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Abstract: Cardiovascular Diseases (CVD) cause more deaths worldwide 

than most of the other diseases. The diagnosis of cardiovascular disease from 

Magnetic Resonance Imaging plays a major role in the medical field. The 

technological revolution contributed a lot to increase the effectiveness of 

CVD diagnosis. Many Artificial Intelligence methods using Deep Learning 

models are available to assist the cardiologist in the diagnosis of CVD from 

Magnetic Resonance Imaging (MRI). In this study, we leverage on the merits 

of deep learning, transfer learning, and ensemble voting to improve the 

accuracy of Artificial Intelligence-based CVD detection. VGG16, 

MobileNetV2, and InceptionV3, trained on ImageNet, are the models used and 

the dataset is the Automatic Cardiac Diagnosis Challenge dataset. We 

customized the classification layers of all three models to suit the CVD detection 

problem. The results from these models are ensembled using the soft-voting and 

hard-voting approaches. Test accuracies obtained are 97.94% and 98.08% from 

hard-voting and soft-voting respectively. The experimental results demonstrated 

that the ensemble of outputs from transfer learning-based Deep Learning models 

produces much improved results for CVD diagnosis from MRI images. 

 

Keywords: Cardiovascular Disease, Deep Learning, Medical Imaging, 

ACDC Dataset, Transfer Learning 
 

Introduction 

Cardiovascular Disease (CVD) is listed as the foremost 

cause of death by the World Health Organization (WHO), 

with 17.9 million people dying yearly. Lifestyle-related 

issues such as overweight and obesity, hypertension, 

hyperglycemia, and high cholesterol increase the risk of 

heart-related diseases (Nolf et al., 2003). Furthermore, the 

American Heart Association adds symptoms like chronic 

cough and high heart rate, sleep problems, weight gain, and 

leg swelling (Piña et al., 2003) into this list. A report from 

WHO says that 67% is the best accuracy with which medical 

practitioners can correctly predict heart disease from clinical 

tests (Organization, 2007). On the other hand, these medical 

practitioners have massive medical data available that can be 

leveraged to predict cardiovascular diseases. These data can 

be used in information technology-enabled medical support 

systems to train AI-based disease prediction models 

(Shalev-Shwartz and Ben-David, 2014) (Friedman, 

2017; Marsland, 2011). 

In developing countries, the diagnosis and treatment of 

cardiac diseases are very complex due to the lack of 

modern diagnostic equipment and the unavailability of 

experienced physicians. It seriously affects the timely 

prediction and treatment of the disease. Due to these, the 

cardiac diagnosing approaches result in imprecise or 

delayed diagnosis. Furthermore, it is costlier as such 

computationally demanding and thus takes more time for the 

diagnosis (Haq et al., 2018). A physician may order specific 

tests to inspect symptoms of suspected cardiovascular 

diseases. It includes chest X-ray, blood tests, blood pressure 

monitoring, stress tests, and Electrocardiogram (ECG). ECG 

is a simple and very common, yet noninvasive diagnostic test 

that checks the rhythm and electrical activity of the heart. 

However, an asymptomatic patient may be diagnosed with 

normal electrocardiogram rhythm by ECG and it has certain 

limitations as a prognostic tool for predicting the future 

occurrence of heart diseases. Of late, medical practitioners 

started using angiograms as a rule for cardiovascular 

disease detection and diagnosis Shu et al. (2017). A 

patient's clinical history, physical test results, and 

examination of connected symptoms by the physician 

were considered in traditional approaches. 

Angiography is regarded as one of the most precise 

procedures for identifying heart problems among 

traditional methods. It, on the other hand, has a few 
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disadvantages such as it requires high cost, expert 

knowledge, and results in different side effects. These 

traditional techniques frequently result in uncertain 

results and take more time (Muhammad et al., 2020). 

Magnetic Resonance Imaging (MRI) is another 

important approach to medical diagnosis. In common 

cardiovascular disease diagnosis approaches, clinicians 

do manual segmentation of the MRI images to diagnose 

cardiac problems. However, this manual segmentation 

requires more labor and is time-consuming. The heart 

MRI gives important data for CVD detection by 

empowering quantitative appraisal of useful 

parameters such as myocardium thickness, the volume 

of the Left Ventricle (LV) and Right Ventricle (RV), 

and Ejection Fraction (EF). Thus, cardiovascular MRI 

segmentation has turned into an arising medical 

imaging field (Brewer et al., 2015). Because of the 

unique qualities of cardiovascular MRI, heart 

segmentation is a difficult task. For example, the 

brightness of LV intracavity varies from time to time and 

sometimes it shows similarities with signals of other heart 

organs. These irregularities make the manual assessment of 

cardiac diagnosis from MRI images more complex. Many 

existing approaches segment either the LV or the RV, but the 

diagnosis of some cardiac issues requires both LV and RV. 

Experiments to segment both LV and RV simultaneously are 

being undertaken by a few researchers (Hayes et al., 2008). 

