

 © 2022 El Hadrami Cheikh Tourad and Mohsine Eleuldj. This open-access article is distributed under a Creative Commons

Attribution (CC-BY) 4.0 license.

 Journal of Computer Science

Original Research Paper

Quantization and Pipelined Hardware Implementation of

Deep Neural Network Models

El Hadrami Cheikh Tourad and Mohsine Eleuldj

Department of Computer Science, École Mohammedia d’Ingénieurs (EMI), Mohammed V University in Rabat, Morocco

Article history

Received: 24-06-2022

Revised: 14-08-2022

Accepted: 26-09-2022

Corresponding Author:

El Hadrami Cheikh Tourad

Department of Computer

Science, École Mohammedia

d’Ingénieurs (EMI),

Mohammed V University in

Rabat, Morocco
Email:

elhadrami_cheikhtourad@research.emi.ac.ma

Abstract: In recent years, Deep Neural Networks (DNNs) have garnered

much interest due to advances in computational power and data availability.

Indeed, DNNs presents a considerable advantage in several challenges, such as

classification problems and video analysis. Although, such accomplishment

leads to significantly increasing energy demands, computational expenses, and

memory capacity. In addition, current efficient DNNs may have more

complex and extensive structures. As a result, implementing these huge

models on embedded systems with limited sources is challenging. However,

several works have attempted to solve the implementation issues while

maintaining optimum accuracy. Among these ideas is compressing the model

size using the quantization method and deploying it on Field Programmable

Gate Arrays (FPGA) to enhance the latency and minimize the energy cost.

This article presents a model optimizer using quantization methods to ensure the

model hardware implementation. This optimizer compresses the model size and

is integrated with a design flow that implements the model on the hardware.

Furthermore, this article presents "DNN2FPGA," a design flow that can

automatically implement the Deep Learning models on FPGA by producing

pipelined HDL codes. This article indicates an excellent performance by

decreasing the model's size and latency by 4x while maintaining the model's

accuracy. It also presents a full review of the state of the art.

Keywords: DNN, Design Flow, Quantization, FPGA, Pipeline

Introduction

Deep Neural Networks (DNNs) have garnered much

interest due to advances in computational power and data

availability. Indeed, DNNs presents a considerable

advantage in several challenges, such as classification

problems and video analysis. Although, such

accomplishment leads to significantly increasing energy

demands, computational expenses, and memory capacity.

In addition, current efficient DNNs may have more

complex and extensive structures (nodes and layers).

Figure 1 demonstrates that as the precision of the

numbers utilized rises, so does the relative energy cost.

For example, 8-bit addition costs 0.03 pJ, but 32-bit

floatingpoint addition costs 0.9 pJ, or 30 times higher

(Ducasse et al., 2021).
These days, DNNs may have more complex and

extensive structures. For example, in DNNs, the number of

layers may scale into tens of thousands and there can be

billions of parameters (Ghimire et al., 2022. Consequently,

deploying such huge models on real-time integrated

circuits is defiance. In addition, these devices come with

limited resources (energy, memory, and bandwidth), so

there is an urgent need to find solutions for effectively

deploying DNNs in low-powered devices (such as

smartphones, embedded gadgets, and FPGA) without

compromising model accuracy.

Fig. 1: Energy cost of operations in certain representations

(Ducasse et al., 2021)

El Hadrami Cheikh Tourad and Mohsine Eleuldj / Journal of Computer Science 2022, 18 (11): 1021.1029

DOI: 10.3844/jcssp.2022.1021.1029

1022

However, several works have attempted to minimize the

memory and processing needs of DNNs while maintaining

optimum accuracy to overcome limited device DNN

implementation issues. Among these ideas is compressing

the model size using the quantization method and deploying

it on Field Programmable Gate Arrays (FPGA) to enhance

the accuracy and minimize the energy cost.

Furthermore, FPGAs are suitable for DNN

implementation (Tourad and Eleuldj, 2020). Because of

their energy consumption efficiency, reconfigurability

and computing capacity.

This article presents a model optimizer using

quantization methods to ensure the model hardware

implementation. This optimizer is integrated with the

"DNN2FPGA" (Tourad and Eleuldj, 2021) design flow to

compress the model size. Furthermore, this version of the

design flow can automatically implement the Deep Learning

models on FPGA by producing pipelined HDL codes.

