
 

 

 © 2022 Dayang Nur Salmi Dharmiza, Awang Salleh and Kuryati Kipli. This open-access article is distributed under a 

Creative Commons Attribution (CC-BY) 4.0 license. 

 Journal of Computer Science 

 

 

 

Review 

Comparative Study of Visual Odometry Performance Based 

on Road Classifications 
 

Dayang Nur Salmi Dharmiza, Awang Salleh and Kuryati Kipli 

 
Department of Electrical and Electronics, Faculty of Engineering, University Malaysia Sarawak, Malaysia 

 
Article history 

Received: 27-07-2022 

Revised: 26-08-2022 

Accepted: 04-10-2022 

 

Corresponding Author:  

Dayang Nur Salmi Dharmiza  

Department of Electrical and 

Electronics, Faculty of 

Engineering, University 

Malaysia Sarawak, Malaysia 
Email: asdnsdharmiza@unimas.my 

Abstract: Accuracy and robustness are among the main concerns in vehicle 

positioning systems and autonomous applications. These concerns are crucial 

in GNSS-denied environments; thus, we need an alternative technology to 

overcome this problem. In recent years, vision-based localization known as 

visual odometry has gained considerable attention among researchers. Visual 

odometry is a vision-based pose estimation and it has been developed for 

mobile object localization such as robots and vehicles while perceiving their 

environment. Within the last decade, researchers have been immersed in 

developing techniques to achieve highly accurate and precise localization 

based on visual odometry. The visual odometry performances are evaluated 

using an online dataset for benchmarking. Based on the benchmarking, this 

study reviews and compares the robustness of the recent visual odometry 

techniques for application, especially in vehicle localization in various road 

conditions. Evaluation methods for the selected techniques are presented and a 

thorough analysis of each driving sequence is conducted. The analysis shows that 

for all visual odometry techniques, localization for high-speed drive suffers 

higher translation error even though the surrounding has less image noise. 

Despite that, visual odometry that implements careful feature Selection and 

Tracking (SOFT) proves to be more robust compared with other techniques with 

0.7% relative translation error and a relative rotation error of 0.2 deg/hm. 
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Introduction 

With the rapid technological advancement in the field 

of mobile robotics and automation, growing demand has 

arisen for the accurate localization of moving objects. One 

of the motion estimation techniques that is gaining 

popularity is vision-based odometry thanks to its low cost, 

simplicity, and wide application of the camera itself. 

Besides, since cameras are robust and passive sensors, 

they are the leading candidates to facilitate in a GNSS-

denied environment. This vision-based odometry is also 

known as Visual Odometry (VO). 

Visual Odometry (VO) is the process of estimating 

the position and orientation of a mobile object by 

analyzing continuous camera images (Nistér et al., 

2004). Until today, VO has been widely applied to 

various mobile robotic platforms, visual and 

augmented reality, and wearable devices 

(Mukhopadhyay, 2014). Especially with the prevalence 

of the development of autonomous or driverless 

vehicles, VO has become an interesting research field 

in computer vision and positioning systems.  

However, since vehicles are driven on the road at various 
speeds under different weather types and environments, the 
robustness of VO is questionable. Indeed, with the research 
development, VO accuracy is optimized, however, the 
performance indicator of certain VO techniques is mostly 
based on the average positioning error of multiple sequences 
experimented. This positioning error is computed from the 
relative translation error and the positioning relative rotation 
error to the ground truth of the vehicle. In this study, we 
review the different techniques of VO systems developed in 
the last few years briefly and evaluate their performances 
according to different road types.  

Related Visual Odometry Works 

Generally, the VO systems can be categorized into three 
approaches: Feature-based, appearance-based (direct), 
and hybrid-based (semi-direct) systems as depicted in 
Fig. 1. Feature-based VO consists of two parts which 
are the feature management and the state optimization 
steps. This approach benefits from robust modern 
point-feature descriptors such as BRIEF, (Calonder et al., 
2010), BRISK, (Leutenegger et al., 2011), ORB            
(Rublee et al., 2011), and FREAK (Alahi et al., 2012). 
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Fig. 1: Visual odometry approaches and techniques 

 

ORB-SLAM2 proposed by Mur-Artal et al. (2015) is one 

of the most cited VO methods that utilized a feature-based 

approach, with ORB features for tracking, mapping and 

place recognition tasks, proves to be accurate and robust to 

motion clusters in most scenarios. Other published VO 

systems with a feature-based approach are presented by  

Geiger et al. (2011); Bénet and Guinamard (2020); Krešo 

and Šegvic (2015); Wang et al. (2019); Cvišić et al. (2018; 