With the invention and invasion of information 

technology into the medical field, many researchers 

started looking for technology-assisted methods for more 

cost-effective and better methods of diagnosing cardiac 

diseases. These intelligent systems can be used to assist 

physicians with a second opinion (Tama et al., 2020). A 

multivariate regression assessment through a longitudinal 

study can yield a risk forecasting model for coronary 

disease (Muthuvel et al., 2018). Different data mining 

approaches such as association rules (Ordonez et al., 

2001), Apriori, Predictive Apriori, Tertius (Nahar et al., 

2013), and more were used earlier to select, explore and 

model a large amount of patient’s data for the cardiac 

diagnosis (AbuKhousa and Campbell, 2012). 

Many studies have started applying Machine Learning 

(ML) based clinical trials to diagnose and predict various 

cardiac problems with decent accuracy. Specifically, 

efficient implementation of clinically designed ML 

algorithms improves the efficiency of the health care 

system in diagnosing CVD. There are frequently 

numerous elements that contribute to recognizing patients 

who are at risk for such common illnesses. ML techniques 

can help determine unseen patterns in these elements that 

might otherwise be ignored (Dinh et al., 2019). The 

advanced ML-based CVD monitoring technologies also 

provide a real-time diagnosis for personalized care 

(Krittanawong et al., 2020). Similarly, many researchers 

use ML algorithms when the collected data are in 

statistical form. Such data requires extensive screening 

and processing to efficiently extract features (Asfi-Ar- et al., 

2021). Nevertheless, the analysis of a huge dataset using 

traditional statistical approaches was impractical in most 

cases. Therefore, ML algorithms have emerged as one 

most significant tool in this modern era in analyzing and 

processing such statistical data for the development of the 

medical sector (Asfi-Ar et al., 2021). 

Cardiovascular imaging also plays an important role in 

the diagnosis of heart diseases and thus Deep Learning (DL) 

provides another opportunity to analyze these images for 

cardiovascular disease prediction (Martin-Isla et al., 2020). 

DL has become a prominent technology to effectively 

assist in many medical problems such as diagnosis, 

prediction, and intervention (Bizopoulos and Koutsouris, 

2019). The latest developments in DL have shown 

pathbreaking efficiency in image segmentation and 

detection. Nowadays, Convolutional Neural Networks 

(CNNs) are the backbone of DL because of their fastest 

implementation and ability to extract many features from 

the input data. Compared with traditional ML methods, 

Deep CNNs have achieved much better positive results 

in image segmentation, detection, and classification 

tasks. The CNNs are made to look like neuronal 

patterns of bio connectivity and this helps to extract 

more features from the entire image than done 

manually (Shivamurthy et al., 2014; Farag and 

Fakhreldin, 2012). 

The main aim of our proposed work is to detect 

cardiovascular disease using AI-based methods. We used 

models trained on ImageNet weights to classify CVD from 

the Automated Cardiac Diagnosis Challenge (ACDC) 

dataset. The model's architectures are customized to suit the 

CVD detection problem. Another objective was to achieve 

good performance from a smaller dataset. 

Literature Review 

According to WHO, cardiovascular diseases caused 

38% of the 17 million premature deaths that happened due 

to non-communicable diseases in the year 2019. People 

from below-average and average-income families account 

for at least three-quarters of all CVD deaths worldwide. 

Alcohol consumption, tobacco use, unhealthy food, and 

physical inactivity are the major behavioral risk factors 

for CVD. A heart attack or stroke could be the initial 

symptom of a more serious cardiovascular disease. Heart 

attack symptoms include pain in the center of the chest 

area and joins. Furthermore, the individual may 

experience vomiting, shortness of breath, and more. These 

are all signs of heart attack, stroke, heart failure, and other 

cardiac consequences which can be detected in clinics. It 

is known that people with CVDs and other 

noncommunicable illnesses in these countries have 

reduced access to effective and equitable health care 

services. As a result, many people in these nations die 
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from CVDs and other non-communicable diseases at a 

younger age, sometimes in their prime working years 

(Martin-Isla et al., 2020).  

Physical examination of the cardiac involves noticing 

the movements of the heart, auscultation of the cardiac, 

palpation and percussion, and the evaluation of the arterial 

pulse and venous pulsations. The palpation can aid in the 

identification of heaves and lifts thrills, impulses, and the 

first (S1) and second (S2) heart sounds. In inspection, the 

patients are required to show the whole chest to the doctor. 

A close inspection of the patient can reveal ventricle 

movements or the point of maximal impulse which helps 

to identify certain CVD conditions. Even if the palpation 

is accurate, the percussion can be used to estimate the 

size of the heart (Neary and Pinson, 2015; Nicholas 

Zakov, 2021). A doctor can listen for dullness in the 

heart by tapping the spaces between the ribs from the 

left side of the chest. Listening to all four areas of the 

heart such as aortic, pulmonic, tricuspid, and mitral 

with a stethoscope is important to record any murmurs, 

rubs, or gallops. A pulmonary examination can also aid 

in the diagnosis of cardiac diseases such as the 

auscultation of specific lung sounds or pleural 

effusions. An unusual sound detected during a 

pulmonary examination may indicate a negative heart 

condition. However, it is neither well organized nor 

conclusive to make a person go through all these 

examinations. (UCSD, 2021; Holler et al., 2015). 

