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Abstract: Research conducted on the advancement of CNN architecture for 

computer vision problems focuses on strategically choosing and modifying 

convolution hyperparameters (kernel, pooling, etc.). However, these research 

works don't exploit the advantage of employing multi fully-connected layers 

post the core schema to avail further performance improvements, which have 

been identified as the first research gap. Studies were also conducted to 

address the challenges of vanishing gradients in deep networks by employing 

residual learning via skip connections and lowering model training 

computational costs using parallel convolution rather than sequential 

convolution operations by employing inception blocks. These studies also 

don't discuss in detail the impact of sparing features on feature learning, 

which has been identified as the second research gap. Diagnosis of infectious 

patterns in chest X-rays using residual learning is chosen as the problem 

statement for this study. Results show that ResNet50 architecture achieved 

improved accuracy by 0.6218% and declined error rate by 2.6326% if 

gradually narrowing FC layers are employed between core residual learning 

schema and output layer. Also, independent implementation of inception 

blocks (google net v2) before skip-connections in ResNet50 architecture boosts 

accuracy by 0.961% and lowers the error rate by 4.2438%. These performance 

improvements were achieved without regularization and thus, encourage future 

work in this direction. 

 
Keywords: Fully-Connected Layer, Neuron Layer Width, ResNet50, 

Residual Network, Skip-Connections, Inception Blocks 
 

Introduction 

Convolution Neural Networks (CNN) are neural 

networks that are applied for problems related to visual 

imagery. The mathematical operation of convolution, upon 

which the network is based, solves the high dimensionality 

challenge incurred due to the multidimensional feature 

matrix of an image. The research work of Fukushima 

(2004) and Mozer (1986) showed that the approximate 

position of features learned by one convolution layer 

allows subsequent layers to detect more complex 

patterns or features. Though deeper CNN helps in 

learning complex features of images producing an 

efficient classification model, error-rate decrement 

over epochs starts plateauing which is caused by the 

vanishing gradient. This limitation of deeper CNN 

architecture was explained in an article by He et al. 

(2016), which also discussed the residual learning 

approach based on skip connection or shortcut path. In 

this study, a fifty-layered architecture was 

implemented from the aforementioned paper on the multi-

class classification problem of chest X-ray images. 

Pathology relies on the examination of tissues, organs, 

and body fluids to identify the causes and effects of a 

disease on the organ of the body. Using a scan of internal 

organs to perform a diagnosis of disease requires reading 

effects and/or patterns of the pathogen on that organ. In 

the case of pneumonia, the goal of bio-medical diagnosis 

entails establishing a preliminary finding that entails the 

presence or absence of infiltrates (white spots) in the lungs 

from the patient's Chest X-Ray (CXR) which indicates the 

presence of an abnormal substance in the lung 

parenchyma. The lung parenchyma Suki et al. (2011) is a 

portion of the lung responsible for gaseous exchange 

(collectively comprising alveoli, alveolar ducts and 

respiratory bronchioles). The presence of pulmonary 

infiltrate could be evident in patients Ellison and 
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Donowitz (2015); Weinberger et al. (2017) suffering from 

diseases such as pneumonia, tuberculosis and immuno-

compromised patients suffering from HIV infection as 

well as in patients suffering from rejection after organ 

transplant. The possible disease or infection responsible 

for pulmonary infiltrates can be identified by studying the 

patient's medical history, blood or sputum tests as well as 

by analyzing the distribution patterns of these infiltrates 

themselves. X-rays are primarily absorbed by the bone 

structure (ribs, sternum, trachea, clavicle, scapula, 

humerus, etc.) making them highly illuminated on the 

CXR image. However, soft tissues that make up the lung 

parenchyma absorb less amount of X-ray, leaving them 

less illuminated on CXR images. As soft tissues are less 

illuminated on CXR images, it becomes challenging for 

medical practitioners to identify abnormalities and 

patterns of infection in chest X-ray scans. Despite these 

challenges, experienced radiologists and surgeons can 

perform the anatomy of soft tissues (lung parenchyma) 

ignoring surrounding bones in the CXR images by relying 

on their experience, perceptual skills and judgment. 

Through this study, we try to understand whether lung 

pathology diagnostics can be achieved by a machine 

learning model that can distinguish and learn soft tissues 

infiltrate patterns like an experienced radiologist. 

By studying architectures of successful and innovative 

models developed over the past decade, we outlined 

experimentation to identify the scope of enhancement in 

fully-connected and convolution layers of ResNet50 

architecture for better learning of lung infiltrates patterns 

for diagnosis of lung infections with high probability. 

We analyze the resultant performance of original 

architecture and its architectural variations, against the 

categorical classification problem of chest X-ray images 

into normal, viral pneumonia, COVID-19, and lung 

opacity classes. 

Though earlier attempts have been made towards 

modeling a solution for chest x-ray classification, analysis 

work achieved here will contribute to the development of 

more advanced architectures for biomedical diagnosis. 

Related Work 

As part of a related research work-study, we focused 

on a few architectures that participated in or won the 

ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC) Russakovsky et al. (2015) in the past few 

years. ImageNet dataset consists of more than 15 million 

high-resolution images labeled under thousands of 

categories, each category consisting of more than a thousand 

images. The sampling is then distributed into training, 

testing, and validation with image counts of 1.2 million, 

150,000 and 50,000. 

Krizhevsky et al. (2012) published a Neural 

Information Processing Systems (NeurIPS) paper that 

described the architecture of AlexNet, which won the 

ILSVRC 2012 by substantially reducing the error rate. 