2022a). In their works, (Geiger et al., 2011; Bénet and 

Guinamard, 2020; Krešo and Šegvic, 2015) used corner and 

blob convolution such as Harris Corner detector and then 

employ non-maximum- and non-minimum-suppression on 

the filtered images (Neubeck and Gool, 2006). As for Joint 

Forward-Backward Visual Odometry (JFBVO) introduced 

by Wang et al. (2019), they proposed an interesting idea 

of a novel method with the joint forward-backward 

framework which incorporates cues from backward 

motion to improve the forward motion estimate. 

Meanwhile, Cvišić et al. (2018; 2022ab) recently 

developed their VO methods with SOFT feature 

tracking that is based on careful selection and tracking 

of stable features whereas the latter work optimized its 

accuracy based on the camera recalibration presented 

in Cvišić et al. (2022b). From their works, the SOFT 

feature tracking technique has shown an outstanding 

performance in improving VO accuracy.  

However, feature-based VO tends to have high latency 

due to the expensive computation of data association. To 

solve this, appearance-based VO systems directly find the 

optimal geometric transformation by minimizing the 

photometric error between the input image and the warped 

reference frame. Among the noteworthy VO, systems are 

LSD-SLAM (Engel et al., 2014), Direct Sparse Odometry 

(DSO) (Engel et al., 2017), and Gradient-based Joint Direct 

Visual Odometry (GDVO) (Zhu, 2017). These works 

employed an appearance-based (direct) approach while 

Semi-direct Visual Odometry (SVO) as proposed by 

Forster et al. (2016) utilizes a semi-direct approach as its 

name implies. One of the direct approaches, DSO, for 

instance, implements a sparse formulation that can 

significantly reduce computation complexity, unlike the 

dense pixel tracking proposed by Meilland et al. (2011); 

Newcombe et al. (2011) and semi-dense pixel tracking 

implemented in Engel et al. (2014); Zhu (2017) of previous 

researches. This meant that DSO is capable of achieving real-

time computation, as it samples only points of sufficient 

intensity gradient and neglects the geometric prior. 

Evaluation Datasets 

In parallel with the advancing development of 

autonomous robots and vehicles, public datasets are  
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essential as they enable evaluation and comparison of 

different approaches. As for visual odometry and 

Simultaneous Localization and Mapping (SLAM), several 

datasets have been made publicly available over the years 

such as the KITTI dataset (Geiger et al., 2013), Málaga 

Urban dataset (Blanco-Claraco et al., 2014), KITTI-360 

dataset (Liao et al., 2022), The EuRoc micro aerial vehicle 

dataset (Burri et al., 2016), Oxford Robotics Car dataset 

(Maddern et al., 2017), Multivehicle Stereo Event Camera 

Dataset (MVSEC) (Zhu et al., 2018) and a Stereo Event 

Camera Dataset (DSEC) (Gehrig et al., 2021).  

Among these, the most established and widely used 

for VO evaluation purposes is the KITTI dataset. The 

KITTI dataset contains 11 image sequences recorded 

from a car in urban and highway environments. The 

recordings total up to 40 min, but individual recording 

for each sequence ranges from 30 sec to 8 min. The car 

is equipped with several sensors: Including four 

cameras, a Velodyne laser scanner, and an accurate 

Inertial Navigation System (GPS/IMU). To validate 

VO performance, ground truth positions provided by 

RTK-GNSS are used. This study's focus is on a 

performance evaluation review of the KITTI dataset 

only because it has a large-scale outdoor benchmark 

that is suitable for self-driving applications. The KITTI 

dataset has been developed into the KITTI-360 dataset 

(Liao et al., 2022), where the driving sequence is 

longer and has more sensory information with both 

static and dynamic 3D scene elements. However, this 

dataset is too new and only a few have published their 

evaluation results on the leaderboard. 

Road Classifications 

As mentioned previously, the KITTI dataset has 

recordings of urban and highway roads for localization 

evaluation. The sequences are categorized into three types 

of roads: Residential, city, and highway. These roads have 

their characteristics as shown in Table 1. 

