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Abstract: Lung cancer is one of the leading causes of death globally. One of 

the main risk factors for lung cancer is smoking, which causes more than 

90% of lung cancer cases. There are two types of lung cancer, i.e., Small Cell 

Lung Cancer (SCLC) and Non-Small Cell Lung Cancer (NSCLC), which the 

latter is the most common. One method that can be used to detect cancer is 

the implementation of machine learning on gene expression data. Machine 

learning is one approach that promises good performance in classifying gene 

expression data. This study aimed to predict the existence of NSCLC based 

on gene expression, whether including NSCLC or normal. We used three 

data sets, i.e., GSE10072, GSE19804, and GSE19188, which relate to the 

cases of NSCLC in smokers and nonsmokers. The prediction was carried out 

using six Ensemble Methods, i.e., Random Forest, Adaptive Boosting, Extra 

Tree, Gradient Boosting, Extreme Gradient Boosting, and Categorical 

Boosting. Feature selection was carried out by calculating the correlation 

between feature and target according to statistical parameters, i.e., ANOVA, 

Mutual Information (MI), and a combination of ANOVA and MI. We 

obtained the prediction model that outperformed the related studies for two 

similar data sets with the value of accuracy for the GSE10072, GSE19804, 

and GSE19188 data sets 100%, 97.22%, and 100%, respectively. 

 

Keywords: Lung Cancer, NSCLC, Gene Expression, Ensemble Methods, 

Smoking 

 

Introduction  

According to the 2020 Global Cancer Statistics, cancer is 

ranked as the leading cause of death and has become a barrier 

to increasing life expectancy in the world (Li et al., 2018; 

Sung et al., 2021). Meanwhile, lung cancer is the second 

most frequently diagnosed cancer and is the leading cause of 

death in 2020 (Pilleron et al., 2021; Ferlay et al., 2021). It is 

known that about sixty-seven percent of lung cancer deaths 

worldwide are caused by smoking behavior (Sung et al., 

2021). Such behavior is a significant risk factor for 

developing lung cancer, accounting for more than 90% of 

lung cancer cases (Landi et al., 2008; Li et al., 2018). 

Concerning gender, lung and colon cancers are most 

common in men, especially older men (Pilleron et al., 2021; 

Sung et al., 2021). 

There are two types of lung cancer, i.e., Small Cell 

Lung Cancer (SCLC) and Non-Small Cell Lung Cancer 

(NSCLC), while NSCLC is the most common one that 

causes 85% of lung cancer cases (Ren et al., 2020;              

Lai et al., 2020; Moitra and Mandal, 2020; Le et al., 2021). 

The diagnosis process for NSCLC patients is very complex 

(Chen et al., 2020). Generally, NSCLC patients are 

diagnosed using Positron Emission Tomography (PET) or 

CT images to detect the location and severity of the disease 

(Chen et al., 2020). However, not all images can be 

analyzed efficiently due to the limited medical tools 

and resources. The late diagnosis of NSCLC will lead 

to more severe treatment for the patient, such as 

chemotherapy and radiotherapy, with a 20% of 5-year 

survival rate (Chen et al., 2020). In contrast, the early 

diagnosis of NSCLC can increase 80% of the 5-year 

survival rate (Chen et al., 2020).  
To accelerate the early detection of NSCLC, one 

alternative technique that can be applied is the machine 
learning method implemented on gene expression data 
(Karthik and Sudha, 2018). The data is obtained from 
microarray technology that can capture genetic 

information or gene expression patterns as a sign of the 
disease’s existence, such as lung cancer                  
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(Almugren and Alshamlan, 2019). Meanwhile, machine 
learning is one approach that is widely used in many 
cases and known to give promising results in analyzing 
gene expression.  

Regarding the implementation of machine learning on 

gene expression data in disease detection, many 

researchers have implemented several machine learning 

and feature selection approaches in many cases, including 

NSCLC. Yang et al. (2018a) used Fisher exact test and 

Support Vector Machine (SVM) to predict NSCLC by 

utilizing GSE43458, GSE10072, and GSE12667 data sets. 

They found that the obtained model produced a satisfactory 

result with an accuracy is 94.83% (Yang et al., 2018a).           

Zhao et al. (2018) used SVM to predict NSCLC by using 

GSE43458 and GSE10072 data sets with accuracy is 90.7% 

(Zhao et al., 2018).  

Yang et al. (2018b) used several feature selections, 

i.e., T-test, entropy, chernoff bound, and wilcoxon test. 

They proposed a Single-Gene Ensemble Classifier (SGEC) 

method to predict NSCLC by using GSE10072, GSE19804, 

and GSE19188 data sets. Overall, they found that the 

performance of SGEC is better than other machine 

learning methods, such as SVM, KNN, and Random 

Forest, with the accuracy for each data set, being 97.08%, 

97.87, and 96.88%, respectively                                               

(Yang et al., 2018b). Ren et al. (2020) used decision trees, 

SVM, and logistic regression to predict NSCLC using 

GSE10072, GSE19804, and GSE19188 data sets. They 

found that logistic regression gives the best performance 

with the accuracy for each data set being 97.75%, 97.22%, 

and 98.72%, respectively (Ren et al., 2020). Rana and 

Osama also implemented the Extreme Gradient Boosting 

(XGBoost) algorithm to predict NSCLC using GSE19188 

and found a satisfactory result of the model compared to 

SVM and gcForest with an accuracy of 95.7%                  

(Abdu-Aljabar and Awad, 2021).  