AlexNet architecture consists of eight layers, comprising 

five convolution layers and three fully connected Dense 

layers. Two groups of kernels are used for convolution 

operation in the first four layers (1,2,3 and 4). The kernel 

dimensions decrease slowly from 11 to 3 (11 x 11, 5 x 5, 

3 x 3 and 3 x 3), while the number of kernels increases 

from 48 to 192 (48, 128, 192 and 192). In the first two 

layers, convolution operations are followed by 

overlapping max pooling and local response 

normalization. In the fifth layer, 256 kernels of dimension 

3 x 3 are used for convolution operation, followed by 3 x 3 

overlapping max pooling with 2 strides. The sixth and 

seventh layers are dense layers, comprising 4096 neurons 

each. Finally, the last layer is a dense layer of 1000 neurons, 

with softmax activation to classify the input image into one 

of 1000 classes of the ImageNet dataset. The demonstrated 

experimentation in the paper uses input images of size 227 x 

227 or 224 x 224 with padding. The paper introduces 

Rectified Linear Unit (ReLU) activation function which 

performs six times faster than the Tanh activation function. 

Overlapping pooling differs from non-overlapping pooling 

concerning stride size smaller than their kernel size. AlexNet 

also utilizes a dropout Srivastava et al. (2014); Hinton et al. 

(2012) of 0.5 probability in the first two fully-connected 

layers as regularization. A learning rate of 0.01 was used 

which was reduced (three times) by a factor of 10 in case the 

validation error rate did not improve. Convolution operation 

was conducted using two groups of convolution operations 

in the first four layers, resulting in two parallel paths. Thus, 

two GPUS were used for implementing the architecture. 

The top-1 and Top-5 validation error rates of AlexNet 

were 39 and 18.2% respectively. In the result section, the 

author mentions that adding one more convolution layer 

to AlexNet helped reduce the validation error rate from 

18.2 to 16.6%. CaffeNet Jia et al. (2014) is a 1-GPU 

implementation of AlexNet, in which instead of 2 path 

architecture of AlexNet are combined into one path. 

Clarify further fine-tuned AlexNet for better image 

classification tasks by designing network architecture based 

on visualizing technique published by Zeiler and Fergus 

(2014). ZFNet (named after the authors of the paper) 

proposes two changes to AlexNet architecture's first 

convolution layer, namely, reduction of the first layer filter 

size from 11 x 11 to 7 x 7 and changing the stride from 4 to 

2. The ablation study showed a top-5 validation error of 

16.5%, while AlexNet was at 18.1%. Clarify won the 

ILSVRC 2013 using ZFNet. 

VGGNet developed by VGG (Visual Geometry 

Group) team by Simonyan et al. (2015) from Oxford 

university was 1st runner-up of ILSVRC 2014. Though the 
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architecture did not win the aforementioned competition, 

it demonstrated significant improvement in image 

classification tasks from ZFNet and thus over AlexNet. 

The paper proposes using two layers of 3 x 3 filters instead 

of 5 x 5 filters and three layers of 3 x 3 filters instead of 7 

x 7 filters in the ZFNet architecture. Replacing large 

filters with smaller ones helps in reducing the number of 

trainable parameters. With reduced trainable parameters, 

the risk of vanishing gradient associated with a deeper 

network diminishes, net-work convergences faster and the 

problem of overfitting is reduced. The ablation study in the 

paper demonstrates VGG-11, VGG-13, VGG-16 and VGG-

19 models. The author keeps adding layers to the network 

and verifies the error rate to check for improvements. VGG-

11 obtained an error rate of 10.4%, similar to ZFNet. VGG-

13 produced an error rate of 9.9% on the addition of the conv 

layer to the existing architecture. In VGG16(Conv-1), 

additional three convolution layers were added to the 

architecture which further lowered the error rate to 9.4%. 

VGG-16 with additional filters lowered the error rate to 

8.8%. However, VGG-19 raised the error rate to 9.0% which 

proved that adding further layers to existing architecture was 

no longer improving accuracy. 

Inception architecture was first introduced as GoogLeNet 

(a tribute to Lenet architecture) by Szegedy et al. (2015). 

The paper introduced the inception module approach, 

wherein rather than the implementation of convolution 

layers and pooling sequentially, the inception module 

implements 1 x 1, 3 x 3 and 5 x 5 convolution operation 

and max-pooling on an input parallelly and then 

concatenates the output of these operations to pass onto 

next layer. This approach saved the decision-making step 

of choosing the right size of filter for convolution 

operations in a layer. The GoogLeNet, also known as 

Inception-v1architecture suffered from saturation 

problems and consequently gradient descent problems. To 

resolve the above-stated issue, Ioffe and Szegedy (2015), 

published a paper on BN-Inception, also known as 

Inception-v2 was developed. This new version uses Batch 

Normalization and ReLU activation function also 

replaces 5 x 5 convolution with two 3 x 3 convolution for 

parameter reduction. The resultant architecture produced 

more irregular outputs, thus higher learning rate was advised. 

Szegedy et al. (2016) introduced factorization for the 

convolution layer to reduce dimensionality and in turn, 

reduce the overfitting problem. The author proposed that 

rather than using a square-shaped filter of dimension f x f for 

convolution operation, two filters of dimension f x 1 

and 1 x f will yield similar results while reducing the number 

of learning parameters. The paper also included an efficient 

grid size-reduction module which is an equally efficient but 

computationally cheaper network. 