The speed limit on the roads varies according to the 

country's traffic regulations. Since this dataset was 

obtained in Germany, the speed limit for residential 

areas is 30 km/h, city road is 50 km/h and the highway 

speed limit is 130 km/h. The road shape and 

surrounding environment are also different for each 

road type. For residential roads, the surroundings are 

mostly residential buildings like houses and 

apartments, with lots of trees and parked vehicles at the 

roadside. The roads are narrow, usually single-lane 

roads. Besides, there are lots of cross-junctions and T-

junctions to connect the residential paths. Meanwhile, 

fewer junctions can be found on city roads and the road 

is wider with clearer lane marks. 

As for highway roads, the shape is less complex to 

ensure safe high-speed driving. Highway roads 

typically consist of multiple lanes in the same 

direction, so the view is cleaner from the noise 

contributed by other moving objects. However, there 

are road divergences for highway exits and at highway 

entrance, the roads would merge. This affects the 

vehicle path planning if the localization is not accurate 

at the lane level (Awang Salleh and Seignez, 2018).  
 
Table 1: Road classification and characteristics 

Road type Speed limit Shape Environment 

Residential road 30 km/h • Multiple junctions • Static vehicles parked at road sides 

  • Narrow roads • Building shadows 

City road 50 km/h • Less junctions 

  • One-lane or two-lane roads • Traffic lights 

   • Other moving vehicles in different vehicles 

Highway road 130 km/h • Straight or slightly curved • Other moving vehicles in the same direction 

  • Road divergent or merging • Fewer buildings 

  (highway exit and entrance) 
 
Table 2: Details on the 11 sequences tested for VO performance evaluation 

   Length No of frames Min speed Max speed Average Loop 

Sequence Raw data Environment (m) (10fps) (km/h) (km/h) speed (km/h) Closure 

00 2011_10_03_drive_0027 Residential 374.2 4540 0 36 13.0 Yes 

01 2011_10_03_drive_0042 Road (highway) 2453.2 1100 0 65 43.0 No 

02 2011_10_03_drive_0034 City + residential 5067.2 4660 0 50 27.0 Yes 

03 2011_09_26_drive_0067  Residential 560.9 800 NA NA NA No 

04 2011_09_30_drive_0016 Road 393.6 270 46 56 50.0 No 

05 2011_09_30_drive_0018 Residential 2205.6 2760 0 41 13.5 Yes 

06 2011_09_30_drive_0020 Residential 1232.9 1100 0 16 4.5 Yes 

07 2011_09_30_drive_0027 Residential 694.7 1100 0 37 13.0 Yes 

08 2011_09_30_drive_0028 Residential 3222.8 4070 0 44 18.0 No 

09 2011_09_30_drive_0033 City + residential 1705.1 1590 0 50 34.0 Yes 

10 2011_09_30_drive_0034 Residential 919.5 1200 0 20 4.0 No 
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Table 2 describes the details of each sequence. We also 

include the raw data name, sequence road type, length, and 

loop closure status in the table. We are unable to obtain the 

speed information for sequence 03 due to the unavailability 

of the raw file for sequence 2011_09_26_drive_0067 in the 

KITTI dataset. Therefore, the evaluation for sequence 03 is 

also omitted in this study. 

Out of 11 sequences provided by KITTI for 

evaluation, nine of them are recorded in the residential 

area with an average speed of not more than 20 km/h. The 

minimum speed for all the sequences is 0 km/h due to 

the vehicle stopping at junctions or traffic lights, except 

for sequence 04 where the trajectory is generated as a 

short non-stop drive on a straight road. The highest 

speed is recorded from a drive on a highway-sequence 

01-at 65 km/h. The longest drive is sequence 02 with a 

5 km driving scene that includes a city road and a residential 

road. Of the nine sequences in the residential area, six of 

them contain loop closure-sequence 00, 02, 05, 06, 07, and 

09. The trajectories for all sequences (except sequence 03) 

are illustrated in Fig. 2. 

Localization Accuracy Evaluation 

The accuracy of the visual odometry technique is 

quantified from the estimated position evaluation concerning 

the ground truth as shown in Fig. 3. This evaluation is 

necessary, especially in benchmarking the system with the 

existing techniques. There are several methods for measuring 

the accuracy of vehicle positioning techniques. So far there 

is no fixed indicator for accuracy, resulting in quite a several 

types of research having their definitions and can sometimes 

be misleading. However, the most popular metrics used are 

the Absolute Trajectory Error (ATE) and Relative 

Projection Error (RPE) metrics. 

The ATE evaluates the global consistency of 

localization by comparing the absolute distances of the 

estimated pose with the ground truth. Therefore, the ATE 

can be defined as the Root Mean Square Error (RMSE) 

for both rotation (Eq. 1) and positioning error (Eq. 2). 
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Here, Ri is the angle error with ground truth, pi is 

the pose error, and the < (.) means the rotation matrix 

is using the angle-axis representation and the rotation 

angle is the error. 