One challenge in processing gene expression data is 

the ability to handle high dimensions of data. Hence, 

appropriate feature selection methods are needed to 

improve the result (Almugren and Alshamlan, 2019; 

Bommert et al., 2020). According to the performed studies, 

we found the accuracies of similar cases are still under 100%. 

Besides, according to the literature survey, they conducted 

the features selection based on individual methods, but in this 

study, we performed the combination of the individual 

methods called overlap features. Hence, there is room for 

improvement to obtain a better result. Amongst several 

machine learning methods, the ensemble method is 

known as one method that is suitable for handling a high-

dimensional type of data, such as gene expression data. 

The method combines several weak classifiers to 

improve the overall model performance compared to a 

single classifier. The ensemble methods aim to reduce 

variance (with bagging/bootstrap aggregating 

technique) and bias (by boosting technique). Hence, the 

ensemble method is promising to predict NSCLC with 

better accuracy.  

In this study, we performed a comprehensive study of the 

ensemble methods implementation in predicting NSCLC 

using three data sets, i.e., GSE10072, GSE19804, and 

GSE19188. There are six ensemble methods used in this 

study, i.e., Random Forest (RF), Adaptive Boosting 

(AdaBoost), Extra Tree (ET), Gradient Boosting (GB), 

Extreme Gradient Boosting (XGBoost), and Categorical 

Boosting (CatBoost). However, to the best of our knowledge, 

there is no comprehensive study regarding ensemble method 

implementation to predict NSCLC using those data sets. 

Furthermore, we also performed feature selection to extract 

the most important features by calculating the correlation 

between feature and target according to statistical 

parameters, i.e., ANOVA, Mutual Information (MI), and a 

combination of ANOVA and MI. The performance of our 

proposed method is also compared with other studies using 

similar data sets. 

Materials and Methods 

Data Set 

We used three data sets, i.e., GSE10072, GSE19804, 

and GSE19188, retrieved from GEO (Gene Expression 

Omnibus). Each data set has two classes, i.e., normal and 

NSCLC, presented in Table 1. Each data set is divided 

into the train and test sets with a ratio are 70:30. Fig. 1 

presents the frequency of the data sets for each class in 

train and test sets. According to Fig. 1, we found that the 

number of records for each class is almost balanced for 

both the train and test sets. Hence we can neglect the 

possibility of imbalances in-class problems. 

Data Sets Distribution 

The Principal Component Analysis (PCA) algorithm is 
used to see the data distribution for each class. PCA can 
project high-dimensional data into a low-dimensional space 
by changing the input features that are mutually dependent 
into new independent features called principal components 
(Karthik and Sudha, 2018). The distribution of the three data 
sets is presented in Fig. 2. 

As for GSE10072, we found that the distribution of 
data from each class is not overlapped in the train and test 
sets. This indicated that it is easier to be classified. As for 
GSE19804, the distribution of the train set and test set are 
not separated and there are samples in the normal class 
that is close to the NSCLC class and vice versa. This 
condition implied that the classification process for the 
GSE19804 is relatively complex, so it becomes a 
challenge to produce a good classification performance. 
As for GSE19188, the train set conditions are almost 
similar to the GSE19804, but the test set looks quite 
separate from the GSE10072. This condition indicated the 
possibility to obtain a good performance result in the test 
set in particular. 
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Fig. 1: Samples frequency in train and test sets 

 

 
 

 

 

 
 
Fig. 2: Data set distribution of (a) train set and (b) test set for GSE10072, (c) train set and (d) test set for GSE19804, (e) train set and 

(f) test set for GSE19188 calculated using PCA 
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Table 1: Data sets information 

Data sets Authors Number of genes Classes  Number of train samples Number of test samples 

GSE10072 Landi et al. (2008) 250 Normal/NSCLC 74 (28/46) 33 (21/12) 

GSE19804 Lu et al. (2010) 54675 Normal/ NSCLC 84 (43/41) 36 (17/19) 

GSE19188 Hou et al. (2010) 54675 Normal/ NSCLC 109 (48/61) 47 (17/30) 

 

Feature Selection 

Feature selection was carried out by calculating the 

correlation between feature and target according to 

statistical parameters, i.e., Analysis of Variance 

(ANOVA), Mutual Information (MI), and a combination 

of ANOVA and MI. Those methods are classified as filter 

method because it is carried out before the classification 

process (Logotheti et al., 2016). 

Mutual Information (MI) measures the mutual 

dependencies between two variables. The higher the 

MI value, the greater the dependence on these features. 

The zero value of MI indicates no relationship between 

feature and target (Vergara and Estévez, 2014). The 

calculation of MI values is performed by using Eq. (1) 

(Bommert et al., 2020):  

 

( ) ( ) ( ); |MI C F E C E C F= −  (1) 

 

where, MI (C;F) is mutual information for C and F, C is 

class/target, F is the feature, E (C) is entropy value for the 

class, and E(C|F) is entropy conditional for C given F. 

