.06%) gave very competitive results with

the best performing measure (Jaro with F1 = 93.96%).

Moreover, we can notice the significant gap between

recall and precision for each similarity measure except

for alpha and phon. A possible interpretation of this

finding is that alpha and phone, with their appropriate

scoring model, are more able to account for Arabic

name strings in which more than one Latin character

may refer to the same Arabic character (the letter “¼”

may be spelled as “k” or “q” in Latin alphabet).

As shown in Fig. 6, it is clear that the Double

Metaphone similarity measure, which is based on

phonetic encoding, did not perform well for the Arabic

personal names matching problem. It failed to achieve

70% precision with its best performing threshold (equals

to 0). This is not a surprising result since only the first

letter and consonants are kept in the generated code by

this method. The Edit Distance (Fig. 7) gave its better

results with a threshold equals to 1 (F1 = 92.99%). With

more than one difference between string names, Edit

Distance will keep catching more true positives, hence,

enhancing recall at the expense of precision. This can

be explained by the fact that increasing threshold will

account for both identical string names spelled

differently and non-identical string names with near

spelling. This irreconcilable situation indicates the

inability of the Edit Distance measure for the Arabic

personal names matching problem.

To have a good understanding of these results, a

deeper analysis of errors is required. We give

comparative ratios of False Positives (FP) and False

Negatives (FN) for different measures over those of the

best performing phone measure (Eq. 6 and 7). This may

provide us with more knowledge on where each

measure is failing to catch similarities between Arabic

names written in the Latin alphabet.

_ measure
measure

phon

FP
FP ratio

FP
 (6)

_ measure
measure

phon

FP
FN ratio

FP
 (7)

From the second column of Table 7, we can notice that

Double Metaphone is more effective in avoiding false

negatives (ratio equals 33.64%). This could be explained

by the fact that Double Metaphone tries to produce an

encoding of a string name based on how it is

pronounced and Arabic is a highly phonemic language,

that is why two different spellings of the same persons’

name share a high phonemic similarity. For the context

of our application, we know that false positives are

more dangerous than false negatives. It may be bearable

to have a warning indicating that two string names are

different, although they are referring to the same person than

to miss two really different string names. Thus, false

positives need more attention. It can be inferred from the

third column of Table 7 that jaro-wink measure, with 100%

ratio, was as efficient as the phone measure at avoiding false

positives. Analysis of erroneous decisions taken by alpha and

phone could reveal more facts.

Indeed, in Table 8 we give examples of miss-classified

pairs of string names. Starting by FPs of the alpha

measure, we can infer that these errors are due to Arabic

string names with slight writing differences, mostly at the

end of names, like in (، عمارعماري) and (، عمرانعمراني)

which are written as (“AMMAR” and “AMMARI”) and

(“AMRAN”, “AMRANI”) respectively. It is worth noting

that these errors are well addressed by the phone measure.

Another source of FPs is due to Arabic letters (‘ا‘ ,’ع’)
which are transcribed equally by writers as an (‘A’). This

leads to confusion when it comes to writing names where

these two Arabic letters are adjacent but with inverse

order, like in (باعمارۃ and بعامرۃ) which are transcribed

nearly the same as “BAAMARA”, “BAAMERA”). The

examination of FNs reveals that there are many sources of

errors, which can be summarized as follows: First, the

same Arabic name may be pronounced very differently

among writers, like in (دخینیسۃ) which is transcribed as

(“DKINISSA” or “EDKHAINISSA”). The second writer

focuses on vowels at the beginning and middle of the

name, so that the transcribed name became (ادخینیسۃ).
Second, many Arabic letters are transcribed inconsistently

by writers, like the letter (‘غ’) in second position of the

name (جغاب), which is transcribed as (‘GH’) in

(“DJEGHAB”) and by (‘R’) in (“DJERAB”). The second

writer is influenced by the French language pronunciation

of the letter (‘R’) which is very close to the Arabic

pronunciation of the letter (‘غ’). Likewise, the second

occurrence of letter (‘س’) in (بن ساسیی) is transcribed as

(‘C’) in (“BEN SACI”) and by (‘SS’) in (”BEN SESSI”).