Residual Network a.k.a. ResNet He et al. (2016) was 

the winner of ILSVRC 2015 for image classification, 

detection and localization. ResNet also won MS COCO 

2015 competition for detection and segmentation. Deep 

learning networks such as AlexNet, ZFNet and VGGNet 

are based on an architecture that entails convolution 

layers, followed by Fully Connected (FC) layers for 

image classification tasks. Such networks are referenced 

by the authors as "plain" networks. 

Such networks when designed for deeper 

representation, i.e., when the number of layers is 

increased in their architectures, pose the problem of either 

vanishing or exploding gradients. This is in contrast to the 

expectation from neural networks to produce better 

accuracy predictions with deeper layers. This problem 

was demonstrated by the authors upon comparing 

training and testing error representation of 20 layers and 

56 layer plain networks using CIFAR-10 dataset. The 

authors proposed the addition of a skip/shortcut 

connection after a few weighted layers. If during the 

weighted layer learning, gradients of features start to 

vanish, the input layer carried by skip connection, will 

transfer them back to earlier layers. These blocks formed 

by employing skip connections are referred to as residual 

blocks. In the case of deeper networks, the paper adopts 

the suggested technique of GoogLeNet (Inception-v1) and 

Network in Network Lin et al. (2014) of adding 1 x 1 conv 

layer after the start and before the end of each residual 

block. These 1 x 1 conv reduced the number of 

connections, without much degrading network model 

performance. In the ablation study, results showed how 34 

layered ResNet architecture was better than a 34 layer 

plain network by comparing their error rate using 10 crop 

testing, though, not much significant improvement was 

evident in the comparison between 18 layer plan and 18 

layer ResNet architecture on the same test. 

Szegedy et al. (2017) published two Inception-v4 

architectures based on ResNet model's skip connection 

approach named Inception-ResNet-v1 and Inception-

ResNet-v2. In this version, Inception blocks employ the 

improvements developed in Inception-v2 and Inception-

v3, primarily Batch Normalization and Factorization. The 

paper presents three architectures of inception blocks 

(Inception-A, Inception-B, and Inception-C) and one 

architecture of stem. The stem architecture comprises six 

convolution layers, with one max-pool layer of 3 x 3 

dimension after the first three layers. The number of 

filters/kernels increases from 32 to 256 gradually as 32, 

32, 64, 80, 192 and 256 for each layer respectively. The 

inception block architectures proposed in the paper have 

skip/shortcut connections, to cater to vanishing gradient 

problems as was proposed in ResNet architecture. The 

main architecture comprises the above-mentioned stem, 

sequentially followed by the proposed Inception-A and its 

reduction layer, Inception-B and its reduction layer, 
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Inception-C and its reduction layer, followed by Average 

Pooling and Dropout of 0.8 probability. The 

computational cost of the Inception-ResNet-v1 model 

is similar but trained faster in comparison with 

Inception-v3. However, the accuracy of the model was 

slightly worse than Inception-v3. Since a large number 

of filters were used in the overall architecture, the 

author mentioned that employing more than 1000 

filters caused instability with the residual variants, 

causing the network to die in early epochs of training. 

Another architecture, Inception-ResNet-v2 mentioned 

in the paper employs the same overall network schema 

with variations in Inception blocks (A, B and C) by 

increasing the number of filters in these blocks to a 

higher number. The resultant architecture had a similar 

computational cost to that of Inception-ResNet-v1, but 

with faster training and better final accuracy. 

Wu et al. (2019) performed an in-depth analysis of the 

trade-off between the width and depth of ResNet 

architecture. The proposed model outperformed the original 

ResNet architecture in image classification and had good 

performance for semantic segmentation. The paper discusses 

that additional depths in ResNet may not bring much 

improvement and could yield worse results since effective 

depths in ResNet are not completely trained. Since deeper 

networks demand high GPU memory, shallower, but wider 

networks can have more trainable parameters with lesser 

GPU memory cost. The proposed model employs Batch 

Normalization and ReLU activation with each convolution 

layer. With only a depth of 38 layers, the model had 19.2 and 

4.7% top-1 and top-5 errors respectively, outperforming 

ResNet, Inception-4 and Inception-ResNet-v2 models. 

Methodology 

ImageNet dataset consists of large and uneven 

dimension images. During the ILSVRC competition, prior 

to model training and evaluation, resizing input images to 

256 x 256 or 224 x 224 dimensions was part of the data 

pre-processing activity. This squared the input image 

dimensions and also reduced processing cost. It is worth 

noting that, the studied models have not been evaluated 

against images with higher dimensions such as 500x500 or 

more. However, the dimensions of medical images such as 

chest X-rays and CT scans are large, to present infectious 

patterns with higher clarity to assist human vision that suffers 

from limited capabilities. This assumption inspired a part of 

the data pre-processing approach employed for this study. 

Thus, for model training and performance evaluation, input 

images were re-sized to 500 x 500 pixel dimensions to better 

enact live scenarios in the field of medical diagnosis. A 

convolution neural network primarily consists of a 

convolution layer and Fully-Connected (FC) layer. A study 

of literature on various CNN architectures for computer 

vision problems or challenges shows that advancements or 

performance improvements are achieved by altering either 

all or some components of the convolution layer, such as 

kernel dimension, filter count, pooling and normalization 

method, activation function, etc. However, no specific 

analysis or attempt towards improving the neural schema 

of FC layer has been conducted from studied architectures 

or literature. This observation constitutes the first half of 

our problem statement. A study of CNN architecture 

evolution from deeper to wider network from the work of 

Gilboa and Gur-Ari (2019) showed that the cost of 

network training is reduced due to the transferability of 

learned features between parallelly implemented 

convolution tasks in a wider network. The research also 

showed that compared to a deeper neural network, a wider 

network holds and learns from more input features. 