This study structure contains six sections: The second

section describes the background of DNN quantization.

Next, the third section highlights the leading works in the

DNN quantization method and reviews many related

works to the DNNs hardware implementation. Then, the

fourth section explains the proposed design flow and

describes the quantization approach used in study work.

After that, the fifth section shows the relevant results.

Finally, the last section contains the conclusion.

This study includes the following contributions:

 The new model optimization approach includes three

quantization methods

 New generic design flow integers a model optimizer

and can automatically implement the Deep Learning

models on FPGA by producing pipelined HDL codes

 Implement a CNN (Convolutional Neural network)

for MNIST dataset classification to test and validate

the design flow and the quantization method

 We discuss the obtained relevant results

DNN Quantization

Quantization is among the important and generally

used model compression methods. For example, standard

development frameworks frequently represent a neural

network's parameters (bias, activations, and weights) as

floating-point data. Recent studies have attempted to

substitute this format with low-bit floating-point values or

a small set of trained values. (Shawahna et al., 2018).

Quantization decreases computations by decreasing

the accuracy of the data type, which reduces the bit width

of the deep neural network's data storage and flow.

Conversely, the computation and storing of data at a

minor bit width permits fast inference while conserving

energy. There are two types of quantization: Uniform and

non-uniform quantization.

Uniform quantization presents the mapping

function from real values to integer values, where the

quantization levels are uniformly spaced

(Gholami et al., 2021). Other research in state of the art

investigates non-uniform quantization (Cai et al., 2017;

Jeon et al., 2020; Faraone et al., 2018; Jung et al., 2019;

Liao et al., 2020), where the widespread distribution is

logarithmic and the quantization steps and levels are

not equally distributed. However, this study focuses

only on uniform quantization:

 /Q r Int r S Z (1)

Equation 1 (Gholami et al., 2021) defines the popular

function to quantize the DNN, while Q is the quantization

function, r denotes a real-valued parameter (bias,

activation, or weight) and S denotes a real-valued scaling

factor. Z denotes zero-point (quantization bias or offset)

and Int is the float-to-integer rounding function. The

scaling factor S converts the floating-point values to the

corresponding low-precision values. For example,

Zeropoint Z is a number with a low precision that reflects

a quantized value that will represent the float value 0. The

utility of zero-point is that we may have a broader range

of integer values even for divergent tensors.

Calibration

Let [α, β] indicate the quantization range of real values

and b presents the bit-width of the signed integer format

(Gholami et al., 2021). Then, uniform quantization

converts the input value x 𝜖 [α, β] to fit within the range

[−2b −1; 2b−1 − 1], where all the values beyond this range

are truncated to the closest limit. As a result, to specify the

scaling factor, the clipping range [α, β] must first be

specified. Calibration refers to the procedure of

determining the clipping range. The most critical element

in the quantization is the selection of the S. Equation 2

computes the scaling factor S:

2 1b
S

 (2)

A primary option is to determine the clipping range based

on the minimum and maximum values of the signal; in this

case, α = rmin and β = rmax. Given that the clipping range is not

always symmetric concerning the origin, i.e., −α ≠ β, this

method constitutes an asymmetric quantization technique.

However, employing a symmetric quantization approach is

also feasible by selecting a symmetric clipping range of α =

−β and the zero-point z = 0, resulting in the same output as

the previous example. Therefore, one common strategy for

determining these parameters is to choose them based on

the minimum and maximum values of the signal, as

follows: −α = β = max (|rmax|, |rmin|).

El Hadrami Cheikh Tourad and Mohsine Eleuldj / Journal of Computer Science 2022, 18 (11): 1021.1029

DOI: 10.3844/jcssp.2022.1021.1029

1023

Furthermore, there are two activations quantization

methods, dynamically and statically. Dynamic quantization

calculates each activation map's range at runtime. This

method involves real-time data statistics computation (max,

min, and percentile.), which can be difficult. However,

dynamic quantization is more accurate than static

quantization since each input's signal range is computed.

Static quantization pre-calculates and statically infers the

clipping range. This method adds no computing complexity,

although it is less accurate than dynamic quantization.

Yao et al. (2021) One of the most common approaches

to pre-calculation is to compute the usual range of

activations by running a series of calibration inputs.