For the phon measure, analysis of FPs and FNs will

allow us to uncover many types of errors. Starting with

FPs, the first example (“BELABBASE”,

“BELABBACI”) is showing that different Arabic names

with nearly the same pronunciation will be missed by the

phone measure. This can be explained by the fact that in

the phone measure procedure, names are first transformed

to their phonetic transcription. The second example

(“BENCHOUIHA”, بن شویحۃ) highlights a problem

related to the letter (‘ح’) which is transcribed by most

writers as (‘H’). But, when it comes to the phone measure,

this letter will be silent, leading to confusion with

(“BENCHOUIA”, بن شویۃ). The third example tackles

Attia Nehar et al. / Journal of Computer Science 2021, 17 (9): 776.788

DOI: 10.3844/jcssp.2021.776.788

782

another issue with transcribing Arabic letters. The letter

 is transcribed inconsistently to (‘D’) or (‘DH’) by (’ض‘)

different writers. When it is transcribed to (‘D’), this will lead

to confusion with the letter (‘X’) which is also transcribed to

(‘D’). That is why names like (“BOUDERISSA”, (بود ریسة

and (“BOUDERSSA”, بود ریسة) are considered identical by

the phone measure. For the FNs, errors shown in the last

three examples suggest that phone measure is negatively

sensitive to the introduction of new sounds in string names.

The injection of the letter (‘D’) in (“BEDJAJ”) by the first

writer makes it quite different from (“BEJAJE”), written by

another writer. Likewise, introducing the letter (‘L’) in the

names: (“ABO KACEM”,“ABOULKACEM”) and (“ABDE

AZIZ”,“ABDELAZIZE”) make them quite different names.

In light of the above discussion of the results and

analysis of different error types, we emphasize the fact

that dealing with Arabic personal name matching is still a

very challenging task.

Results and Discussion of the Machine Learning

Based Approach

Two sets of experiments are performed to assess the

performances of our second approach to the Arabic

personal names matching, which is implemented using an

MLP classifier. The training/testing configuration is

compiled using a stratified k folding (with k = 4). In the

first configuration, we consider an MLP with one hidden

layer, with size l, which is trained using different values

for the size l (taken from the set of values [25,400] with 25

step) and two activation functions, namely: Relu and logistic

sigmoid functions. Results are reported in Fig. 9 and 10.

Table 5: Dataset details

Dataset size Class 0 size Class 1 size

551775 550498 1277

Table 6: Performance metrics

Accuracy Precision Recall F1

TP TN

TP TN FP FN



  
 TP

TP FP
 TP

TP FN
 2

2

TP

TP FP FN



  

Table 7: Ratios of FP and FN of different measures to the phone measure

Measures Ratio FN Ratio FP

Edit distance 93.49% 390.00%
Double Metaphone 33.64% 3290.00%
Alpha 112.15% 130.00%
Jaro 113.08% 140.00%
Jaro-winkler 124.30% 100.00%

Table 8: Examples of erroneous decisions taken by alpha and phon measures
 Errors
Measure --

Alpha measure (“AMMAR”, عمار) (“AMMARI”, عماریی)

FP (“AMRAN”, عمرانی) (“AMRANI”,عمرانیی (
 (“BAAMARA”,باعمارۃ) (“BAAMERA”,بعامرۃ)
FN (دخینیسۃ) (“DKINISSA”,“EDKHAINISSA”)
 (”DJEGHAB”,“DJERAB“))جغاب(
 (”BEN SACI”,“BEN SESSI“))بن ساسیی(
Phone measure (“BELABBASE”, (“BELABBACI”,)بلعباسی
FP (“BENCHOUIHA”, (“BENCHOUIA”,)بن شویۃ
 (“BOUDERISSA”, (“BOUDERSSA”, بود ریسة)
FN)بلعباس((“BEDJAJ”,“BEJAJE”)
 (”ABO KACEM”,“ABOULKACEM“))بن شویحۃ(
 (”ABDE AZIZ”,“ABDELAZIZE“))بودریسۃ(

Table 9: Best performing models from our two approaches

Model/measure F1 Precision Recall

MLP_1_relu 91.08 95.91 87.17
MLP_1_logistic 92.99 98.85 89.02
Alpha 94.16 96.00 92.40
MLP_2_relu 94.37 94.10 94.65
MLP_2_logistic 94.82 97.84 92.15
phone 95.06 97.31 92.92