Szegedy et al. (2015) implemented the concept of the 

wider network in GoogLenet architecture in form of 

inception blocks. Shallower and performance enhanced 

architecture was later conceived when Ioffe and Szegedy 

(2015) and Szegedy et al. (2016) introduced kernel 

factorization for convolution operation and Batch 

Normalization to the network schema. Though the 

performance of a wider network holds for novel 

classification tasks, learning more complex features may 

require a deeper neural network. However, theoretical 

understanding of pre- diction performance is proportional to 

the depth of a network ceases to be true in the case of very 

deep neural. Simonyan et al. (2015) and He et al. (2016) 

attribute the cause of this unexpected neural network 

behavior to a vanishing gradient. This was evident from the 

ablation study of VGG architecture which showed that the 

error rate of VGG16 was less than that of VGG19. ResNet 

architecture mitigated this issue by employing skip 

connections by adding parameter weights and from the 

previous layer onto subsequent layers which were separated 

by 2 or 3 convolution layers. In this study, we selected 

ResNet50 architecture as a benchmark to study the 

advantageous effects on the performance of classification 

tasks by (i) manipulating the width and depth of FC layer and 

(ii) adding wider convolution layers in an already deeper 

architecture. Though different state-of-the-art CNN-based 

architectures choose different widths and depths of FC layer 

before the classification (output) layer, in the original paper 

of He et al. (2016), ResNet architecture employs a single 

classification(output) FC layer for generating prediction. For 

the first half of this research work we studied the effect on 

the performance of ResNet50 by (i) insertion of FC layer 

with gradually decreasing width which is less than the 

flattened output of the final convolution layer, (ii) 

insertion of a comparatively narrower dense neural layer 

before the final classification FC layer, (iii) increasing 

the depth, but decreasing the width of the FC layer, (iv) 
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increasing the width and depth of the FC layer (Fig. 1). 

In the second part of this research work, we insert an 

inception block from GoogLeNet v2 architecture 

before every convolution block in the ResNet50 (Fig. 2) 

to investigate if adding width to an already deeper 

architecture can bring positive performance 

enhancement for the classification task. For practical 

implementation and study of the aforementioned 

experimentation, we chose the problem statement of 

multi-class (normal, viral-pneumonia, COVID-19 and 

lung-opacity) classification of bio-medical Chest X-

Ray (CXR) images. Before the listed experimentations, 

a classification model based on ResNet50 schema was 

trained and evaluated and its performance was 

recorded. The performance of original ResNet50 

against chosen metrics (section 4) was registered as a 

benchmark, against which all experimentally tweaked 

ResNet50 models were compared.

 

 
 

Fig. 1: Insertion of gradually narrowing FC layers after residual learning in ResNet50 arch 
 

 
 

Fig. 2: Insertion of inception block post every skip-connection in ResNet50 arch to exploit spared feature learning 
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Experiments and Results 

Two experimentations Experiment (i) and 
Experiment(ii) were set up to study the effect on model 
performance for classification tasks by; (i) manipulating 
the width and depth of FC layer and (ii) adding wider 
convolution layers in an already deeper architecture. 

Dataset 

The chosen dataset was accumulated from varied sources 
Rahman (2021), consisting of CXR images of resolution 
299x299, which constitutes over 21,000 images. Due to 
limited computational resources (number of GPU devices 
and time-sharing constraints) and huge class imbalance, a 
randomly chosen, but fixed subset of the image dataset was 
utilized in all experimentation setups. The image dataset 
comprised 2500 samples, each of COVID-19, lung opacity, 
and normal cases, while 1345 images of viral pneumonia. Of 
the total 8845 images, 1769 images were separated for 
testing and 1415 images were kept aside for validation, 
leaving 5661 images for training. 

Data Augmentation 

 Images were resized to 500x500 pixels to evaluate the 
performance of the models against high-resolution images, 
which is normally the case in bio-medical scans. Images 
were rescaled to the range of [0,1]. Other image 
augmentation approaches used were rotation, standard 
normalization, image shift (width and height), shearing, 
zoom, channel shift, and image flip (vertical and horizontal). 

System Configuration 

Tesla P100-PCIE-16GB 

Implementation 

 Each model was trained for 200 epochs overtraining 
and validation batches of size 16. The learning rate was 
initially set at 0.001 with the Adam optimizer and was 
scheduled to decrease by a factor of 10 after 80, 120, 160, 
and 180 epochs. Model training was monitored using 
categorical-cross-entropy (for loss) and accuracy (for a 
measure of classification correctness).  

Evaluation Metrics 

 Precision and recall rely on a confusion matrix, which in 
turn relies on closely balanced classes. However, in a real-life 
scenario, the number of scanned images of each categorical 
class may not always be even. Thus, F1-score was selected as 
the primary evaluation metric to compare the model 
performance of the benchmark model (original ResNet50) and 
its experimental variants on the chosen categorical 
classification task. However, we included precision and recall 
metrics for detailed performance comparison. 

Prerequisite (Benchmark) Evaluation 

 Benchmark model, based on the original ResNet50 

architecture schema was implemented, evaluated and its 

performance recorded against all considered metrics for 

later comparison with the performance of experimental 

models in detailed experiments. 