Analysis of Variance (ANOVA) aims to identify 

potential significant differences between the mean of two 

or more groups (classes) by measuring between-group 

and within-group variations (Almugren and Alhamlan, 

2019). This method is very useful to find the best features 

that can separate samples between two classes. The 

calculation for feature a(Xa) is defined in Eq. (2) 

(Bommert et al., 2020; Purba et al., 2022): 
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where, c is the number of classes, lx  is the mean value of 

Xa in class I, xij is the observed values of feature Xa for 

samples of class I, and 
lx 

is the mean value of Xa of all 

samples in the data set. 

 

Prediction Model 

The prediction model used in this study is developed by 

using ensemble methods. The ensemble method is a meta-

algorithm that aims to improve machine learning 

performance by combining several methods into one 

predictive model. The ensemble methods aim to reduce 

variance (with bagging/bootstrap aggregating technique) 

and bias (by boosting technique). The ensemble methods 

have a more accurate performance than the single-

classifier because it combines several classifiers with the 

bagging or boosting approach. The ensemble methods 

have also been used successfully in various real-world 

cases (Zhou, 2012). The illustration of bagging and 

boosting is presented in Fig. 3. 

Bagging is accomplished by bootstrap or random 

sampling with replacement. In this way, several random sub-

datasets can be formed to create separate predictive models. 

Bagging performs classification in parallel, in which each 

model is built independently. Several algorithms that use 

bagging techniques are Random Forest and Extra Tree. 

Boosting performs classification sequentially by 

developing a new model to handle the previous model's 

shortcomings. Boosting technique aims to strengthen the 

model by repeating the training for data that is still 

misclassified. Some of the boosting methods are AdaBoost, 

Gradient Boosting, XGBoost, and Cat Boost.  

Decision-making on the ensemble method is done by 

majority vote for classification problems. Ensemble 

methods such as bagging can also reduce conditions of 

overfitting and underfitting to provide a better classification 

model (Altman and Krzywinski, 2017). Six ensemble 

methods used in this study are Random Forest (RF), 

Adaptive Boosting (AdaBoost), Extra Tree (ET), Gradient 

Boosting (GB), Extreme Gradient Boosting (XG Boost), and 

Categorical Boosting (Cat Boost). 

Random Forest (RF) is an ensemble-based method 

built from several decision trees. RF is one of the 

popular machine learning methods that can handle 

high-dimensional data (Nembrini et al., 2018). RF 

builds a random decision tree using the 

bootstrap/bagging concept (SLRF, 2022; Ram et al., 

2017; Kurniawan et al., 2020). RF performance is 

usually not affected by hyperparameter tuning 

(Logotheti et al., 2016). For a new observation of Mnew, 

the output RF (Mnew) of RF is predicted by Eq. (3)             

(Liu et al., 2021): 

 

( ) ( )( )1
arg max

T

new y t newt
RF M I h M X

=
= =  (3) 

 

where, ( )t newh M is the mth decision tree’s prediction result 

with Mnew as inputs. 

Adaptive Boosting (AdaBoost) is one of the popular 

boosting methods (Lu et al., 2019). AdaBoost combines 

several classifiers' weaknesses to produce a robust 

classifier. AdaBoost works by adjusting the weights for 
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each cycle of the weak classifier group. AdaBoost can 

give better results because the diversity among classifiers 

is weak based on the performance of each classifier 

(Kurniawan et al., 2020).  

The output of the final equation for AdaBoost 

classification can be represented as shown in Eq. (4) 

(Wang and Tang, 2020): 
 

( ) ( )
1

M

m

m

A x sign Am x
=

 
=  

 
  (4) 

 

where, M is the train set, Am stands for the mth weak classifier, 

and m in the corresponding weight coefficient. 

Extra Tree (ET) is a decision tree-based algorithm that 

works very randomly. The difference from RF is how the tree 

is built. Extra Tree looks for a threshold that separates 

samples into two tree branches (Logotheti et al., 2016). The 

output of the final probability ET in the testing process 

belonging to each of the classes is computed as the 

average of the probabilities on all the trees as defined in 

Eq. (5) (Soltaninejad et al., 2017): 
 

( )( ) ( )( )
1

1
| , | ,

T

t

t

p c h x M p c h x M
T =

 =   (5) 

 
where, T is the number of randomized trees, x represents 

the data point, Mtrain is the dataset, h(x, Mtrain) represents a 

feature vector and pt(c|h(x', M)) represents the weak 

predictor learned by each tree. 

Gradient Boosting (GB) is a powerful technique for 

handling various features such as noise data, 

recommendation systems, and weather forecasting. The 

main concept of GB is to build a predictive model by 

performing gradient descent (Prokhorenkova et al., 2018). 

The following is a gradient boosting procedure using the 

least squares approximation as shown in Eq. (6) 

(Prokhorenkova et al., 2018; Liu et al., 2017): 
 

( )
1

ˆ ,
T

l t i t

t

a h x h H
=

=   (6) 

 
where, t represents the number of trees, h represents the 

function in the functional space H and H represents the set 

of all possible regression trees.  

Extreme Gradient Boosting (XGBoost) is an end-to-

end tree boosting widely used by data scientists to achieve 

better results (Chen and Guestrin, 2016). In addition, 

XGBoost can automatically use CPU multithreading 

for parallel computing so that it can speed up 

calculations (Li et al., 2019). This advantage makes the 

model exploration process faster. XGBoost is an advanced 

version of GB that provides better performance and faster 

computing time (Abdu-Aljabar and Awad, 2021). The 

calculation for the objective function of XGBoost is shown 

in Eq. (7) (Li et al., 2019): 

( ) ( )ˆ ,i i k

i k

L l x x f= +    (7) 

 

where, l is the loss function and  represents the function 

used for regularization to prevent overfitting. 