ATE has one advantage; it is easy to compare 

localization performances because it provides a single 

number metric for the position/rotation/velocity 

estimation. However, ATE can be sensitive to the time 

when the error occurs. For instance, a rotation estimation 

error tends to give a higher ATE when it occurs at the 

beginning of the trajectory than the situation when it 

occurs at the end. Therefore, the relative error method 

provides another option to give a more informative 

evaluation of the localization accuracy. 

On the other hand, the RPE measures the relative 

relation between the states at a fixed time interval ∆. Thus, 

the RPE relates to the drift of the trajectory, which is 

useful for the evaluation of VO accuracy. Similar to the 

ATE, RPE is also divided into translational and rotational 

errors. Firstly, the relative pose error is defined as: 
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where, Q is the ground truth and P is the estimated pose. 

From a sequence of n poses, we obtain m = n -  as the 

individual RPE matrices along the sequence. Hence, the 

RPE can be computed as follows: 
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Since the RPE generates a collection of errors for all 

the sub-trajectories instead of a single number for the 

sequence, we can calculate the statistics on the median, 

average, and percentiles and this gives more detailed 

information than ATE. Besides, RPE can provide different 

meanings according to different criteria selection. For 

example, the RPE obtained from a closer interval would 

reflect in the local consistency, while the error for a larger 

distance reflects more on the long-term accuracy. For this 

reason, the KITTI dataset evaluation computes translational 

and rotational errors for all possible subsequences of length 

(100, ..., 800) meters which are followed by all the 

researchers for fair benchmarking. 

 

 

 

Fig. 2: Trajectories of Sequence (a) 00, (b) 01, (c)0 2, (d) 04, (e) 

05, (f) 06, (g) 07, (h) 08, (i) 09, (j) 10 
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Fig. 3: The process of quantitative trajectory evaluation 

 

Results Evaluation 

This study suggests that the road types would impact 

the VO performance for vehicle localization because of 

the differences in the speed limit, road shape, and 

environmental effects on visual-based localization. 

Especially if loop detection is applied, this will re-correct 

the vehicle positioning and remove the accumulated 

errors of the positioning system. Besides, VO-based 

localization benefits from its lower speed, hence 

increasing its accuracy. This makes VO performs better 

on residential roads compared with other sequences.  

For quantitative evaluations, the KITTI leaderboard is 

ranked based on the Relative Translation Error (RTE), trel, 

which averages the trajectory drift over segments of 

lengths ranging from 100 m to 800 m. When computing 

the performance score for the KITTI leaderboard, the 

average is calculated over all the segments of all 

sequences (not the mean of trel over the sequences) and 

this reflects on the leaderboard ranking. The Relative 

Rotation Error (RRE), rrel, is also computed for all possible 

subsequences of length from 100 m to 800 m, thus the RRE 

is presented in degrees per hundred meters (deg/hm). 

Since the majority of the tested sequences are recorded 

from the residential area, this caused a biased performance 

evaluation-very minimal evaluation on higher speed is 

conducted. Therefore, to fairly compare the performances 

of different VO techniques, we perform the error comparison 

for each sequence. We selected 13 VO techniques - VISO2 

(Geiger et al., 2011), LSD-VO (Engel et al., 2014), 2FO-CC 

(Krešo and Šegvic, 2015), ORBSLAM2 (Mur-Artal et al., 

2015), SOFT-SLAM (Cvišić et al., 2018), VINS-Fusion 

(2018), SOFT-VO (Cvišić and Petrović, 2015), GDVO 

(Zhu, 2017), StereoDSO (Wang et al., 2017), JFBVO 

(Wang et al., 2019), RADVO (Bénet and Guinamard, 

2020), OV2-SLAM (2021), and SOFT2 (Cvišić et al., 

2022ab)-for performance comparison. Unfortunately, 

RADVO did not provide its RRE for all the sequences, so 

we only used its average value published on KITTI's 

leaderboard. Besides, 2FO-CC also did not evaluate their 

technique on sequences 01, 02, and 03. Therefore, its 

performance only reflects the localization for sequence 04 

until sequence 10. The details for each of the VO techniques 

proposed can be found in their published works. 