Experiment (i) 

A single convolution layer of a simple CNN architecture 

implementation consists of a convolution operation followed 

by a pooling layer. The number of kernels at each subsequent 

layer number is gradually increased to bring the number of 

trainable features to a manageable size before flattening 

the output of the final convolution layer and passing it 

either to a single FC layer that serves as a classification 

neural layer or to a series of subsequent FC layer densely 

connected to the classification neural layer for making 

classification prediction. 

Though different state-of-the-art CNN based 

architectures choose different widths and depths of FC 

layer before the classification (output) layer, in the 

original paper of He et al. (2016), ResNet architecture 

employs a single classification(output) FC layer whose 

width is equal to the number of classes in the problem. 

Experiment (i), which is a set of three experiments, 

studies the effect of changes in neural width and depth of 

the above-mentioned FC layer on model performance. 

Each experiment was based on independent approach-

based curiosity, which upon result analysis formulated 

into the base foundation for further experiments in this set 

of experiments. It needs to be noted that the number of 

parameters in the flattened layer of the unmodified 

ResNet50(original) model is 131072. 

Experiment (i)-A 

This experiment is based on an initial hypothesis that 
a gradual decrease in several parameters while moving 
from one neural layer to another can help increase the 
model's performance. The inspiration for this hypothesis 
is derived from the resultant decrease in several 
parameters from every subsequent convolution layer. 

To test this hypothesis, a set of gradually 

narrowing(width) FC layers is inserted before the final 

classification(output) FC layer. 
Three modified versions of ResNet50 models were 

implemented by manipulating the width of FC layer; (i) 
Insertion of one FC layer of the width of one thousand 
neurons, (ii) Insertion of two FC layers of the width of one 
thousand neurons, and (iii) Insertion of one FC layers of 
width one thousand neurons followed by one FC layer of 
one-hundred-twenty-eight neurons. 

Experiment (i)–B 

Findings of Experiment (i)-A shown in Table 1 shows 
that the modified versions of ResNet50 model with 
multiple FC layers, ResNet50-with-FC(2 x 1000) and 
ResNet50-with- FC(1 x 1000, 1 x 128) lowered the test 
error-rate by 2.7785 and 2.3744% compared to 
unmodified ResNet50 benchmark model. Though both 
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variant models performed better than the benchmark 
model, only ResNet50-with-FC(1 x 1000, 1 x 128) model 
suffered the least decline in test accuracy i.e., 0.1131%. 

Based on the understanding of observations from 

Experiment (i)-A, Experiment (i)-B was outlined. Since 

in the earlier experiment, the model with FC layer of one-

hundred-twenty-eight neurons before the classification 

layer lowered the error rate by 2.3744%, at the expense of 

0.1131% of test accuracy, experiments in this set were 

implemented with one-hundred-twenty-eight neurons in 

the FC layer just before classification layer. However, the 

wider FC layer was replaced by narrower FC layers of 

width 246 neurons while increasing the depth of FC layer 

in subsequent experiments. Implemented FC layers in 

variant ResNet50 architectures of this Experiment(i)-B set 

entails, (i) Insertion of two FC layers of width 256 

neurons, (ii) Insertion of four FC layers of width 256 

neurons, and (iii) Insertion of six FC layers of width 256 

neurons; each followed by one FC layer of 128 neurons. 

Experiment (i)–C 

Performance observation of model variants belonging 

to Experiment(i)-B from Table 2, upon comparison with 

the benchmark model based on the original ResNet50 

architecture shows distinctive improvement in test 

accuracy and test loss by a factor of 0.6218% and 

2.6326% respectively. Based on the results of Experiment 

(i)-B, variants of ResNet50 in Experiment(i)-C were 

outlined by in- section of FC layer of depth of four layers 

and neuron width of; (i) five-hundred, (ii) one-thousand 

and (iii) two-thousand-forty-eight; followed by FC layer 

of one-hundred-twenty-eight neurons. Table 3 shows no 

satisfactory improvement in test accuracy and loss was 

observed in this set of experiments, thus ceasing 

modifications in FC layers of ResNet50 architecture. 

Experiment (ii) 

 To understand the impact of inception block (wider 

network) on performance of existing ResNet50 

architecture, an inception block was added before every 

convolution block (Conv->BN->ReLU->Conv->BN-

>ReLU->Conv->BN->Conv->BN->Skip Conn->ReLU) 

of the residual network (ResNet50). The intuition of 

adding multiple inception blocks was two folds; to allow 

the network to learn from a wider set of features at the 

same time and to allow the model to learn using multiple 

dimensions of kernels (1 x 1, 3 x 3, and 5 x 5). 

The performance comparison between the original 

ResNet50 model and the Hybrid (Inception stacked within 

Residual Network) model listed in Table 4, showed a 

marginal improvement in inaccuracy, but a significant 

decrease in an overall loss.
 