Categorical Boosting (CatBoost) is a GB algorithm 

that trains a weak decision tree iteratively. CatBoost is a 

binary decision tree modified from the GB algorithm. The 

advantage of CatBoost is that it can get various types of 

data, one of which is categorical data, so it is called 

Categorical Boosting. CatBoost modifies the gradient 

calculation to avoid shifting the predictions to improve 

model accuracy (Bentéjac et al., 2021). In some cases, 

CatBoost gives better results than XGBoost 

(Prokhorenkova et al., 2018). The calculation for the 

decision tree f of CatBoost can be defined as shown in             

Eq. (8) (Prokhorenkova et al., 2018): 

 

( )  
1

1
t

T

t x R
t

f x b


=

=  (8) 

 

where, Rt is the disjoint regions corresponding to the 

leaves of the tree. 

Model Development 

In this study, we defined 18 models by combining 

different feature selection methods and prediction models. 

We utilized three feature selection methods, i.e., ANOVA, 

Mutual Information (MI), and a combination of ANOVA 

and MI. The model variations used in this study are 

presented in Table 2, while the value of the model 

parameters is presented in Table 3.  

 

Table 2: Model variations  

Model  Feature selection Classification 

 methods methods 

RF-ANOVA ANOVA Random Forest 

AB-ANOVA ANOVA AdaBoost 

ET-ANOVA ANOVA Extra Trees 

GB-ANOVA ANOVA Gradient Boosting 

XG-ANOVA ANOVA XGBoost 

CB-ANOVA ANOVA Catboost 

RF-MI Mutual Information Random Forest 

AB-MI Mutual Information AdaBoost 

ET-MI Mutual Information Extra Trees 

GB-MI Mutual Information Gradient Boosting 

XG-MI Mutual Information XGBoost 

CB-MI Mutual Information Catboost 

RF-OL Overlap features Random Forest 

AB-OL Overlap features AdaBoost 

ET-OL Overlap features Extra Trees 

GB-OL Overlap features Gradient Boosting 

XG-OL Overlap features XGBoost 

CB-OL Overlap features Catboost 
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Table 3: Significant parameters for each method 

 min_ min_  

Classification samples_  samples_ n_ learning_ 
Methods leaf split estimators rate 

Random forest 1 2 100 - 

AdaBoost - - 50 1.0 
Extra trees 1 2 100 - 

Gradient boosting 1 2 100 0.1 

XGBoost - - 100 None 
Catboost - - None None 

 

Model Validation 

In this study, we calculated several validation 

parameters, i.e., accuracy, F1-score, Precision (PC), and 

Recall or sensitivity (RL). The formula for each validation 

parameter is presented in Eq. (9) - (12) (Manju et al., 2019; 

Purba et al., 2022), where TP, TN, FP, and FN are True 

Positive, True Negative, False Positive, and False Negative, 

respectively (Aggarwal, 2022): 

 

100%
TP TN

accuracy
TP FP TN FN

+
= 

+ + +
 (9) 

 

100%
TP

RL
TP FN

= 
+

 (10) 

 

100%
TP

PC
TP FP

= 
+

 (11) 

 

( )2
1 100%

PC RL
F score

PC RL

 
− = 

+
 (12) 

 

Results and Discussion 

Feature Selection 

We reduced the number of features by evaluating the 

contribution of feature number on the model performance 

using 5-fold cross-validation. The best number of features 

was searched within the range value of 2 to 20. The model 

performance is represented by the value of the log loss 

score, in which the lower value indicates the better 

performance of the model. The plot of feature numbers 

against the log loss score for GSE10072, GSE19804, and 

GSE19188 are presented in Fig. 4, 5, and 6, respectively. 

Since the score of AdaBoost in GSE10072 is significantly 

larger than the score of other methods, we provided two 

plots of the figure to highlight the fluctuation of the score.  

As for the GSE10072, Fig. 4(a) and 4(c) point out that 

the fluctuation of the AdaBoost score is significantly 

higher than the score of other methods, as we mentioned 

before. We found the fluctuation of the AdaBoost score in 

both ANOVA and MI methods. Meanwhile, the score 

fluctuation for other methods can be observed in Fig. 4(b) 

and 4(d). Interestingly, we did not find the fluctuation of 

the XGBoost score in both ANOVA and MI methods. 

This indicates that the number of features does not 

significantly contribute to the XGBoost method. Also, 

we found that the change in Gradient Boosting score is 

more fluctuative than the score of other methods. This 

is confirmed by the high value of the standard deviation 

of the Gradient Boosting score. This point out that the 

method's performance is very dependent on the number 

of features. 

Meanwhile, we found that the score of other methods, 

i.e., Random Forest, Extra Trees, and CatBoost, show a 

similar tendency, even though the absolute value is 

different. This might be implied that those methods have 

similar characteristics. Overall, we can confirm that the 

increase in the feature number did not guarantee an 

increase in the model performance.  