The current ultrasound technologies can provide an 

immediate answer to many cardiac-related problems, but 

with certain limitations. Based on Echocardiography 

(ECG), even to the professional, much of cardiovascular 

disease is neither observable nor precisely measurable on 

the physical verification. For example, irregularities 

around the heart valves are frequently overlooked; the 

pumping of oxygen-rich blood to the aorta may be 

significantly reduced without any observable anomaly. As 

a result, it is better to think of the physical checkup and 

the echo as a supplementary method. In contrast, with a 

negative cardiac physical checkup and a normal ECG, an 

echo need not be performed in many cases (Neary and 

Pinson, 2015). Breath holds test length, contrast medium 

reactivity, and relatively high cost are the main drawbacks 

of cardiac MRI sequences. New real-time MRI sequences 

alleviate some of these drawbacks (Saeed et al., 2015). 

Khaleel Faieq and Mijwil (2022), researchers used 

Support Vector Machine (SVM) and Artificial Neural 

Networks (ANN) to predict heart disease using body 

parameter data and achieved the highest accuracy of 

85.8%. The authors (Qian et al., 2022) used L1 

regularized logistic regression (L1-LR), SVM, and 

AdaBoost algorithms for heart disease prediction with a 

cumulative incidence of 9.26%. The SVM, K-Nearest 

Neighbor (KNN), Decision Trees (DT), and ANN used 

for cardiac prediction using the heart attack dataset 

achieved the highest test accuracy of 85.24% with the ANN 

model (Pasha et al., 2020). Many researchers (Shorewala, 

2021; Radhakrishnan et al., 2021; Alqahtani et al., 2022) 

have stated that ML algorithms can be used as a good tool 

for diagnosing CVD using statistical data. They achieved 

results accurately and rapidly using various ML 

algorithms. Meda and Bhogapathi (2022) developed the 

fuzzy neural-genetic algorithm-based model to classify 

and categorize cardiac diseases using UCI Cleveland 

Heart Disease (UCI) Dataset. Santhi and Renuka (2020) 

achieved 96% classification accuracy for five classes of 

cardiac using various ML algorithms using the UCI dataset. 

Channabasavaraju and Vinayakamurthy (2020) used 

Random Forest Feature Selection (RFS) strategy to extract 

features from the UCI dataset to improve the prediction 

accuracy of heart disease. Santhi and Renuka, 2020 used 

Cluster-based Disease Diagnosis (CDD) with different ML 

classifiers and UCI datasets to predict cardiac diseases 

(Mohan et al., 2020). Many other research works 

(Rajalakshmi and Madhav, 2019; Elsayad and Fakhr, 2015) 

used various ML techniques and datasets to detect CVD with 

limited accuracy. 

A novel contingent Generative Adversarial Networks 

(GAN) model was proposed by Xia et al. (2021) to 

empower high-resolution imaging technology, 3 

Dimensional (3D) isotropic heart Magnetic Resonance 

(MR) reproductions, utilizing single image stacks. 

Bernard et al. (2018) showed a detailed description of 

different classification and segmentation research done 

using the ACDC dataset in their survey published in 2018. 

They noticed that the highest accuracy from the available 

research work was 96% obtained using a Random Forest 

(RF) architecture and the second-highest was 92% 

which was obtained from both RF and SVM models. 

Ammar et al. (2021) suggested a DL network called UNet 

for both cardiac segmentation and diagnosis. The study 

was conducted on a dataset of 150 patients from Dijon 

Hospital, France in the context of the Medical Image 

Computing and Computer Assisted Intervention 

(MICCAI) conference 2017. The ACDC dataset with the 

5 classes of the data was used for training the model. They 

have used an SVM model, an RF model, and a Multilayer 

Perceptron model (MLP) in their work which was 

ensembled using the soft-voting approach. The training 

set contained 100 patients' data, that is each pathology 

category with 20 samples. The test set contained 50 

patients' data (10 samples for each pathology category) 

and they achieved 92% test accuracy. 

Yang et al. (2018) used an ensemble of UNet-based 

architectures to segment cardiac elements. They trained an 

RF classifier and regularized MLP model and ensembled the 

results to predict the pathologic target class. The model 

achieved a cross-validation training accuracy of 94% and 

92% of test accuracy. Baumgartner et al. (2017) 

investigated different 2-Dimensional (2D) and 3-
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Dimensional (3D) convolutional neural network models for 

segmentation from the ACDC dataset. The experiments 

revealed that the performance of 3D U-Net models is not as 

good as that of 2D U-Net models. Khened et al. (2017) 

proposed a combination of Inception and DenseNet blocks 

for cardiac MRI image segmentation. This model achieved 

an accuracy of 96% with RF as the classifier. Mijwil and 

Shukur (2022) in their review paper summarized 20 research 

works using various ML and DL methods. They tabulated 

the techniques used and the accuracy achieved. According to 

them, the highest accuracy of 95% was achieved by a CNN 

model using intracardiac voltage time-series data.  