Multiple metrics have been suggested to find the ideal

range to reduce the Mean Squared Error (MSE) between

the original parameters format and the quantized values

corresponding to it. (Choukroun et al., 2019; Zhao et al.,

2019). Although MSE is the most frequent way, one might

consider utilizing other measures, such as entropy

(Park et al., 2017). Another method is learning or

applying this clipping range while the neural network is

being trained. Works such as LQNets (Zhang et al., 2018)

and LSQ+ (Bhalgat et al., 2020) are particularly

noteworthy since they jointly optimize both the clipping

range and the weights in DNN as it is being trained.

Fine-Tuning Methods

After the quantization process, it is frequently required

to make adjustments to the parameters in the DNN. This

update may be accomplished by retraining the model, a

process referred to as Quantization-Aware Training

(QAT), or it can be achieved without retraining, a process

that is sometimes referred to as Post-Training Quantization

(PTQ). As the name indicates, PTQ applies quantization to

the model after it has been entirely trained using the Floating-

Point 32 (FP32) weights and activations.

During training the model with QAT, the quantization

loss is viewed as a part of the training loss. In most cases,

QAT results in a more accurate model than PTQ, although

PTQ is simple to implement.

Extreme Quantization

Quantization with very low bit accuracy is considered

an extremely promising research subject. On the other

hand, current approaches often result in a significant loss

of accuracy compared to the baseline unless an extensive

tuning and hyperparameter search is conducted. However,

this accuracy loss can be tolerable for applications that are

not as important. The most intensive form of quantization

is binarization and it involves restricting the quantized

values to a representation that uses just one bit.

As a result, the needed memory is cut down by a factor

of 32. Furthermore, bitwise arithmetic may frequently

execute binary (1-bit) and ternary (2-bit) computations,

significantly improving over higher precisions such as

FP32 and INT8. Besides the memory advantages that bitwise

arithmetic offers. Some of the most often used binary neural

networks are BinaryConnect (Courbariaux et al., 2014;

2015), Binarized Neural Network (BNN)

(Courbariaux et al., 2016), and XNOR-Net (Rastegari et al.,

2016; Bulat and Tzimiropoulos, 2019). We will go more into

them in the next section.

Related Works

Various prior work – hardware accelerators – including

hls4ml (Duarte et al., 2018), DL2HDL (Wielgosz et al.,

2019), FP-DNN (Guan et al., 2017), and SysArrayAccel

(Wei et al., 2017) support both fixedpoint and floating-

point and also apply uniform quantization to all layers. Most

operations in Finn (Ducasse et al., 2021.) are binary and

focus on binary neural networks. Other frameworks, such

as ALAMO (Ma et al., 2018), Auto Code Gen (Liu et al.,

2016), and Angle-Eye (Wei et al., 2017), enable

automated dynamic quantization for all layers at the time of

compilation. Tourad and Eleuldj, 2020 studied several

quantization-based frameworks for accelerating DNN

models on FPGAs.

The results of (Wu et al., 2020) study demonstrate that

the precision parameters of FP32 may be lowered to INT8

without causing a substantial reduction in the network

accuracy. Another technique (Banner et al., 2019) created

a 4-bit post-training quantization strategy that does not

need the model to be fine-tuned after the quantization

process. In (Jacob et al., 2018), only INT8 was employed

for the training and inference of the ResNet-50 model,

resulting in an accuracy loss of 1.5 percent. The research

presented in reference (Hubara et al., 2017) generalizes the

idea of bit precision, which allows storing weights and

activations using any number of bits rather than only INT8.

Moreover, several studies focus on the binarization

strategy. Significant work in this subject is Binary Connect

(Courbariaux et al., 2015), which restricts weights to +1 or -

1. This method maintains the weights as real values and is

binarized solely during the forward and reverse runs to

approximate the binarization effect. During the forward pass,

the weights with real values are changed to +1 or -1

depending on the sign function. BNN (Courbariaux et al.,

2016) expands on this notion by binarizing both the

activations and the weights. The added advantage of

binarizing weights and activations together is reduced

latency since the expensive floating-point matrix

multiplications may be substituted with lightweight XNOR

operations followed by bit counting.

Another intriguing study (Rastegari et al., 2016; Bulat

and Tzimiropoulos, 2019) is XNOR-Net, which achieves

more precision by integrating a scaling factor into the

weights. During training, XNOR-Net (Rastegari et al., 2016)

and DoReFa (Zhou et al., 2016) sought to decrease

quantization errors to expedite the training process.