As for GSE19804, Fig. 5(a) and 5(b) point out that the 

fluctuation of the AdaBoost and Gradient Boosting is 

significantly higher than the score of other methods. We 

found these fluctuations in both ANOVA and MI 

methods. This shows that the performance of the 

AdaBoost and Gradient Boosting methods is highly 

dependent on the number of features. Meanwhile, 

fluctuations in the XGBoost score are more clearly seen 

in this data set for the two feature selection methods used. 

This indicates that the number of features is sufficient to 

significantly contribute to the XGBoost method. 

Interestingly, Fig. 5(b) shows a very significant decrease 

in the score of a feature in the Extra Tree method. 

Meanwhile, we found that the scores of other methods, 

i.e., Random Forest and CatBoost, showed the same trend 

even though the scores were different. The summary of 

the optimal number of features, minimum log loss score, 

and standard deviation generated from ANOVA and MI 

is presented in Tables 4, 5, and 6. As for the GSE10072, 

Table 4 describes the optimal number of features reached 

by Extra Tree-ANOVA, AdaBoost-MI, and Gradient 

Boosting-MI with the optimal number of features are 2, 

2, and 4, respectively, while the minimum log loss is 

0.030, 0.000 and 0.000, respectively. This result 

indicates that a less number of features give a better 

performance model. Meanwhile, the AdaBoost gives a 

high value of the standard deviation in both ANOVA 

and MI. However, AdaBoost reached the minimum log 

loss in MI. This indicates that the number of features 

significantly contributes to the AdaBoost method.  

As for the GSE19804, Table 5 describes the optimal 

number of features reached by CatBoost in ANOVA and 

MI, with the optimal number of features being 2 and 3, 

respectively, while the minimum log loss is 0.129 and 

0.106, respectively. This confirms that the increase in the 

feature number did not guarantee the increase in the model 

performance. Meanwhile, the standard deviation reached 

the highest value in AdaBoost in ANOVA and MI. This 

point out that the method's performance is very dependent 

on the number of features. As for the GSE19188, Table 6 
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describes the optimal number of features reached by Extra 

Tree-ANOVA and Random Forest-MI, with the optimal 

number of features being 13 and 2, respectively, while the 

minimum log loss is 0.141 and 0.118, respectively. 

Meanwhile, the standard deviation reached the highest 

value in Extra Trees-ANOVA and Gradient Boosting-MI. 

Features Selection Evaluation  

We evaluated the effect of the feature selection process 

by comparing the model performance developed by a 

varied number of features, i.e., all features, ANOVA 

feature, MI feature, and ANOVA-MI feature (overlap 

features). The model performance was determined by 

calculating the F-1 score value. The comparison of the 

performance for GSE10072, GSE19804, and GSE19188 is 

presented in Fig. 7a, 7b, and 7c, respectively.  

As for GSE10072, we found that the overlap feature 

gave the best results (100%) when utilized by Random 

Forest and CatBoost methods compared to other feature 

sets. This might indicate that the overlap feature can 

increase feature quality in both methods. Meanwhile, we 

found several methods, i.e., AdaBoost and Extra Trees, 

that give a better performance with all features. 

However, the higher value of the F1 score obtained by 

all features is not worthed as the score is the 

consequence of the high dimension and complexity of 

the model. We also found that the MI feature gives the 

best score in the Gradient Boosting method.  

As for GSE19804, we found that the overlap features gave 

the highest f1-score when it utilized RF and AdaBoost. 

While all features and MI achieved the highest f1-score on 

XGBoost, ANOVA has not provided the highest f1-score for 

any prediction methods in this data set. Feature selection 

methods give the best results on RF, AdaBoost, Extra Trees, 

and Gradient Boosting. In comparison, all features give the 

same f1-score on XGBoost and CatBoost. These results 

indicate that many features do not always give good 

predictive results.  

As for GSE19188, we found that RF obtained the smallest 

f1-score on overlap features, but the best results are 

100% on other feature selections. MI gives the highest 

F1 score on AdaBoost, Extra Trees, and XGBoost. 

Interestingly, MI also gives the best F1 score in GB, 

which other models do not produce. Meanwhile, in 

CatBoost and RF, a 100% f1-score was obtained by all 

features, ANOVA and MI. Generally, the overlap 

features give the best performance in GSE10072, 

which reach a 100% F1 score. As for GSE19804, the 

highest F1-score value is 97.3%, obtained by using 

overlap features and MI. As for GSE19188, feature 

selection using ANOVA and MI gives the best results, 

with the F1-score being 100%. We can conclude that 

feature selection effectively analyzes NSCLC in gene 

expression data. 

Validation Results 

The model generated from the training process is then 

validated using the test set. Model performance was 

measured using accuracy, precision, recall, and F1-score. 

We consider the accuracy of the test set as the overall 

measurement to determine the best model. The values of the 

validation parameter of GSE10072, GSE19804, and 

GSE19188 are summarized in Table 7, 8, and 9.  

As for GSE10072, we found the recall value for all 

models is 100%, which indicates all models' ability to 

predict true positives and avoid false-negative predictions 

perfectly. Meanwhile, the best model is obtained from 

model RF-OL and CB-OL with the value of accuracy and 

F-1 score are 100 and 100%, respectively. This point out 

the ability of both models to predict all of the test sets 

perfectly. Also, this confirmed the suitability of the 

overlap feature to the data set, as we discussed before. 