Jang et al. (2017) proposed a Fully Convolutional 

Network (FCN) architecture based on M-Net for CVD 

detection from MRI images. This architecture, based on U-

Net architecture, has the same layers as that of M-Net except 

for the 3D convolution filter. They obtained average dice 

scores, a measurement used to match DL output with ground 

truth annotation, of 94%, 89%, and 88% respectively for LV, 

RV, and myocardium segmentation. Patravali et al. (2017) 

developed 2D and 3D convolutional segmentation pipelines 

for cardiac MRI image segmentation. The Deep CNN-based 

models were trained on the ACDC dataset. Both 2D and 3D 

segmentation model architectures were adapted from U-Net 

and trained with a Stochastic Gradient Descent optimizer for 

300 epochs. They achieved dice scores of 95%, 90%, and 

86% for LV, RV, and myocardium from the 2D pipeline and 

95%, 91%, and 85% for LV, RV, and myocardium 

respectively from the 3D pipeline. Abdeltawab et al. (2020) 

suggested a new DL framework for detecting LV function 

and mass quantification using the ACDC dataset. Using the 

grid search method, they arrived at the optimal values of the 

hyperparameters to obtain the best segmentation results. The 

proposed approach achieved a dice score of 95% for LV and 

88% for the myocardium. Murugesan et al. (2020) proposed 

a context-based cross-entropy loss for U-Net and GAN-

based network, Seg-Global Local GAN (Seg-GLGAN), to 

reduce the class imbalance problem in segmentation. The U-

Net-based model achieved a dice score of 85% and Seg-

GLGAN achieved a dice score of 85.6%. 

Paranthaman et al. (2022) proposed a heart attack 

forecasting system using DL techniques and an MLP-based 

model to estimate the probability of occurring heart disease 

in each patient. Isensee et al. (2021) proposed U-Net-based 

3D cardiac segmentation and classification models using an 

ensemble of MLP models and an RF classifier. They used the 

Adam optimizer to train the 3D model for 300 epochs and 

achieved a training accuracy of 94% and 92% of test accuracy.  

We found that most of the existing DL-based works 

used U-Net based model with CVD images. Among 

them, only a few are for CVD classification. To the best 

of our knowledge, the highest accuracy achieved from 

similar existing works was 96% (Bernard et al., 2018; 

Khened et al., 2017). 

Materials and Methods 

 In this study, we propose a model to predict the 

occurrence of cardiovascular disease from magnetic 

resonance imaging images. We leverage the effectiveness 

of deep learning, transfer learning, and ensemble 

techniques to achieve optimum results. 

The ACDC Dataset  

The ACDC dataset (Janik et al., 2021) was created 
from genuine clinical tests obtained at the University 
Hospital of Dijon, France. The collected data were 
completely anonymized and organized inside the 
guidelines set by the moral advisory group of the 
hospital. The dataset was made from 150 tests 
conducted on various patients. This is divided into 5 
subgroups of which 4 are pathological classes and 1 for 
normal class. Additionally, body parameter values such 
as diastolic and systolic phase instances, weight, and 
height are also part of this dataset. 

Data Pre-Processing 

The original slice thickness of MR images varied from 
5 to 10 mm. The spatial resolution varied between 1.34 
and 1.68 mm2/pixel (Bernard et al., 2018). In the first pre-
processing stage, we resized all the images into 299 × 299 
× 3. The original images were 4 Dimensional (4D) in Nifti 
format (Janik et al., 2021). We used a third-party software 
called Medcon (Nolf et al., 2003) to convert images in Nifti 
format to Digital Imaging and Communications in Medicine 
(DICOM) format since it is the most common format for 
medical images. For example, the first frame with nine slices 
(1 to 9) from a 4D image of a patient, Patient number 15, is 
demonstrated in Fig. 1. The original image was made up of a 
total of 21 frames and each frame contained 9 slices. 
Therefore, a total of 189 slices are available in this 4D image. 
The center-center slice separation mechanism was used to 
generate DICOM images. The width of a new slice is equal 
to the slice spacing value of two slices 
((X)MedCon|Docs/SliceSeparation). The slices are 
generated by manipulating their volume in the transverse, 
coronal, or sagittal re-slicing manner (Nolf et al., 2003). The 
last frame, frame number 21, of the same patient’s 4D image 
is shown in Fig. 2. The differences between each slice of the 
same 4D image are minimal. And the slices from the same 
position of two different frames of the same 4D image have 
more similarities. For example, slice 5 from frame 
1(demonstrated in Fig. 3) and slice 185 from frame 
21(demonstrated in Fig. 4) look similar. Therefore, we 
have chosen slices randomly from the extracted frames 
of these 4D images, which also helped to extend the 
dataset size. We stored these extracted slices in 
DICOM format, thus creating a dataset of 5600 images 
in the training set, 1200 images in the validation set, 
and 280 images in the test set. In our work, these 
DICOM format images are loaded and later converted 
into a NumPy array for training with the DL models. 

about:blank
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Fig. 1: Frame number 1 of patient number 1 
 

 
 

Fig. 2: Frame number 21 of patient number 15 

 

 

 

Fig. 3: Slice number 5 of patient number 15 

 
 

Fig. 4: Slice number 185 of patient number 15 
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The DICOM images contain details about the patient 

and the imaging techniques used, as displayed in Fig. 5 

and 6. Such information from DICOM images helps the 

model extract more features easily during the training. 