DoReFa-Net is a technique for training convolutional

El Hadrami Cheikh Tourad and Mohsine Eleuldj / Journal of Computer Science 2022, 18 (11): 1021.1029

DOI: 10.3844/jcssp.2022.1021.1029

1024

neural networks with low-bit-width weights and activations

using low-bitwidth parameter gradients (Zhou et al., 2016).

Before being transmitted to convolutional layers,

parameter gradients are stochastically quantized to low

bit-width integers during the backward pass. Furthermore,

forward/backward convolutions may now work with low

bit-width weights. Training and inference may be

accelerated using bit convolution kernels with

DoReFaNet. AdaBits (Qin et al., 2020), another recent

work based on the same DoReFa-Net concept using the

adaptive quantization method. This approach proposes

training a single model with multiple width multipliers for

instant application adaptation (Qin et al., 2020).

AdaBits adjusts width, depth, and kernel sizes to

improve predicted accuracy within the same

computational restrictions.

Recently, IRNet, a binarization technique described by

Qin et al. (2020) that uses a self-adaptive error-decay

estimation to reduce gradient error in the learning phase,

is the first method to handle data holding for both forward

and backward propagation (Qin et al., 2020). To overcome

these challenges, they propose an Information Retention

Network (IR-Net) preserve information consisting of

forwarding activations and backward gradients.

However, the frameworks in the research (Tourad and

Eleuldj, 2020), among them the previously mentioned

tools, are either non-generic (particular tool or equipment

or limited templates) or comprise a substantial number of

steps and tool flows, or use an extreme quantization which

affects the model' accuracy.

Design Flow and Quantization Approach

(Tourad and Eleuldj, 2021) have recently suggested

the "DNN2FPGA." A design flow employs a technique of

direct hardware mapping.
This study presents a model optimizer using

quantization methods to compress the model before the
hardware implementation. Furthermore, this optimizer is
integrated with a new version of the "DNN2FPGA" design
flow with pipelined hardware implementation approach.

As illustrated in the design flow scheme (Fig. 2), the

"DNN2FPGA" starts from the component Deep Learning

Engine (DLE), in which the developer may create the

DNN using a high-level framework such as Tensorflow or

Keras. After that, the DLE sends the model to the

optimizer component to apply a quantization method to

reduce the parameter's bit-width. This method gives a

gain in terms of memory and computation time. Then

return the optimized model to the DLE. The DLE then

generates a hierarchic representation of the model

description using the Keras library.
The type of layer (pooling, convolutional, or fully

connected), activation functions (ReLU, Tanh, and
Sigmoid), and the layer calculations are then retrieved by
the parser component. The model parser then retrieves the
parameter (weights and biases).

Finally, these features are stored as configuration files

and sent to the HDL generator.

The component HDL generator is responsible for
many essential tasks: The timing stage is in charge of

synchronizing the operation and establishing the clock
cycle for the master-slave D-flip-flops. Moreover, this
phase also handles the pipeline across layers. Finally, it
separates calculations and memory access into clock
cycles and distributes them to hardware units.

The layers are interconnected. Consequently, operating
all network layers in the parallel mod is impossible.

Every layer should finish treating its current input
(generate an output value) while accepting a new set of inputs
to avoid overwriting internal registers during processes.

As illustrated in Fig. 3, these master-slave D-flipflops

maintain the information till the clock pulse or signal,

transferring it to the following layer and obtaining new

data flow. This method increases the network throughput

and enables the pipelined procedure.

The synthesis component then evaluates and

compiles the generated HDL code. This stage first

validates the HDL syntax and process statements. Next,

the synthesis tool transforms the high-level

representation into low-level representations by

creating the bitstream file. Last, the synthesis confirms

that the HDL code matches the hardware device.

While implementing the HDL on the device and

ensuring that the results are equivalent to the software

implementation, a simulation phase is necessary to

ensure the HDL results are accurate. If the acquired

results are below the software implementation, the

complete process illustrated in Fig. 2 will be repeated,

beginning with the generation of the model description.

Otherwise, the procedure will proceed to load the

bitstream files on the FPGA device. The validation

parameters are the model precision and the latency

(delay time); latency is the time necessary to estimate the

test results for each deployment (HDL and software).