Meanwhile, we found several methods, i.e., AB-

ANOVA, ET-ANOVA, GB-ANOVA, AB-MI, ET-MI, 

CB-MI, AB-OL, and GB-OL, that give the worst 

performance with the value of accuracy and F-1 score are 

93.94% and 92.31% respectively. 

As for GSE19804 in Table 8, we found that the 

precision reached the maximum score (100%) in several 

methods. This point out the ability of those models to 

classify data as positive compared to all positive 

predictions perfectly. However, several models 

provided the best recall (94.74%), which indicates the 

ability of those models to predict true positives and 

avoid the false-negative. Meanwhile, the best model is 

obtained from models XG-MI, RF-OL, and AB-OL, with 

the value of accuracy and F-1 score are 97.22 and 97.30%, 

respectively. This condition indicates the ability of those 

models to predict all of the test sets perfectly. Also, this 

confirms the suitability of the RF and overlap feature to 

the data set, as similar to GSE10072. Meanwhile, we 

found the GB-MI model with the worst performance, 

with the accuracy and F1 score value of 88.89 and 

88.24%, respectively. 
 

 
 

Fig. 3: Bagging and boosting illustration
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Fig. 4: The contribution of feature number to model performance for GSE10072 by using (a) ANOVA for all methods, (b) ANOVA without 

AdaBoost, (c) Mutual Information for all methods, and (d) Mutual Information without AdaBoost 

 

 

 

Fig. 5: The contribution of feature selection to log loss value for GSE19804 by using (a) ANOVA and (b) Mutual Information 

 

 
 

Fig. 6: The contribution of feature selection to log loss value for GSE19188 by using (a) ANOVA and (b) Mutual Information 
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 (a) 

 

 
 (b) 
 

 
 (c) 

 
Fig. 7: Features selection evaluation for (a) GSE10072, (b) GSE19804 and (c) GSE19188 

 
Table 4: Summary of the features selection process for GSE10072 

Methods The optimal number of features Minimum log loss Std deviation 

ANOVA 

Random forest 2 0.031 0.005 

AdaBoost 13 0.432 0.355 

Extra trees 2 0.030 0.005 

Gradient boosting 15 0.031 0.042 

XGBoost 5 0.122 0.001 

Catboost 2 0.036 0.007 

MI 

Random forest 3 0.007 0.010 

AdaBoost 2 0.000 0.410 

Extra trees 3 0.008 0.011 

Gradient boosting 4 0.000 0.032 

XGBoost 2 0.030 0.000 

Catboost 3 0.019 0.010 
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Table 5: Summary of the features selection process for GSE19804 

Methods The optimal number of features Minimum log loss Std deviation 

ANOVA 

Random Forest 8 0.526 0.120 

AdaBoost 3 0.534 0.145 

Extra Trees 6 0.504 0.125 

Gradient Boosting 9 0.584 0.122 

XGBoost 6 0.191 0.022 

Catboost 4 0.129 0.023 

MI 

Random Forest 3 0.486 0.011 

AdaBoost 2 0.623 0.118 

Extra Trees 17 0.141 0.081 

Gradient Boosting 9 0.538 0.064 

XGBoost 8 0.188 0.013 

Catboost 3 0.106 0.009 

 

Table 6: Summary of the features selection process for GSE19188 

Methods Optimal number of features Minimum log loss Std deviation 

ANOVA 

Random Forest 10 0.184 0.272 

AdaBoost 5 0.269 0.045 

Extra Trees 13 0.141 0.296 

Gradient Boosting 5 0.431 0.176 

XGBoost 2 0.227 0.020 

Catboost 9 0.158 0.012 

MI 

Random Forest 2 0.118 0.071 

AdaBoost 7 0.224 0.139 

Extra Trees 7 0.129 0.131 

Gradient Boosting 2 0.322 0.157 

XGBoost 4 0.133 0.029 

Catboost 4 0.139 0.004 

 

Table 7: Validation results for GSE10072 

Model TP TN FP FN Accuracy (%) Precision (%) Recall (%) F1-score (%) 

RF-ANOVA 12 20 1 0 96.97 92.31 100.00 96.00 

AB-ANOVA 12 19 2 0 93.94 85.71 100.00 92.31 

ET-ANOVA 12 19 2 0 93.94 85.71 100.00 92.31 

GB-ANOVA 12 19 2 0 93.94 85.71 100.00 92.31 

XG-ANOVA 12 20 1 0 96.97 92.31 100.00 96.00 

CB-ANOVA 12 20 1 0 96.97 92.31 100.00 96.00 

RF-MI 12 20 1 0 96.97 92.31 100.00 96.00 

AB-MI 12 19 2 0 93.94 85.71 100.00 92.31 

ET-MI 12 19 2 0 93.94 85.71 100.00 92.31 

GB-MI 12 20 1 0 96.97 92.31 100.00 96.00 

XG-MI 12 20 1 0 96.97 92.31 100.00 96.00 

CB-MI 12 19 2 0 93.94 85.71 100.00 92.31 

RF-OL 12 21 0 0 100.00 100.00 100.00 100.00 

AB-OL 12 19 2 0 93.94 85.71 100.00 92.31 

ET-OL 12 20 1 0 96.97 92.31 100.00 96.00 

GB-OL 12 19 2 0 93.94 85.71 100.00 92.31 

XG-OL 12 20 1 0 96.97 92.31 100.00 96.00 

CB-OL 12 21 0 0 100.00 100.00 100.00 100.00 
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Table 8: Validation results for GSE19804 