Each DICOM image is standalone; the header contains all 

the information required to identify the file. Patient, study, 

series, and instance are the four levels of hierarchy in which 

this data is arranged. The person who is being examined is 

called a patient. The study is an imaging process that is done 

in the hospital at a specific date and time. There are several 

series in each study. A series can reflect the patient being 

physically scanned many times in one study or it can indicate 

the patient being scanned once and the data is reconstructed in 

various ways. Every slice of a three-dimensional image is 

handled as its instance. The DICOM file itself is referred to as 

an instance (Understanding, 2022; DICOM. How to read, 

write and organize… | by Alexander Weston, Ph.D. | Towards 

Data Science). 

VGG16 Model 

The VGG-16 is one of the most used pre-trained image 
classification models. It was developed in Oxford 
University's Visual Graphics Group. This VGG16 is trained 
on ImageNet weights, featuring 13 convolutional layers, 5 
pooling layers, and 3 fully connected layers. It has several 
3×3 filters with 1 PX as a stride on each layer of convolution 
as shown in Fig. 7. The last layer used for classification is a 
SoftMax layer. The ReLU method was used as the activation 
function in each block. The most distinctive feature of 
VGG16 is that it prioritized convolution layers of a 3x3 filter 
with stride 1 rather than many hyper-parameters and 
consistently employed the same padding and maxpool layer 
of a 2×2 filter with stride 2. There are 64 filters in the first 
convolutional layer, 128 filters in the second, 256 filters in 
the third, and 512 filters in the fourth and fifth convolutional 
layers (Han et al., 2015) (Rezende et al., 2018). 

InceptionV3  

The InceptionV3 model, developed by Google, has 

312 layers in a total of 10 blocks. This model consists of 

3 inception blocks, 13 convolutional layers, and 2 pooling 

layers as shown in Fig. 8. Each convolution layer contains 

several 3×3 filters with 2 PX as a stride. The number of 

output nodes in the last layer is identical to the number of 

categories in the dataset. In each convolution block, the 

SoftMax layer is used as the classification layer and ReLU as 

the activation function. By calculating 1×1, 3×3, and 5×5 

convolutions inside the same network module, the inception 

module aims to serve as a multi-level feature extractor. The 

name of this architecture's first iteration, GoogLeNet, has 

now been dropped in favor of just Inception vN, where N is 

the version number released by Google (Wang et al., 2019). 

MobileNetV2 

The MobileNetV2 model contains 16-layer blocks 

with 3×3 filters and 1 PX as a stride in each layer of 

convolution. This model is also developed by Google. The 

only distinction between MobileNet and other CNNs is the 

use of a thorough convolutional division, which divides the 

convolution into a 3×3-depth and 1x1-pointwise 

convolutions respectively, as shown in Fig. 9. MobileNetV2 

also used SoftMax for classification and ReLU as activating 

function. The MobileNetV2 model contains two types of 

blocks. They are residual blocks with stride as 1 and 

downsizing blocks with stride as 2. Three types of layers are 

constructed for these two blocks. The ReLU6 is used in 1×1 

convolution as the initial layer with non-linearity. The 

second layer was made for depth-wise convolution. The 

third layer is a 1×1 convolution with no non-linearity 

(Patel and Chaware, 2020). 

Transfer Learning 

Transfer learning is an advanced technique in deep 

learning that involves training a CNN model on a similar 

problem to the one being solved. It is a method for feature 

representation from a previously trained model that saves 

us from having to train a new model from scratch. It helps 

in transferring the problem knowledge from one source to 

another, as shown in Fig. 10. 

 

 
 

Fig. 5: The extracted information about the patient from the DICOM image of patient number 15-Part 1 
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Fig. 6: The extracted information about the imaging from the DICOM image of patient number 15-Part 2 
 

 
 

Fig. 7: Flow diagram of customized VGG16 model 
 

 
 

Fig. 8: Flow diagram of customized InceptionV3 model 
 

 
 

Fig. 9: Flow diagram of customized MobileNetV2 model 
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Fig. 10: General architecture diagram for transfer learning 
 

A pre-trained model is typically trained on a huge 

dataset such as ImageNet and the weights obtained from 

the trained model can be used with the custom neural 

network for any other related problem (Transfer Learning 

for Image Classification using Tensorflow |Towards Data 

Science). The re-utilization of weights through this 

mechanism helps to effectively train a model in less time 

and produce output with minimum generalization error. 

These newly constructed models can be used directly for 

predictions on relatively new tasks or in training processes 

for related applications. The last layer contains many 

parameters about the original dataset since all the pre-

trained models are already trained with a huge dataset. 

Therefore, replacing the last layer of the pre-trained 

models with a new classification layer is required. The 

model's performance depends on the similarity between 

the source and target data (Patel and Chaware, 2020).  