The bitstream file created by the synthesis component

is then loaded on the designated device, especially in

nonvolatile memory. This file contains the functionality,

routing, and register default values. It also provides all the

hardware components and instructions for controlling the

device's assets. After downloading this file, the device is

now prepared to use and test the Deep Learning model.

Comparing both hardware and software results is

essential to validate the preciseness of the generated

model. Therefore, after the model deployment on the

device is completed, the model precision evaluation is

built on the testing data (exploitation mode) to determine

whether the generated results resemble the software

results; if they do not, the entire process is restarted from

the obtention of the model description file.

When it comes to deploying DNNs on FPGAs, two

approaches may be used. First, starting from scratch,

where the implementation handles training and inference,

El Hadrami Cheikh Tourad and Mohsine Eleuldj / Journal of Computer Science 2022, 18 (11): 1021.1029

DOI: 10.3844/jcssp.2022.1021.1029

1025

or using a pre-trained model, where the hardware is just

utilized for inference.

The DNN2FPGA can implement both, but we tested

the design flow with a pre-trained model in our case.

Quantization Approach

The optimizer takes the model as input and then applies

a symmetric quantization using a variety of calibrations. The

optimizer strategy combines three different quantization

methods applied one after the other until the necessary level

of accuracy is achieved. The optimizer will begin by

performing a post-training quantization on all layers. Next, it

will test the model's accuracy and if it does not attain the

desired accuracy, it will perform a uniform quantization on a

portion of the neural network. This partial quantization

leaves the more contributed layers, such as convolutional

layers, in floating format. After that, do a new evaluation of

the model's accuracy; if it does not yield the desired accuracy,

go on to the process's Quantization-Aware Training (QAT)

to fine-tune the model's accuracy. Finally, the training is

deployed on the quantized model in the precedent phase with

the same calibration method. This quantization approach

uses a broad range of calibrations (min, max, percentile.).

Algorithm 1 explains all the required steps, from

choosing the calibration and the accuracy verification.

The algorithm is generic, which means it is independent

of the bit-width (16-bit, 8bi. etc.) and the calibration

method. First, the algorithm takes the DNN model as input

and the user gives the quantization parameters (bitwidth

and the calibration range). Then we browse all the layers

and for each layer, we quantify every parameter using

equation 1 in the second section. Next, we evaluate the

model accuracy and, if not the desired one, continue to a

partial quantization by skipping the sensitive layers,

which in our case is the convolutional layer (the condition

in the if clause). Finally, we apply a QAT method to

finetune the model if the required accuracy does not yield.

Figure 4 presents the algorithm flowchart and explains

the quantization steps.

Algorithm 1: Quantization Algorithm

Require: DNN model

Ensure: a quantized model
Chose the quantization bit-width
Chose the Calibration method
Calculate the scaling factor
First, the post-training quantization for all layers
For L in Layers do
 For P in Parameter do
 # Apply the quantization equation to P
 P = Q(P)
 End For
 End For
 Evaluate the model accuracy
 IF the accuracy < desired accuracy then

 # Quantization for the non-sensitive layers

 For L in Layers do
 # Skip the sensitive layers
 IF L ! = convolutional layer
 For P in Parameter do
 # Apply the quantization equation to P
 P = Q(P)
 End For
 END IF
 End For
 Evaluate the model accuracy
 IF the new accuracy < desired accuracy then
 Apply the QAT method to fine-tune the model
 End IF
End IF

Case Study

This part represents the case study demonstrating how the

design flow implements the quantization and tests the

optimizer functionality. The design flow and the optimizer

are implemented using Tensorflow/Keras framework. In this

case study, we implement only the Int8 quantization to test

the model optimizer inspired by the precedents works.

The CNN tested for the inference and prediction of a

classification problem consists of an input layer, then two

2D convolutional layers with twelve filters using the

ReLU (Rectified Linear Unit) as a non-linear function

followed by a Max-pooling layer and a fully connected

output layer with ten nodes.

Table 1 regroups All the network hyperparameters.