Attia Nehar et al. / Journal of Computer Science 2021, 17 (9): 776.788

DOI: 10.3844/jcssp.2021.776.788

783

Fig. 2: Performances of Alphabetic scoring measure (alpha) in terms of accuracy, F1, precision and recall

Fig. 3: Performances of phonetic scoring measure (phone) in terms of accuracy, F1, precision and recall

Fig. 4: Performances of Jiro measure (jaro) in terms of accuracy, F1, precision and recall

Attia Nehar et al. / Journal of Computer Science 2021, 17 (9): 776.788

DOI: 10.3844/jcssp.2021.776.788

784

Fig. 5: Performances of Jaro-Winkler measure (jaro wink) in terms of accuracy, F1, precision and recall

Fig. 6: Performances of Double Metaphone measure (dmeta) in terms of accuracy, F1, precision and recall

Fig. 7: Performances of edit distance measure (edit dist) in terms of accuracy, F1, precision and recall

Attia Nehar et al. / Journal of Computer Science 2021, 17 (9): 776.788

DOI: 10.3844/jcssp.2021.776.788

785

Fig. 8. Performances of alpha, phone, jaro and jaro-winkler metrics in terms of F1, recall and precision

Fig. 9: Performances of the MLP with one hidden layer and relu activation function

Fig. 10: Performances of the MLP with one hidden layer and logistic sigmoid activation function

Attia Nehar et al. / Journal of Computer Science 2021, 17 (9): 776.788

DOI: 10.3844/jcssp.2021.776.788

786

As shown in Fig. 9, the MLP with one hidden layer

and a relu activation function gave its best result with

150 neurons (F1 = 91.08%, precision = 95.91% and

recall = 87.17%). With logistic sigmoid activation

function (Fig. 10), best performance was reached with

100 neurons (F1 = 92.99%, precision = 98.85% and

recall = 89.02%). A logistic sigmoid activation function

seems to be more appropriate with this architecture.

In the second configuration, we consider an MLP with

two hidden layers. A grid search was performed over the

size of these hidden layers (the size of each layer is drawn

from the set of values [25,200] with 25 step) and with the

relu and the logistic sigmoid activation functions. Results

are reported in Fig. 11 and 12.

For the relu activation function, the best-performing

model (F1 = 94.37%, precision = 94.10% and recall =

94.65%) was achieved by (l1, l2) = (25,200). However,

for the logistic sigmoid activation function, the

best-performing model (F1 = 94.82%, precision = 97.84

and recall = 92.15%) was reached by (l1, l2) = (150,175).

Here also, using logistic sigmoid activation function has

yielded a better results than relu.

Comparing our two approaches (Table 9), we can

confirm that alpha outperformed all configurations of

the MLP with one hidden layer. The phone similarity

measure has outweighed all configurations of the MLP

with two hidden layers.

Fig. 11: Performance of the MLP with two hidden layers and relu activation function, in terms of precision, recall and F1

Attia Nehar et al. / Journal of Computer Science 2021, 17 (9): 776.788

DOI: 10.3844/jcssp.2021.776.788

787

Fig. 12: Performance of the MLP with two hidden layers and logistic activation function, in terms of precision, recall and F1

Conclusion and Future Directions

In this study, we introduced two new approaches for

pairwise matching of Arabic personal names, written

with the Latin alphabet. The first approach is based on

the use of string names alignment with an appropriate

scoring model and the phonetic transcription. The first

derived method operates on source names written with

Latin alphabet without any transcription. An

appropriate scoring model is defined based on human

expertise that gave our alpha similarity measure. In the

second method, string names are first converted to their

phonetic transcription, then a scoring model for the IPA

alphabet was defined, which resulted in our phone

similarity measure.

Implementation of this approach and analysis of

experimental results against four other similarity

measures, namely: Edit Distance, Double Metaphone,

Jaro and Jaro-Winkler showed the appropriateness of our

derived measures. We found that alpha and phone gave a

reasonable precision-recall trade-off. Most notably, this is the

first study, to our knowledge, to address the Arabic personal

names matching problem as an alignment of strings written

in Latin alphabet and mapped to phonetic transcription.