Table 1: F1-score, accuracy, loss, and parameter comparison between benchmark and experiment (i)-A 

 Benchmark ResNet50 with ResNet50 with Experiment (i) - A ResNet50 with 
Model variations ResNet50 (Original) FC 1 × 1000 FC 2 × 1000 FC 1 × 1000, 1 × 128 

F1 Score (Class Level) [0,1] 
Classes 
COVID_19 0.9260 0.9085 0.9289 0.9337 
Lung Opacity 0.8552 0.8502 0.8586 0.8621 
Normal 0.8669 0.8582 0.8561 0.8574 
V. Pneumonia 0.9562 0.9544 0.9398 0.9385 
F1 Score (Average) [0,1] 
Macro avg. 0.9011 0.8928 0.8958 0.8979 
Weighted avg. 0.8939 0.8848 0.8901 0.8926 
Accuracy (%)   
Test Accuracy 89.2595 88.3550 88.8638 89.1464 
Test Loss 32.9535 34.4329 30.1750 30.5791 
 

Table 2: F1-score, accuracy, loss, and parameter comparison between benchmark and experiment (i)-B 

  Experiment (i) - B 
 Benchmark ResNet50 with FC ResNet50 with ResNet50 with 
Model variations ResNet50 (Original) 2 × 256, 1 × 128 FC4 256, 1×128 FC6 × 256, 1 × 128  

F1 Score (Class Level) [0,1] 
Classes  
COVID_19 0.9260 0.9164 0.9262 0.8629 
Lung Opacity 0.8552 0.8410 0.8632 0.8047 
Normal 0.8669 0.8601 0.8806 0.8127 
V. Pneumonia 0.9562 0.9313 0.9536 0.9396 
F1 Score (Average) [0,1] 
Macro avg. 0.9011 0.8872 0.9059 0.8550 
Weighted avg. 0.8939 0.8815 0.8996 0.8439 
Accuracy (%)  
Test accuracy 89.2595 88.0724 89.8813 84.2849 
Test loss 32.9535 32.1273 30.3209 43.9054 
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Table 3: F1-score, accuracy, loss and parameter comparison between benchmark and experiment(i)-C 

Benchmark ResNet50 with FC Experiment (i) – C ResNet50 with   

Model variations ResNet50 FC 4 × 1000, FC 4 × 2048, 

 (Original) 4 × 500, 1 × 128 1 × 128 1 × 128 ResNet50 with 

F1 Score (Class Level) [0,1] 

Classes  

COVID_19 0.9260 0.9099 0.9252 0.8936 

Lung Opacity 0.8552 0.8187 0.8455 0.8504 

Normal 0.8669 0.8385 0.8526 0.8507 

V. pneumonia 0.9562 0.9624 0.9667 0.9389 

F1 Score (Average) [0,1] 

Macro avg. 0.9011 0.8824 0.8975 0.8834 

Weighted avg. 0.8939 0.8719 0.8885 0.8761 

Accuracy (%)  

Test accuracy 89.2595 87.0548 88.7507 87.5071 

Test loss 32.9535 35.2765 32.0964 35.5780 
 
Table 4: F1-score, accuracy, loss, and parameter comparison between benchmark and experiment(ii) 

Model variations  Benchmark ResNet50 (original) Experiment (ii) hybrid model 

F1 Score (Class Level) [0,1] 

Classes  

COVID_19 0.9260 0.9344 

Lung opacity 0.8552 0.8703 

Normal 0.8669 0.8757 

V. Pneumonia 0.9562 0.9565 

F1 Score (Average) [0,1] 

Macro avg. 0.9011 0.9093 

Weighted avg. 0.8939 0.9031 

Accuracy (%) 

Test accuracy 89.2595 90.2205 

Test loss 32.9535 28.7097 
 
Table 5: F1-score, comparison between selected models from experiment sets (i) and (ii) against benchmark 

 Benchmark Experiment Experiment (i)-B Experiment (i)-C Experiment (ii) 

MODEL (i)-A ResNet50 with ResNet50 with ResNet50 with Hybrid Model 

VARIA- ResNet50 FC 1 × 1000, FC 4 256, 1× FC 4 ×1000, (Inception 

TIONS (original) 1 × 128 128 1 × 128 stacked in ResNet) 

F1 Score (Class Level) [0,1] 

Classes  
COVID_19 0.9260 0.9337 0.9262 0.9252 0.9344 
Lung opacity 0.8552 0.8621 0.8632 0.8455 0.8703 
Normal 0.8669 0.8574 0.8806 0.8526 0.8757 
V. pneumonia 0.9562 0.9385 0.9536 0.9667 0.9565 
F1 score (average) [0,1] 
Macro avg. 0.9011 0.8979 0.9059 0.8975 0.9093 
Weighted avg. 0.8939 0.8927 0.8996 0.8885 0.9031 
 
Table 6: Precision comparison between selected models from Experiment sets (i) and (ii) against Benchmark 

  Experiment(i)-A Experiment (i)-B Experiment (i)-C Experiment (ii) 

 Benchmark ResNet50 with ResNet50 with ResNet50 with Hybrid Model (original) 

 ResNet50 FC 1 × 1000, F C4× 256, FC 4×1000, (Inception stacked 

Model variations (original) 1 × 128 1 × 128 1 × 128 in ResNet) 

Precision (Average) [0,1] 

Classes  

COVID_19 0.9821 0.9678 0.9799 0.9777 0.9740 

Lung Opacity 0.8427 0.8745 0.8327 0.8595 0.8552 

Normal 0.8261 0.8074 0.8694 0.8035 0.8509 

V. Pneumonia 0.9804 0.9721 0.9519 0.9631 0.9731 

Precision (Average) [0,1] 

Macro avg. 0.9078 0.9055 0.9085 0.9010 0.9133 

Weighted avg. 0.8983 0.8968 0.9028 0.8929 0.9055   
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Table 7: Recall comparison between selected models from Experiment sets (i) and (ii) against Benchmark 

 Benchmark Experiment (i)-A  Experiment (i)-C Experiment (ii) 