Model TP TN FP FN Accuracy (%) Precision (%) Recall (%) F1-score (%) 

RF-ANOVA 18 16 1 1 94.44 94.74 94.74 94.74 
AB-ANOVA 17 16 1 2 91.67 94.44 89.47 91.89 
ET-ANOVA 18 16 1 1 94.44 94.74 94.74 94.74 
GB-ANOVA 17 17 0 2 94.44 100.00 89.47 94.44 
XG-ANOVA 17 17 0 2 94.44 100.00 89.47 94.44 
CB-ANOVA 17 16 1 2 91.67 94.44 89.47 91.89 
RF-MI 16 17 0 3 91.67 100.00 84.21 91.43 
AB-MI 16 16 1 3 88.89 94.12 84.21 88.89 
ET-MI 18 16 1 1 94.44 94.74 94.74 94.74 
GB-MI 15 17 0 4 88.89 100.00 78.95 88.24 
XG-MI 18 17 0 1 97.22 100.00 94.74 97.30 
CB-MI 17 17 0 2 94.44 100.00 89.47 94.44 
RF-OL 18 17 0 1 97.22 100.00 94.74 97.30 
AB-OL 18 17 0 1 97.22 100.00 94.74 97.30 
ET-OL 18 16 1 1 94.44 94.74 94.74 94.74 
GB-OL 17 17 0 2 94.44 100.00 89.47 94.44 
XG-OL 17 17 0 2 94.44 100.00 89.47 94.44 
CB-OL 18 16 1 1 94.44 94.74 94.74 94.74 

 

Table 9: Validation results for GSE19188 

Model TP TN FP FN Accuracy (%) Precision (%) Recall (%) F1-score (%) 

RF-ANOVA 30 17 0 0 100.00 100.00 100.00 100.00 
AB-ANOVA 30 15 2 0 95.74 93.75 100.00 96.77 
ET-ANOVA 29 17 0 1 97.87 100.00 96.67 98.31 
GB-ANOVA 30 15 2 0 95.74 93.75 100.00 96.77 
XG-ANOVA 28 17 0 2 95.74 100.00 93.33 96.55 
CB-ANOVA 30 17 0 0 100.00 100.00 100.00 100.00 
RF-MI 30 17 0 0 100.00 100.00 100.00 100.00 
AB-MI 30 17 0 0 100.00 100.00 100.00 100.00 
ET-MI 30 17 0 0 100.00 100.00 100.00 100.00 
GB-MI 30 17 0 0 100.00 100.00 100.00 100.00 
XG-MI 30 17 0 0 100.00 100.00 100.00 100.00 
CB-MI 30 17 0 0 100.00 100.00 100.00 100.00 
RF-OL 29 17 0 1 97.87 100.00 96.67 98.31 
AB-OL 29 14 3 1 91.49 90.62 96.67 93.55 
ET-OL 27 17 0 3 93.62 100.00 90.00 94.74 
GB-OL 29 15 2 1 93.62 93.55 96.67 95.08 
XG-OL 29 15 2 1 93.62 93.55 96.67 95.08 
CB-OL 29 17 0 1 97.87 100.00 96.67 98.31 

 
Table 10: Average performance for all data sets 

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) 

RF-ANOVA 95.80 95.68 98.25 96.91 
AB-ANOVA 93.78 91.30 96.49 93.66 
ET-ANOVA 95.42 94.49 97.14 95.12 
GB-ANOVA 94.71 93.15 96.49 94.51 
XG-ANOVA 95.72 97.44 94.27 95.66 
CB-ANOVA 96.21 95.58 96.49 95.96 
RF-MI 96.21 97.44 94.74 95.81 
AB-MI 94.28 93.28 94.74 93.73 
ET-MI 96.13 94.48 98.25 95.68 
GB-MI 95.29 97.44 92.98 94.75 
XG-MI 98.06 97.44 98.25 97.75 
CB-MI 96.13 95.24 96.49 95.58 
RF-OL 98.36 100.00 97.14 98.54 
AB-OL 94.22 92.11 97.14 94.39 
ET-OL 95.01 95.68 94.91 95.16 

GB-OL 94.00 93.09 95.38 93.94 

XG-OL 95.01 95.29 95.38 95.17 

CB-OL 97.44 98.25 97.14 97.68 
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Table 11: Performance comparison of other methods 

    True negative rate/ 

Author Methods Accuracy (%) Recall/sensitivity (%) Specificity (%) 

GSE10072 

Ren et al. (2020) Logistic with L1 97.75 98.55 99.20 

 SG-w 78.79 65.00 95.56 

Yang et al. (2018b) SVM 100.00 100.00 100.00 

 Logistic with L1 100.00 100.00 100.00 

Our proposed method Mutual information-random forest 100.00 100.00 100.00 

 overlap features-random forest 100.00 100.00 100.00 

GSE19804 

Ren et al. (2020) Logistic with L1 97.22 95.44 93.02 

 SG-w 94.44 91.67 69.60 

Yang et al. (2018b) SGEC 97.87 95.89 100.00 

 SVM 94.44 94.44 94.44 

Our proposed method Mutual information-XGBoost 97.22 94.74 100.00 

 Overlap features-random forest 97.22 94.74 100.00 

GSE19188 

Ren et al. (2020) Logistic with L1 98.72 98.59 99.03 

 SG-w 89.36 100.00 83.33 

Yang et al. (2018b) SGEC 96.88 95.83 97.98 

 SVM 95.65 100.00 90.48 

Our proposed method Mutual information-XGBoost 100.00 100.00 100.00 

 Mutual information-random forest 100.00 100.00 100.00 

 