Hyperparameters are parameters that are established

before the model training process begins. Therefore, the

values provided for these hyperparameters can affect the

model learning rate and other parameters during training

and final model performance.
The model error function is cross-entropy, commonly

utilized to solve binary classification problems and the
Adam method is an optimizer. Adam is an efficient form
of the famous gradient descent algorithm used to solve
various problems. The number of epochs in Table 1
presents the number of times the network is shown the
entire training data while training. The batch size in Table 1
is the number of sub-samples sent to the network, after
which the parameters are updated.

Table 1: Model hyperparameters

Parameters Configuration

Loss function Cross entropy

Optimizer Adam

No of epoch 10

Batch size 500

Table 2: Quantization results

 Baseline model Quantized model

Precision FP32 Int 8
Memory 0.08 Mb 0.023 Mb
Accuracy 0.9655 0.9650
Latency 5.0030 s 1.230 s

El Hadrami Cheikh Tourad and Mohsine Eleuldj / Journal of Computer Science 2022, 18 (11): 1021.1029

DOI: 10.3844/jcssp.2022.1021.1029

1026

This study uses the MNIST dataset of handwritten

digits widely used to test image processing methods. It has

a 60,000-example training set and a 10,000-example test

set with 28 28-pixel samples.

Table 2 results demonstrate that the quantization reduces

4x the model size without losing the model's accuracy.

Moreover, demonstrate that this quantization reduces the

model latency by 4x. These results are obtained after

implementing post-training and quantization-aware training

to fine-tune the model's accuracy.

Fig. 2: The new design flow

Fig. 3: Master-slave d-flip-flop

Fig. 4: Algorithm flowchart

master_slave_ff.\gen_ff:3:ms_ff

clk

d_flip_flop:u0 d_flip_flop:u1

clk clk

din[31..0] dout[31..0] din[31..0] dout[31..0]

dout

[31..0]

din

[31..0]

reset reset reset

El Hadrami Cheikh Tourad and Mohsine Eleuldj / Journal of Computer Science 2022, 18 (11): 1021.1029

DOI: 10.3844/jcssp.2022.1021.1029

1027

Fig. 5: QAT Training and validation accuracy

Figure 5 shows the accuracy and validation accuracy

during all the training epochs.

Moreover, this figure shows the functionality of the

model optimizer and tests the feasibility of this

approach and the optimizer integration in the design

flow. The results demonstrate promoted performance to

improve in further works.

Conclusion and Future Works

This article presents a model optimizer using

quantization methods to ensure the model hardware

implementation. This optimizer is integrated with the

"DNN2FPGA" design flow to compress the model size.

Furthermore, this version of the design flow can

automatically implement the Deep Learning models on

FPGA by producing pipelined HDL codes.

This study content describes the background of DNN

quantization. Next, it highlights the leading works in the

DNN quantization method and reviews many related

works to the DNNs hardware implementation. Then, it

explains the proposed design flow and describes the

quantization approach used in this study. After that, it

shows the relevant results.

This article indicates an excellent performance by

decreasing the model's size and latency by 4x while

maintaining the model's accuracy. It also presents a full

review of the state of the art.

This study concentrates on inference, meaning the

implementation concentrates on exploiting the model.

Further work is implementing the model from scratch

(training and inference). Furthermore, we will improve

the implementation, implement more optimization

methods and deep learning models, evaluate metrics

such as energy consumption and handle more

significant network concerns.

Author’s Contributions

El Hadrami Cheikh Tourad: Designed flow

concoption, data collection and implementation, analysis,

interpretation of results, and manuscript preparation.

Mohsine Eleuldj: Supervised this study, and verified

the analytical methods, analysis, and interpretation of

results and manuscript preparation.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of the

other authors have read and approved the manuscript and

no ethical issues involved.

References

Banner, R., Nahshan, Y., & Soudry, D. (2019). Post-

training 4-bit quantization of convolutional networks

for rapid deployment. Advances in Neural

Information Processing Systems, 32.

 ttps://proceedings.neurips.cc/paper/2019/hash/c0a62

e133894cdce435bcb4a5df1db2d-Abstract.html

Bhalgat, Y., Lee, J., Nagel, M., Blankevoort, T., & Kwak, N.

(2020). Lsq+: Improving low-bit quantization

through learnable offsets and better initialization.

In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition

Workshops (pp. 696-697).

Bulat, A., & Tzimiropoulos, G. (2019). Xnor-net++:

Improved binary neural networks. arXiv preprint

arXiv:1909.13863. https://arxiv.org/abs/1909.13863

Choukroun, Y., Kravchik, E., Yang, F., & Kisilev, P.