Model ResNet50 ResNet50 with Experiment (i)-B ResNet50 with Hybrid Model 

variations (original) FC 1 × 1000, ResNet50 with FC 4 ×1000, (Inception 

   1 × 128 FC 4 × 256, 1×128 1 × 128 stacked in ResNet) 

Classes Recall (Class Level) [0,1] 

COVID_19 0.8760 0.9020 0.8780 0.8780 0.8980 

Lung Opacity 0.8680 0.8500 0.8960 0.8320 0.8860  

Normal 0.9120 0.9140 0.8920 0.9080 0.9020 

V. Pneumonia 0.9331 0.9071 0.9554 0.9703 0.9405  

Recall (average) [0,1]   

Macro avg. 0.8973 0.8933 0.9053 0.8971 0.9066 

Weighted avg. 0.8926 0.8915 0.8988 0.8875 0.9022 

 

Table 8: Parameter comparison between selected models from Experiment sets (i) and (ii) against Benchmark 

 Benchmark Experiment (i)-A Experiment (i)-B Experiment (i)-C Experiment (ii) 

 ResNet50 ResNet50 with ResNet50 with ResNet50 with Hybrid (Inception 

Model (original) FC 1 × 1000, FC 4 × 256, 1 × FC 4 × 1000, st ResNet) acked in 

variations  1 ×128 128 1 ×128 

Total Param 24,105,732 154,783,084 57,366,916 157,786,084 24,547,052 

Trainable 24,052,612 154,729,964 57,313,796 157,732,964 24,493,932 

Non- 53,120 53,120 53,120 53,120 53,120 

 
Table 9: Accuracy & Loss comparison between selected models from Experiment sets (i) and (ii) against Benchmark 

  Experiment Experiment Experiment Experiment 

  (i)-A (i)-B (i)-C (ii) 

  ResNet50 ResNet50 ResNet50 Hybrid 

 Benchmark with FC with FC with FC (Inception 

Model ResNet50 1×1000, 4×256, 4×1000, stacked 

variations (original) 1 × 128 1 × 128 1 × 128 in ResNet) 

Test Accu- racy 89.2595 89.1464 89.8813 88.7507 90.2205 

Test loss 32.9535 30.5791 30.3209 32.0964 28.7097 

 

Discussion 

Tables 5, 6, 7, 8 and 9 compare F1-score, precision, 

recall, parameter size and accuracy, and loss of the models 

that performed well in experiment setups – Experiment(i)-A, 

Experiment(i)-B, Experiment(i)-C and Experiment(ii). 

Based on a study of the F1-score from Table 5, it can be 

derived that compared to the Benchmark (original) ResNet50 

model, two model variants of ResNet50, i.e., ResNet50 with 

FC (4 x 256, 1 x 128) and hybrid ResNet50(inception block 

implementation) produced better average and class-wise F1-

score than the benchmark ResNet50 model. The noted 

elevation in macro-average and weighted-average F1-score 

was of 0.0048 and 0.0057 by ResNet50 with FC                

(4 x 256, 1 x 128) and, 0.0082 and 0.0092 by hybrid 

ResNet50(inception block implementation). 

The neural changes of ResNet50 with FC(4x256, 

1x128) elevated the macro-average and weighted-average 

precision by 0.0007 and 0.0045 and macro-average and 

weighted-average re-call by 0.008 and 0.0062, while 

hybrid ResNet50(inception block implementation) 

elevated the macro-average and weighted-average 

precision by 0.0055 and 0.0072 and macro-average and 

weighted-average recall by 0.0093 and 0.0096, compared to 

benchmark model, as can be observed from Table 6 and 7. 

The neural schema changes in the two experimental 

models, i.e., ResNet50 with FC (4x256, 1x128) and 

hybrid ResNet50(inception block implementation), as 

shown in Table 9, elevated the classification accuracy by 

0.6218 and 0.961% respectively and reduced error-rate by 

2.6326 and 4.2438% respectively. 

Though the applied neural changes in the two 

models produce better results, the hybrid 

ResNet50(inception block implementation) employed 

only 1.83% more parameters than the original 

ResNet50 model, which is to be expected given the 

addition of new inception blocks in convolution layers 

and can be considered as a reasonable trade-off in 

exchange for reducing error-rate by ~4%. 

However, in problems, such as bio-medical 

classification, where human life is in question, 

reducing the probability of misdiagnosis by 4.2438% 

(decrease in error rate) can make a lot of difference for 

medical practitioners. 



Saurabh Sharma / Journal of Computer Science 2022, 18 (5): 339.349 

DOI: 10.3844/jcssp.2022.339.349 

 

348 

Conclusion 

As part of this research, we were able to prove our 
hypothesis that a gradual decrease in neural layer width 
proportionally, across multiple FC layers before 
classification (output) FC layer, can produce better 
results compared to the current implementation of 
ResNet50 where the reduced features generated by last 
convolution layer are flattened and passed directly to 
the classification (output) FC layer. We believe that 
mathematically deriving the correct width and depth of 
FC layer by further research and experimentation on 
more diverse problem sets, can form the foundation of 
future work to understand the importance of             
Fully-Connected (FC) layers and inception blocks in 
computer vision problems. With demonstrated result 
sets, we were able to achieve a model variation that 
produced a cross-class performance of more than 90% 
against F1-score, precision, and recall metrics and 
reduced error rate by 4.2438% compared to the 
unmodified ResNet50 benchmark model. It is worth 
noting, that no regularization was implemented to prevent 
further overfitting problems and further enhance testing 
accuracy (except for Batch Normalization which is part of 
the ResNet50 architecture to reduce internal covariance 
shift). Thus, we believe that this model can be further 
improved to achieve even higher test results in image 
classification problems. 