 

 
 
Fig. 4: RTE for each sequence 

 

 
 
Fig. 5: RRE for each sequence 

 

 

 

Fig. 6: RTE and RRE average for each sequence 

 

 

 

Fig. 7: RTE and RRE average for each VO technique 
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As can be seen from the RTE chart in Fig. 4, the 

highest error is recorded by JFBVO in sequence 01 

(highway road) with over 4%. Sequence 01 is 2.5 km in 

length with a maximum speed of 65 km/h. Other VO 

methods also suffer from higher translation errors for this 

sequence compared with other sequences. Ten out of 

twelve VO methods (excluding 2FO-CC) recorded 

sequence 01 as the sequence with the highest RTE. Only 

SOFT-SLAM and RADVO show no distinct error 

whereas SOFT-SLAM recorded the highest RTE in 

sequence 03 at 1.36% and RADVO's highest RTE was 

obtained in sequence 08 at 0.88%. The high RTE of most 

VO methods in sequence 01 is mainly due to the drift over 

time which can be contributed to the scale drift or rotation 

error. But the most contributing factor is the high speed, 

which significantly affects the scale factor even with 

minimal projection error. This agrees with the VO 

performance evaluation results obtained for sequence 01. 

On the other hand, as shown in Fig. 5, sequence 07 

records the highest RRE by VISO2 of 1.13 deg/hm. Not 

only VISO2, but eight other VO methods also achieved 

the highest RRE for this sequence. Upon observation, this 

is mainly caused by an instant where the vehicle stopped 

at a T-junction and other vehicles are moving horizontally 

in front of it. This affects the rotation calculation in VO. 

Only SOFT-based VO techniques managed to score a 

rotation error of less than 0.3 deg/him and yet this is still 

higher compared with the rotation error of other 

sequences for the same VO method. 

To summarize VO performances for each sequence. 

Fig. 6 displays the mean and standard deviation of both 

translational and rotation errors. Sequence 04 obtains the 

most precise results which are expected due to the nature 

of the sequence (straight, non-stop drive) with 0.71% 

average RTE. Sequence 01 exhibits a high RTE of 2% on 

average while interestingly its average rotation error is 

among the lowest (0.32 deg/hm) – owing to minimal noise 

from the environment (building/road signs/vehicle from 

the opposite direction) in view for VO trajectory 

generation. However, this still does not portray the 

capability of VO in a real scenario where the average 

speed for the highway is around 90 km/h and the drive 

distance is farther. Sequence 07 has the highest RRE 

average of 0.48 deg/hm although its average for RTE is 

good (0.79%). 

As for the overall VO performances, we illustrate the 

average error in Fig. 7 in ascending order of publication 

date starting with VISO2 in 2011, with their approach 

notation -(d) for direct, (f) for feature-based, and (sd) for 

semi-direct. The RTE average ranges from 0.52% (OV2-

SLAM) to 2.64% (VINS-Fusion) while the RRE is 

between 0.18 deg/hm (RADVO and OV2-SLAM) to 1.01 

deg/hm (VINS-Fusion). Here, we can see that OV2-

SLAM achieved the most steady and accurate location 

while VINS-Fusion has the lowest accuracy.  

From the graph, it is shown that the performances for 

the feature-based technique are varied while the direct-

based approach achieved more consistent results. 

Undeniably, both feature-based and direct-based 

approaches are both competitive in their performances. 

Interestingly, GDVO, which applied a semi-direct 

approach seems to be able to achieve among the lowest 

RTE average despite its high rotation error. This shows 

that their VO technique succeeded in obtaining optimum 

scale estimation for accurate pose estimation. 

Conclusion 

This study reviews and compares the VO 

performances according to the driving sequence 

environment. From the performance evaluation on the 

KITTI dataset, SOFT-based VO performed well in most 

of the sequences. It is shown that driving sequences in 

residential areas generally achieved good localization 

accuracy with an average of 0.72% for RTE. However, the 

localization based on VO would suffer from rotation error 

as incurred in one of the residential sequences where 

sequence 07 achieved the average of 0.48 deg/hm for its 

RRE due to the noise from other moving vehicles in 

various directions at the junction stop.  

As for the VO performance on a highway road, the 

RTE average for all VO techniques was exceptionally 

high (2%) and we predict this would deteriorate as the 

vehicle speed increases. Since VO is targeted to facilitate 

vehicle positioning for better accuracy, especially during 

GPS signal outages and autonomous driving, we need 

to focus on the common condition of a positioning 

problem. With the growing public dataset for VO 

evaluation, we look forward to seeing more 

optimization on high-speed driving localization. 
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