(2019, October). Low-bit quantization of neural

networks for efficient inference. In 2019 IEEE/CVF

International Conference on Computer Vision

Workshop (ICCVW) (pp. 3009-3018). IEEE.

 https://ieeexplore.ieee.org/abstract/document/9022167

Courbariaux, M., Bengio, Y., & David, J. P. (2014).

Training deep neural networks with low precision

multiplications. arXiv preprint arXiv:1412.7024.

https://arxiv.org/abs/1412.7024

Courbariaux, M., Bengio, Y., & David, J. P. (2015).

Binary connect: Training deep neural networks with

binary weights during propagations. Advances in

neural information processing systems, 28.

https://proceedings.neurips.cc/paper/2015/hash/3e15

cc11f979ed25912dff5b0669f2cd-Abstract.html

Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., &

Bengio, Y. (2016). Binarized neural networks:

Training deep neural networks with weights and

activations constrained to+ 1 or-1. arXiv preprint

arXiv:1602.02830. https://arxiv.org/abs/1602.02830

El Hadrami Cheikh Tourad and Mohsine Eleuldj / Journal of Computer Science 2022, 18 (11): 1021.1029

DOI: 10.3844/jcssp.2022.1021.1029

1028

Duarte, J., Han, S., Harris, P., Jindariani, S., Kreinar, E.,

Kreis, B., ... & Wu, Z. (2018). Fast inference of deep

neural networks in FPGAs for particle physics.

Journal of Instrumentation, 13(07), P07027.

https://iopscience.iop.org/article/10.1088/1748-

0221/13/07/P07027/meta

Ducasse, Q., Cotret, P., Lagadec, L., & Stewart, R. (2021).

Benchmarking Quantized Neural Networks on

FPGAs with FINN. arXiv preprint

arXiv:2102.01341. https://arxiv.org/abs/2102.01341

Faraone, J., Fraser, N., Blott, M., & Leong, P. H. (2018).

Syq: Learning symmetric quantization for efficient

deep neural networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern

Recognition (pp. 4300-4309).
Ghimire, D., Kil, D., & Kim, S. H. (2022). A Survey on

Efficient Convolutional Neural Networks and
Hardware Acceleration. Electronics, 11(6), 945.
https://doi.org/10.3390/electronics11060945

Gholami, A., Kim, S., Dong, Z., Yao, Z., Mahoney, M. W.,
& Keutzer, K. (2021). A survey of quantization methods
for efficient neural network inference. arXiv preprint
arXiv:2103.13630. https://arxiv.org/abs/2103.13630

Guan, Y., Liang, H., Xu, N., Wang, W., Shi, S., Chen, X.,
... & Cong, J. (2017, April). FP-DNN: An automated
framework for mapping deep neural networks onto
FPGAs with RTL-HLS hybrid templates. In 2017 IEEE
25th Annual International Symposium on Field-
Programmable Custom Computing Machines
(FCCM) (pp. 152-159). IEEE.

 https://ieeexplore.ieee.org/abstract/document/7966671
Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., &

Bengio, Y. (2017). Quantized neural networks: Training
neural networks with low precision weights and
activations. The Journal of Machine Learning
Research, 18(1), 6869-6898.

 https://www.jmlr.org/papers/volume18/16-456/16-
456.pdf

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M.,
Howard, A., ... & Kalenichenko, D. (2018).
Quantization and training of neural networks for
efficient integer-arithmetic-only inference. In
Proceedings of the IEEE conference on computer
vision and pattern recognition (pp. 2704-2713).

Jeon, Y., Park, B., Kwon, S. J., Kim, B., Yun, J., & Lee, D.
(2020, November). Biqgemm: Matrix multiplication

with lookup table for binary-coding-based quantized
dnns. In SC20: International Conference for High
Performance Computing, Networking, Storage and
Analysis (pp. 1-14). IEEE.

 https://ieeexplore.ieee.org/abstract/document/9355306

Jung, S., Son, C., Lee, S., Son, J., Han, J. J., Kwak, Y.,

... & Choi, C. (2019). Learning to quantize deep

networks by optimizing quantization intervals with

task loss. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern

Recognition (pp. 4350-4359).