As for GSE19188 in Table 9, we found the best model is 

obtained from models RF-ANOVA, CB-ANOVA, and all 

classification methods in MI, with the value of accuracy and 

F-1 score of 100% and 100%, respectively. This confirms the 

suitability of the MI to the data set. Meanwhile, we found the 

AB-OL models that give the worst performance with the 

value of accuracy and F-1 score are 91.49% and 93.55%, 

respectively. Meanwhile, the best recall value is 100% in 

several models i.e., RF-ANOVA, AB-ANOVA, GB-

ANOVA, CB-ANOVA, and all classification methods in 

MI, which indicates all models' ability to predict true positive 

and avoid the false negative prediction perfectly. 

Interestingly, the overlap features in all classification 

methods give the recall value, not 100%. But the overlap 

features reached the maximum score (100%) of precision 

in several methods i.e., RF-OL, ET-OL, and CB-OL. This 

point out the ability of those models to classify data as 

positive compared to all positive predictions perfectly. 

Table 10 points out the average performance for all 

datasets. We calculated the average value of each model 

for all datasets. We found the best model is obtained 

from models RF-OL with the value of accuracy and F-

1 scores are 98.36% and 98.54%, respectively. This 

confirms the suitability of the RF-OL to the majority of 

data sets, as we discussed before in GSE10072 and 

GSE19184. Meanwhile, we found the AB-ANOVA 

model with the worst performance, with the accuracy 

and F-1 score value of 93.78% and 93.66%, 

respectively. We can conclude that the overlap features 

most significantly contribute to two datasets 

(GSE10072 and GSE19188) but MI in one                      

dataset (GSE19804). 

However, the best recall value is 98.25% in several 

models, i.e., RF-ANOVA, ET-MI, and XG-MI, which 

indicates the models' ability to predict true positives and 

avoid the false-negative prediction almost perfectly. 

Besides that, the precision reached the maximum score 

(100%) in the RF-OL model. This point out the ability of 

the models to classify data as positive compared to all 

positive predictions perfectly. 

Comparison of Competitive Methods 

We also compared our results with other studies            

(Ren et al., 2020; Yang et al., 2018b), which used similar 

data sets, as shown in Table 11. The performance 

comparison was carried out by taking the two best 

methods in each study with the highest accuracy for each 

data set. In references, the authors used Logistic with L1 

and SG-w (Ren et al., 2020), SVM and Logistic with L1 

(Yang et al., 2018b) to predict NSCLC. As for GSE10072, 

our proposed method gives better accuracy (100%) than 

the reference (Ren et al., 2020) and similar accuracy to the 

reference (Yang et al., 2018b). This indicates that our 

proposed methods are suitable to process the data set. 

As for the GSE19804, the highest accuracy obtained 

by another study is 97.87% (Yang et al., 2018b), with a 

difference of 0.65 compared to the accuracy obtained by 

our proposed method. Nevertheless, none of the studies 

achieved 100% accuracy for the GSE19804. This is 

challenging to explore the GSE19804 using data 

augmentation (Kaur et al., 2022) or different feature 

selection and classification methods for subsequent 

analyses. Meanwhile, as for GSE19188, we achieved 

100% accuracy while all competitors did not perform. 
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This point out the novelty of our proposed methods that 

reached the optimal accuracy while using MI-XGBoost and 

MI-Random Forest.  

Generally, we obtained better results for GSE19188 

and quite similar results for GSE10072 and GSE19804. 

This might be related to feature selection and ensemble 

methods that we proposed in similar data set. We use a 

different feature selection with competitor studies. 

Also, competitive studies do not use the overlap 

feature. We concluded that the overlap features are 

suitable for the data set and contribute better to the 

classification process. 

Conclusion 

In this study, we developed six ensemble methods, 

i.e., Random Forest, Adaptive Boosting, Extra Tree, 

Gradient Boosting, Extreme Gradient Boosting, and 

Categorical Boosting, to classify gene expression data 

for NSCLC. The three data sets discussed in this study, 

i.e., GSE10072, GSE19804, and GSE19188, contain 

gene expression on NSCLC influenced by smoking. 

Feature selection was carried out by calculating the 

correlation between feature and target according to 

statistical parameters, i.e., ANOVA, Mutual 

Information (MI), and a combination of ANOVA and 

MI. On the overall average performance of the 

prediction model, overlap features or a combination of 

ANOVA and MI give the best results with Random 

Forest as the classifier. For the GSE10072 and 

GSE19188, our proposed method has provided the 

highest accuracy of 100%, while GSE19804 has not yet 

reached 100% and this condition is a challenge for the 

future. For future work, we suggested further 

improving the performance of GSE19804 using the 

data augmentation or the other feature selection and 

classification methods i.e., the deep learning model.   
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