ImageNet 

It is a massive dataset of annotated photographs 

designed for computer vision research work. This dataset 

comprises around 14 million images with over 21000 

classes. In a deep learning context, the ImageNet Large-

Scale Visual Recognition Challenge (ILSVRC) was 

specially developed for image classification problems 

with transfer learning. This challenge act as a benchmark 

in transfer learning-based image classification problems 

(Krizhevsky et al., 2017). 

Ensemble Methods 

In general, ensemble learning is training many networks 

on the same dataset, then utilizing each of the trained models 

to predict and aggregate the predictions in some fashion to 

provide an outcome or prediction (Opitz and Maclin, 1999). 

In this proposed work, we used hard-voting and soft-voting 

ensemble approaches, and more detailed descriptions of the 

used ensemble techniques are given below. 

I. Hard-Voting  

Hard voting is an ensemble technique in which the 

class that gets the maximum votes from all classifiers is 

chosen. Just assuming classifiers are independent, the 

ensemble will perform better compared to the individual 

low-performing classifiers. However, they are trained on 

the same data. The final prediction in hard voting is made 

through a majority vote in which the aggregator chooses the 

class prediction that appears repeatedly among the base 

models (Kumari et al., 2021). This approach is appropriate 

for models that predict separate class labels when classifier 

outputs are not independent, as well as for binary class issues 

where the number of included classifiers is not odd. It uses 

the predictions from each classifier as input and then 

computes the votes for each target label. The 

prediction/result of the hard voting ensemble model is the 

label with the majority of votes after this computation 

(Peppes et al., 2021). For example, Predictions: 
 
Classifier 1 predicts class A  

Classifier 2 predicts class B  

Classifier 3 predicts class B  

Classifier 2 and Classifier 3 predict class B, so class B is 

the ensemble decision. 

 

II. Soft-Voting  

Soft-voting is an ensemble technique in which the class 

that gets the most votes based on the probability score from 

each classifier is chosen. If all classifiers can assess the 

probability of classes using a function, then find the 

middle value of singular classifiers. The soft voting 

approach regularly performs better compared to the 

hard-voting approach. 

Base models in soft voting should use the probability 

technique. Because it incorporates the predictions of several 

models, the voting classifier produces better overall results 

than other base models (Kumari et al., 2021). It is generally 

implemented when the built models predict probabilities for 

each included class, as well as when it is evident that a 

classifier produces superior output results than the other 

classifiers included (Peppes et al., 2021). Prediction is 

almost similar to the previous example, but use only class 

B as it is a binary classification problem: 
 
Classifier 1 predicts class B with a probability of p1 

Classifier 2 predicts class B with a probability of p2 
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Classifier 3 predicts class A with a probability p3 So, the 

ensemble model will predict class B with probability 

p = (p1 + p2 + (100-p3))/3 

 

Proposed Approach 

The outline of our work is shown in Fig. 11. It consists 

of the following steps: Acquisition of the ACDC dataset, 

data extraction, data pre-processing, data augmentation, 

choosing pre-trained models for transfer learning, 

feature extraction, and classification using the VGG16, 

InceptionV3, and MobileNetV2 models and ensemble 

using soft-voting and hard-voting methods. The 

converted ACDC dataset images were in the RGB 

format within the pixel range of [0,255]. In the pre-

processing phase, all those images were rescaled into 

the range [0,1] as per the pre-trained model's 

requirements. In transfer learning, the classification 

layer of pre-trained models may not be helpful for the 

new classification task. Therefore, we replaced it with 

a fully connected layer at every model's top layer. The 

pre-trained network was kept frozen and thus only the 

weights of the top four layers and one classifier layer 

were modified during the training. In this proposed 

approach, a SoftMax layer was used on top of all the 

models as a classification layer. For training the first 

10 epochs, an Adam optimizer with a learning rate of 

0.0001 was used. We used a different optimizer called 

RMSprop from epoch 10 to 100 with a learning rate of 

0.00001. Using a different optimizer suddenly boosted 

the model performance. We considered different 

parameters such as the number of trainable layers 

including original and extra added layers, epochs, 

learning rate, and optimizers for the fine-tuning process of 

all the models. Table 1 demonstrates the optimal hyper-

parameters used in different experiments. 

Over-Fitting Prevention Techniques  

The ACDC dataset contains scanned Magnetic 

Resonance Images (MRI) of hearts. Meanwhile, the 

ImageNet dataset does not contain similar image 

classes. Due to this dissimilarity between the source 

and the target dataset images, our model started 

overfitting during the training. We applied various 

techniques to overcome this issue. The most used 

technique to avoid over-fitting is applying data 

augmentation. Data Augmentation is used to increase dataset 

size by applying some geometrical techniques to the original 

dataset. It helps to create so many similar images and reduce 

overfitting (Pavanelli Vianna, 2018; Analytics, 2022). We 

generated 75000 augmented images from 5600 original 

images with the help of the Keras ImageDataGenerator 

method using different geometric techniques such as 

rotation, width shifting, zooming, horizontal flipping, 

and brightness changes. 