Liao, Z., Couillet, R., & Mahoney, M. W. (2020). Sparse

quantized spectral clustering. arXiv preprint

arXiv:2010.01376. https://arxiv.org/abs/2010.01376

Liu, Z., Dou, Y., Jiang, J., & Xu, J. (2016, December).

Automatic code generation of convolutional neural

networks in FPGA implementation. In 2016

International conference on field-programmable

technology (FPT) (pp. 61-68). IEEE.

https://ieeexplore.ieee.org/abstract/document/7929190

Ma, Y., Suda, N., Cao, Y., Vrudhula, S., & Seo, J. S.

(2018). ALAMO: FPGA acceleration of deep

learning algorithms with a modularized RTL

compiler. Integration, 62, 14-23.

 https://doi.org/10.1016/j.vlsi.2017.12.009

Park, E., Ahn, J., & Yoo, S. (2017). Weighted-entropy-

based quantization for deep neural networks.

In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (pp. 5456-5464).

Qin, H., Gong, R., Liu, X., Shen, M., Wei, Z., Yu, F.,

& Song, J. (2020). Forward and backward

information retention for accurate binary neural

networks. In Proceedings of the IEEE/CVF

conference on computer vision and pattern

recognition (pp. 2250-2259).

Rastegari, M., Ordonez, V., Redmon, J., & Farhadi, A.

(2016, October). Xnor-net: Imagenet classification

using binary convolutional neural networks.

In European conference on computer vision (pp.

525-542). Springer, Cham.

 https://link.springer.com/chapter/10.1007/978-3-

319-46493-0_32

Shawahna, A., Sait, S. M., & El-Maleh, A. (2018). FPGA-

based accelerators of deep learning networks for

learning and classification: A review. IEEE

Access, 7, 7823-7859.

 https://ieeexplore.ieee.org/abstract/document/8594633

Tourad, E. H. C., & Eleuldj, M. (2021, November).

Generic Automated Implementation of Deep Neural

Networks on Field Programmable Gate Arrays. In The

Proceedings of the International Conference on Smart

City Applications (pp. 989-1000). Springer, Cham.

https://link.springer.com/chapter/10.1007/978-3-

030-94191-8_80

Wei, X., Yu, C. H., Zhang, P., Chen, Y., Wang, Y., Hu,

H., ... & Cong, J. (2017, June). Automated systolic

array architecture synthesis for high throughput CNN

inference on FPGAs. In Proceedings of the 54th

Annual Design Automation Conference 2017 (pp. 1-6).

https://doi.org/10.1145/3061639.3062207

Wielgosz, M., & Karwatowski, M. (2019). Mapping

neural networks to FPGA-based IoT devices for

ultra-low latency processing. Sensors, 19(13), 2981.

https://doi.org/10.3390/s19132981

El Hadrami Cheikh Tourad and Mohsine Eleuldj / Journal of Computer Science 2022, 18 (11): 1021.1029

DOI: 10.3844/jcssp.2022.1021.1029

1029

Wu, H., Judd, P., Zhang, X., Isaev, M., & Micikevicius, P.

(2020). Integer quantization for deep learning inference:

Principles and empirical evaluation. arXiv preprint

arXiv:2004.09602. https://arxiv.org/abs/2004.09602

Yao, Z., Dong, Z., Zheng, Z., Gholami, A., Yu, J., Tan, E., ...

& Keutzer, K. (2021, July). Hawq-v3: Dyadic neural

network quantization. In International Conference on

Machine Learning (pp. 11875-11886). PMLR.

 https://proceedings.mlr.press/v139/yao21a.html

Zhang, D., Yang, J., Ye, D., & Hua, G. (2018). Lq-nets:

Learned quantization for highly accurate and compact

deep neural networks. In Proceedings of the European

conference on computer vision (ECCV) (pp. 365-382).

Zhao, R., Hu, Y., Dotzel, J., De Sa, C., & Zhang, Z.

(2019, May). Improving neural network

quantization without retraining using outlier

channel splitting. In International conference on

machine learning (pp. 7543-7552). PMLR.

 http://proceedings.mlr.press/v97/zhao19c.html

Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., & Zou, Y.

(2016). Dorefa-net: Training low bitwidth

convolutional neural networks with low bitwidth

gradients. arXiv preprint arXiv:1606.06160.

https://arxiv.org/abs/1606.06160