Acknowledgment 

I thank my parents and beloved for their blessings, 

support and encouragement during my study at research 

program. They continuously nagged and pushed me to 

give it my best. I also thank my mentor Dr. Mukesh Kalla 

(HoD, Computer Science) and Dr. Arun Kumar (Dean, 

Computer Science) at Sir Padampat Singhania University, 

Udaipur, Rajasthan, India. 

Ethics 

The author declares that there exist no known 

competing financial interests that could have influenced 

the work reported in this study. The author approves the 

publication of manuscript. 

References 

Ellison, R. T., III, & Donowitz, G. R. (2015). Acute 

Pneumonia. Mandell, Douglas, and Bennett's Principles 

and Practice of Infectious Diseases, 823–846.e5. 

 doi.org/10.1016/B978-1-4557-4801-3.00069-2 

Fukushima, K. (2004). Neocognitron: A self-organizing 

neural network model for a mechanism of pattern 

recognition unaffected by shift in position. Biological 

Cybernetics, 36, 193-202. 

 doi.org/10.1007/BF00344251 

Gilboa, D., & Gur-Ari, G. (2019). Wider Networks Learn 

Better Features. arXiv preprint arXiv:1909.11572. 

doi.org/10.48550/arXiv.1909.11572 

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep 

residual learning for image recognition. In 

Proceedings of the IEEE conference on computer 

vision and pattern recognition (pp. 770-778). 

https://openaccess.thecvf.com/content_cvpr_2016/ht

ml/He_Deep_Residual_Learning_CVPR_2016_pap

er.html 

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, 

I., & Salakhutdinov, R. R. (2012). Improving neural 

networks by preventing co-adaptation of feature 

detectors. arXiv preprint arXiv:1207.0580. 

 doi.org/10.48550/arXiv.1207.0580 

Ioffe, S., & Szegedy, C. (2015, June). Batch normalization: 

Accelerating deep network training by reducing internal 

covariate shift. In International conference on machine 

learning (pp. 448-456). PMLR. 

 http://proceedings.mlr.press/v37/ioffe15.html 

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., 

Girshick, R., ... & Darrell, T. (2014, November). 

Caffe: Convolutional architecture for fast feature 

embedding. In Proceedings of the 22nd ACM 

international conference on Multimedia (pp. 675-678). 

doi.org/10.1145/2647868.2654889 

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). 

Imagenet classification with deep convolutional 

neural networks. Advances in neural information 

processing systems, 25. 

 https://proceedings.neurips.cc/paper/2012/hash/c399

862d3b9d6b76c8436e924a68c45b-Abstract.html 

Mozer, M. C. (1986). RAMBOT: A Connectionist Expert 

System That Learns by Example. 

 https://eric.ed.gov/?id=ED276423 

Rahman, T., Khandakar, A., Qiblawey, Y., Tahir, A., 

Kiranyaz, S., Kashem, S. B. A., ... & Chowdhury, 

M. E. (2021). Exploring the effect of image 

enhancement techniques on COVID-19 detection 

using chest X-ray images. Computers in biology 

and medicine, 132, 104319. 

 doi.org/10.1016/j.compbiomed.2021.104319 

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, 

S., Ma, S., ... & Fei-Fei, L. (2015). Imagenet large 

scale visual recognition challenge. International 

journal of computer vision, 115(3), 211-252. 

https://link.springer.com/article/10.1007/s11263-

015-0816-y 

Simonyan, K., Zisserman, A., et al., 2015. Very Deep 

Convolutional Networks for Large-Scale Image 

Recognition. doi.org/10.48550/arXiv.1409.1556 

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & 

Salakhutdinov, R. (2014). Dropout: A simple way to 

prevent neural networks from overfitting. The journal of 

machine learning research, 15(1), 1929-1958. 



Saurabh Sharma / Journal of Computer Science 2022, 18 (5): 339.349 

DOI: 10.3844/jcssp.2022.339.349 

 

349 

Suki, B., Stamenovic, D., & Hubmayr, R. (2011). Lung 
parenchymal mechanics. Comprehensive Physiology, 
1(3), 1317. doi.org/10.1002/cphy.c100033 

Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A. (2017, 
February). Inception-v4, inception-resnet and the 
impact of residual connections on learning. At the 
Thirty-first AAAI conference on artificial intelligence.  

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., 
Anguelov, D., ... & Rabinovich, A. (2015). Going 
deeper with convolutions. In Proceedings of the IEEE 
conference on computer vision and pattern 
recognition (pp. 1-9).  

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & 
Wojna, Z. (2016). Rethinking the inception 
architecture for computer vision. In Proceedings of 
the IEEE conference on computer vision and pattern 
recognition (pp. 2818-2826). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Weinberger, S. E., Cockrill, B. A., & Mandel, J. (2017). 

Principles of Pulmonary Medicine E-Book. Elsevier 

Health Sciences. 

Wu, Z., Shen, C., & Van Den Hengel, A. (2019). Wider 

or deeper: Revisiting the resnet model for visual 

recognition. Pattern Recognition, 90, 119-133. 

doi.org/10.1016/j.patcog.2019.01.006 

Zeiler, M. D., & Fergus, R. (2014, September). 

Visualizing and understanding convolutional 

networks. In European conference on computer 

vision (pp. 818-833). Springer, Cham. 

 doi.org/10.1007/978-3-319-10590-1_53 