The dropout algorithm can be used as a solution to 

over-fitting by which the model's performance is 

enhanced by altering neurons randomly on every 

iteration. A dropout map with the same neuron size is 

initialized randomly to mark the on or off state of the 

corresponding neuron in each iteration. During training 

iterations, the neurons with off status are removed from 

the network. The activation signal is disabled for 

forward propagation and the error signal for backward 

neuron propagation. All neurons are enabled during 

testing, but the activation signal is decreased to average 

turn-up during training (Garbin et al., 2020). The 

dropout rate of 0.5 gave optimum results in                         

our experiments. 

Weight regularization methods such as weight 

decay restrict the loss function as a neural network is 

trained to use small weights. A reliable model and less 

likely to overfit the training dataset could lead to 

smaller weights within a neural network, resulting in 

optimal results in predictions. A weight constraint is a 

trigger that controls the weight, size, or size of the 

weights and scales them all below a defined threshold 

(MLM, 2022). We applied Unit Norm weight 

constraints into the model to reduce over-fitting. It 

forced weights into a magnitude of 1.0. Then, we used 

white noise which is a special case of Gaussian noise 

with a standard deviation of 0.1 for the input samples 

to enhance the model's stability. 

We also used the early stopping method (Use Early 

Stopping to Halt the Training of Neural Networks at the 

Right Time) (Venu, 2020) to solve for over-fitting. 

Early stopping is a kind of regularization in which a 

model is trained using an iterative method, like gradient 

descent. It suggests how many iterations can be 

performed before the overfitting starts. We applied the 

validation accuracy with the patience of six epochs as 

the monitoring measurement in this method. Therefore, 

it automatically stops the training if there is no 

improvement in validation accuracy in every                    

six epochs.  

We trained the customized VGG16, MobileNetV2, 

and InceptionV3 models for 100 epochs using 5600 

original images and 75000 augmented images.1200 

images were used for validation and 280 images for 

testing. Keras libraries with Python 3.7.6 was used to 

build the proposed model since it provides access to 

load the pre-trained models on the ImageNet dataset 

directly and more convolutional layers can be easily 

added to the model. Python and TensorFlow were used 

on an Ubuntu machine with GTX 1080 GPU, 12 th 

generation i7 @ 4.600GHz CPU, and 64359 MiB RAM.  
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Fig. 11: Flow diagram of the proposed work 
 
Table 1: Fine-tuning for each model  

Model NL NAL NTL Epochs Learning rate Optimizer 

VGG16  18  5 13 1-100 0.00010 Adam 

    10-100 0.00001  RMSprop 

InceptionV3 310  5  64 1-100 0.00010 Adam 

    10-100 0.00001 RMSprop 

MobileNetV2 153 5 6 1-100 0.00010 Adam 

    10-100 0.00001 RMSprop 

*NL: Number of original Layers, *NAL: Number of extra Added Layers, * NTL; the number of Trained Layers (original + customized) 

 

Results and Discussion  

We evaluated the performance of the model using 

different accuracy measurements. The training and 

validation accuracies were measured to assure that the 

model has gained enough knowledge through the 

training and to ensure that the over-fitting is minimal. 

The testing accuracy was calculated after the 

completion of training by using 280 test images. For all 

these measurements we calculated the average training 

and validation accuracies of the last 20 epochs. Two 

different ensemble approaches such as soft voting and 

hard voting were applied to the results of individual 

models. After these ensembles, we achieved 97.94% 

test accuracy from hard voting and 98.08% from soft 

voting. The model has taken 16 hours to complete 100 

epochs of training. 

Accuracy is the most used metric to evaluate the 

performance of DL models. It is the proportion of the correct 

number of predictions to the total number of inputs used: 

 

 (1)  

The training graphs for VGG16, MobileNetV2, and 

InceptionV3 models are given in Fig. 12, 13, and 14 

respectively. It contains the accuracy and loss 

measurements that are used to evaluate the model's 

performance on both training and validation datasets. 

The graphs clearly show that there is no over-fitting 

during the model's training. Both the training and 

validation accuracies gradually increased for the 

epochs. In the initial stage of the training, there was 

some fluctuation in both the accuracies which became 

steady as the training progressed. It is also observed 

that the loss measurements gradually decreased until 

the last epoch. We can conclude from this analysis that 

the model achieved efficient results without                         

any overfitting. 

Table 2 gives the results from individual models and 

hard-voting ensembles. Concerning epochs, the 

accuracies kept on increasing in all the experiments. 

After 30 epochs of training, the MobileNetV2 model 

achieved the highest test accuracy 83.21% meanwhile 

InceptionV3 and VGG16 achieved test accuracies of 

81.12% and 81.6% respectively. But the hard-voting 

ensemble accuracy reached 84.62% at this point which 

was higher than the test accuracy from MobileNetV2. 