In the second approach, we proposed a simple yet

effective neural architecture to learn a classifier that maps

a pair of string names to a binary class. Experiments

showed that using a deep neural network architecture (two

hidden layers) and by means of an appropriate size and

activation function, the MLP succeeded to reach very

Attia Nehar et al. / Journal of Computer Science 2021, 17 (9): 776.788

DOI: 10.3844/jcssp.2021.776.788

788

good performances. Though, using more data and deeper

architectures can result in a more powerful classifier.

However, some limitations are worth noting. The

deep analysis of bad decisions taken by alpha and

phone similarities appeals for more efforts on dealing

with peculiarities of both Arabic phonetics and Latin

script. In future work, we will focus on annotating more

large dataset and experimenting with more elaborated

scoring models.

Acknowledgment

The authors are grateful to general direction of

scientific research and technological development

(DGRSDT) – algeria, for supporting this research.

Author’s Contributions

Attia Nehar: Designed the research plan, developed

the theory and performed the computations and verified

methods. Contributed to the presentation, analysis and

interpretation of the results.

Slimane Bellaouar: Made considerable contributions

to this research by critically reviewing the literature

review and the manuscript for significant intellectual

content.

Djelloul Ziadi: Supervised the study and made

considerable contributions to this research by critically

reviewing the manuscript for significant intellectual

content. provided critical feedback in manuscript.

Khaled Moulay Omar: Presented idea. Contributed

to the collect of data and annotation.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of the

other authors have read and approved the manuscript and

no ethical issues involved.

References

Biot, M. A. (1956). Theory of deformation of a porous

viscoelastic anisotropic solid. Journal of Applied

physics, 27(5), 459-467.

 https://aip.scitation.org/doi/abs/10.1063/1.1722402

Christen, P. (2006, December). A comparison of personal

name matching: Techniques and practical issues. In

Sixth IEEE International Conference on Data

Mining-Workshops (ICDMW'06) (pp. 290-294). IEEE.
https://ieeexplore.ieee.org/abstract/document/4063641

Cohen, W. W., Ravikumar, P., & Fienberg, S. E. (2003,

August). A Comparison of String Distance Metrics for

Name-Matching Tasks. In II Web (Vol. 3, pp. 73-78).
http://dc-pubs.dbs.uni-

leipzig.de/files/Cohen2003Acomparisonofstringdist

ance.pdf

Dweik, B., & Al-Sayyed, S. I. (2016). Translating Proper

Nouns from Arabic into English: Barriers and

Procedures. Arab World English Journal (AWEJ)

Special Issue on Translation, (5).

 https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2

795878

Halimah, A. (2016). Translating Arabic Proper Names: A

Foreignizing Approach. International Journal of English

Language and Linguistics Research, 4(2), 1-16.

IPAIPAS. (1999). Handbook of the International Phonetic

Association: A guide to the use of the International

Phonetic Alphabet. International Phonetic

Association and International Phonetic Association

Staff. Cambridge University Press.

 ISBN-10: 0521637511.

Jaro, M. A. (1989). Advances in record-linkage

methodology as applied to matching the 1985 census

of Tampa, Florida. Journal of the American

Statistical Association, 84(406), 414-420.
https://www.tandfonline.com/doi/abs/10.1080/0162

1459.1989.10478785

Levenshtein, V. I. (1966, February). Binary codes capable

of correcting deletions, insertions and reversals. In

Soviet physics doklady (Vol. 10, No. 8, pp. 707-710).
https://nymity.ch/sybilhunting/pdf/Levenshtein1966

a.pdf

O'Grady, G. (2012). Key concepts in phonetics and

phonology. Macmillan International Higher

Education. ISBN-10: 1137292725.

Philips, L. (1990). Hanging on the metaphone. Computer

Language, 7(12), 39-43.

Philips, L. (2000). The double metaphone search

algorithm. C/C++ users journal, 18(6), 38-43.
https://dl.acm.org/doi/abs/10.5555/349124.349132

Van Berkel, B., & De Smedt, K. (1988, February).

Triphone Analysis: A Combined Method for the

Correction of Orthographical and Typographical

Errors. In Second Conference on Applied Natural

Language Processing (pp. 77-83).

 https://www.aclweb.org/anthology/A88-1011.pdf

Winkler, W. E. (1990). String Comparator Metrics and

Enhanced Decision Rules in the Fellegi-Sunter

Model of Record Linkage.

 https://eric.ed.gov/?id=ED325505