Number of correct predictions
Accuracy

Total number of predictions made
=
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The MobileNetV2 model also showed the highest 

training accuracy of 85.17% and validation accuracy of 

84.34% during this period. The difference between the 

training and validation score of all three models was 

just around 1% only which ensured no overfitting 

during the model's training. The MobileNetV2 model 

again showed the highest training, validation, and test 

accuracies with 92.54%, 91.07%, and 90.21% 

respectively after 60 epochs of training. But the 

ensemble score of 91.07% was a little higher than the 

MobileNetV2 model's test accuracy. The VGG16 has 

achieved the highest test accuracy of 97.03% and 

validation accuracy of 96.92% among all the individual 

models and the least accuracy was 96.09% from 

MobileNetV2 in 100 epochs. The InceptionV3 model 

resulted in the highest training accuracy of 97.78%. 

The gap between training and validation score from all 

individual models were just less than 2% only which 

ensured all models trained well without any overfitting 

issue. An ensemble using hard voting of all these three 

models gave an accuracy of 97.94%. 

The results from individual models and soft-voting 

ensembles are given in Table 3. The accuracies kept on 

increasing with epochs in all four experiments. The 

MobileNetV2 model had the best test accuracy of 

83.88% after 30 training epochs, while InceptionV3 

and VGG16 had test accuracies of 81.39% and 81.57%, 

respectively. However, the soft voting ensemble 

accuracy at that time was 84.79%, which was more than 

the MobileNetV2 test accuracy. The MobileNetV2 

model also had the best training and validation 

accuracy, at 85.23% and 84.42%, respectively. All 

three models' differences between training and 

validation scores were less than 2%, showing no 

overfitting during model training. After 60 training 

epochs, the MobileNetV2 model once more 

demonstrated the best test accuracy of 90.21%. 

However, compared to the MobileNetV2 model, the 

ensemble score of 91.07% was somewhat higher. The 

VGG16 showed the highest training accuracy of 

92.89% and validation accuracy of 92.81% at that 

time. The VGG16 has achieved the highest test 

accuracy of 97.17% and validation accuracy of 

96.84% among all the individual models and the least 

accuracy was 95.62% from InceptionV3 in 100 

epochs. The MobileNetV2 model resulted in the 

highest training accuracy of 98.12%. Soft-voting 

ensemble of all the three models gave an accuracy of 

98.08% which was the highest so far. All individual 

models' gaps between training and validation scores 

were about 2% or less, ensuring that there were no 

overfitting issues. 

The CVD classification accuracies of some of the 

existing works and our proposed work are given in 

Table 4. Available literature shows that the best 

classification accuracy achieved using the ACDC 

dataset is 96%. Our work achieved better test accuracy 

than other existing works in classifying cardiovascular 

disease from the ACDC dataset.  

 

 

 

Fig. 12: Training graph of the VGG16 model 
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Fig. 13: Training graph of the MobileNetV2 model 
 

 
 

Fig. 14: Training graph of the InceptionV3 model 
 
Table 2: Training result of ensemble with hard-voting 

Model  Epochs  Training accuracy (%)  Validation accuracy (%)  Test accuracy (%)  

MobileNetV2  30  85.17  84.34  83.21  
 60  92.54  91.07  90.21  
 100  96.35  94.67  96.09  
InceptionV3  30  82.03  81.09  81.12  
 60  91.33  90.19  89.32  
 100  97.78  95.82  96.27  
VGG16  30  83.16  81.18  81.68  
 60  92.01  91.56  90.16  
 100  97.45  96.92  97.03  
Ensemble  30    84.62  

 60    91.07  

 100    97.94  
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Table 3: Training result of the ensemble with soft-voting 

Model  Epochs  Training accuracy (%)  Validation accuracy (%)  Test accuracy (%)  

MobileNetV2  30  85.23  84.42  83.88 

 60  92.19  91.14  90.29 

 100  98.12  96.56  96.83 

InceptionV3  30  82.11  81.27  81.39 

 60  91.70  90.26  89.46 

 100  97.91  95.76  95.62 

VGG16  30  83.14  81.12  81.57 

 60  92.89  91.81  89.93 

 100  97.89  96.84  97.17 

Ensemble  30    84.79 

 60    91.18 

 100    98.08 

 
Table 4: Classification results on the ACDC dataset 

Work Model Test accuracy 

Ammar et al. (2021)  U-Net  92% 
Isensee et al. (2021)  U-Net  92% 
Khened et al. (2017)  CNN  96% 
Bernard et al. (2018)  Random forest  96% 
Our Model 1  soft-voting 97.94% 

Our Model 2  hard-voting 98.08% 
 

Conclusion 

This study proposes and implements hard-voting and 

soft-voting ensemble techniques for cardiovascular 

disease detection from MRI images. It used VGG16, 

InceptionV3, and MobileNetV2 deep learning models 

that are already trained using the ImageNet dataset. The 

main contribution of this study is improved 

classification accuracy from both the ensemble voting 

techniques. Another contribution is the use of a limited 

dataset since transfer learning is adopted. The obtained 

results prove the effectiveness of our proposed method 

by giving an average accuracy of 97.94% from hard 

voting and 98.08% from soft voting from the ACDC 

dataset. We can conclude that this approach can be used 

to assist medical practitioners in diagnosing 

cardiovascular diseases. In the future, we plan to deploy 

this technique on real-world applications to monitor, 

detect and classify cardiovascular diseases automatically. 
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