

 © 2023 Mohammed Mujeer Ulla and Deepak S. Sakkari. This open-access article is distributed under a Creative Commons

Attribution (CC-BY) 4.0 license.

Journal of Computer Science

Original Research Paper

Application of Elliptic Curve Crypto System to Secure Multi-

Signature Bitcoin Block Chain

Mohammed Mujeer Ulla and Deepak S. Sakkari

Department of Computer Science and Engineering, Presidency University Bengaluru, 560064, India

Article history

Received: 16-11-2022
Revised: 10-12-2022

Accepted: 13-12-2022

Corresponding Author:

Mohammed Mujeer Ulla

Department of Computer Science

and Engineering, Presidency

University Bengaluru, 560064,

India

Email:

mohammedmujeerulla@presidenc

yuniversity.in

Abstract: Blockchain is a technology that enables decentralized digital currencies

like bitcoin, ethereum, and ripple. It is widely used in many areas such as

healthcare, defense, and industrial domains like internet of things for tracking

sensor data and detecting duplicate sensor data. Bitcoin is one of the most popular

cryptocurrencies due to its market value and use as a medium of exchange. The

trustless secure money exchanges have made bitcoins appealing to people.

However, the loose possession of bitcoin keys can lead to monetary loss and a

decrease in bitcoin users. In this article, we provide an extensive analysis of major

privacy and security issues in the Bitcoin blockchain. First, we discuss the

security issues in bitcoin, and second, we discuss countermeasures for these

bitcoin threats. Third, we provide an added level of security using elliptic curve

cryptography on bitcoin multi-signature accounts. Our research helps bitcoin

users understand the risks involved in using non-multi-signature accounts

compared to multi-signature accounts. The use of elliptic curve cryptography on

bitcoin multi-signature accounts also helps to avoid unnecessary expenses such

as bitcoin currency rewards to miners.

Keywords: IoT-Internet of Things, ECC-Elliptic Curve Cryptography, SEC-

U.S. Securities and Exchange Commission, The NIST-National Institute of

Standards and Technology, NSA-National Security Agency, EdDSA-Edwards

Curve Digital Signature Algorithm Nonce-Number only used once, RAG-

Random Number Generator

Introduction

The concept of bitcoins was first proposed by Satoshi

Nakamoto in 2008 when a peer-to-peer electronic cash-based

transaction was presented on a white paper (Patel and Doshi,

2020). The security of digital currency is based on public

key cryptography where a public open blockchain

contains a history of all the transactions and is secured by

consensus algorithm proof-of-work. In bitcoin, we send

and receive digital currency without the involvement of a

third party and any double spending (Hammi et al., 2020).

In 2022 it is estimated that bitcoin has 180 million users

around the globe and over 2.5 million transactions take

place in bitcoins each day (Zhang and Wang, 2018). Some

of the enabling technologies for bitcoin are blockchain,

the consensus algorithm proof-of-work, and public-key

cryptography. As an adverse effect of these technologies

bitcoin offers properties like immutable decentralized

trustless and permissionless setup. Every bitcoin user uses

his own private keys in the wallet to create a bitcoin public

address and digital signatures for every transaction on the

bitcoin blockchain. The bitcoin wallets make it possible

to send, and receive bitcoins and to monitor all the

Unspent Transaction Output (UTXOs). Each bitcoin

transactions are censorship-resistant, borderless, and

pseudonymous due to bitcoin's private keys. The

ecosystem of bitcoin is composed of technical, human

dynamics, organizational and social components.

Furthermore, bitcoins governance rules are decided,

implemented, and enforces when complete consensus is

agreed upon among all the bitcoin users (Khan et al.,

2020). Our research addresses how to monitor, administer

and manage bitcoin private keys. There are many forms

of wallets available online the choice of selection truly

depends on security and usability. A secure bitcoin is said

to be sustainable if it relies strongly on the security aspect

of private keys (Ouni and Bouallegue, 2016). The

protection of private keys includes ensuring

confidentiality thereby making unauthorized access to

private keys impossible. In general, a bitcoin transaction

is a peer-to-peer exchange of bitcoins through the use of

asymmetric cryptography using a public bitcoin address

derived from a public key. A bitcoin wallet is an

application through which the user his private keys,

Mohammed Mujeer Ulla and Deepak S. Sakkari / Journal of Computer Science 2023, 19 (1): 112.125

DOI: 10.3844/jcssp.2023.112.125

113

generation of addresses, signs transactions, and tracks

inputs and outputs.

Materials

Equipment’s used by the researchers to investigate

the research is as follows:

Raspberry Pi 4 8GB RAM

1. All new raspberry pi desktop computer memory

size: 8 GB

RAM memory: 8 GB

Resolution 3840 2160

2. HDMI to VGA cable-for raspberry

3. USB C power supply cable-for raspberry

4. Consumables-bitcoins

Miscellaneous- external hard disk

5. Seagate expansion 1TB external HDD

memory card

6. SanDisk extreme 160MB/S U3 A2 micro SDXC

memory card(1TB)

Monitor-lenovo Q24i-1L 60.4 cms (23.8)

7. Full HD natural low blue light monitor

keyboard mouse HP 230 wireless

8. Optical keyboard and mouse combo

Methods

In this section, we focus on the generation of multi-

sig for bitcoins. Due to the enormous amount of fishing

and hacking over the internet multi-sigs are one of the

best options available right now to store your bitcoins

(Park and Park, 2016). Multi-sigs are exponentially

more secure. All the bitcoin multi-signature addresses

begin with the number 3. Any bitcoin address

beginning with a number 3 needs at least 3 out of 3 or

2 out of 3 or 1 out of 3 private keys to release the funds.

When it comes to security setting up multi-sig accounts has

numerous advantages (Boneh and Venkatesan, 1996).

Figure 1 shows the generation of the multi-signature

using bitcoin where users can store their private keys

separately on their computer machine or in a safe

deposit box or even with online wallet providers like

block chain.info which is incorporating multi-

signatures. Wallet providers do some regular sort of

banking analysis is this a usual spend or over the daily

limits or preferred merchants, they run different sorts

of algorithms to safeguard your bitcoins in user

accounts. Even if wallet providers are not in the

business or they do not permit your transaction you still

have control over transactions because you have 2 private

keys out of 3. A lot of coins are being stolen by hackers

but hackers find it difficult in doing permutations and

combinations of different devices. Most of your

security comes in by keeping your private keys

separately on different devices or even on a paper

wallet or in cold storage. 2 of 3 exponentially increase

your chances of keeping your bitcoins secure than

keeping in on one single device. The bitcoin

environment and cyber security are based on social and

technical factors (Breitner and Heninger, 2019). It is

required to address both factors to enable people to use

the bitcoin network securely. Previously many

researchers have worked on improving key

management security aspects of wallets. To our

knowledge, we are the first to examine the application

of elliptic curve cryptography on bitcoin wallets.

A. Generation of Bitcoin Multi-Signature Address

Table 1 shows the top 20 bitcoin rich list since no
addresses start with 3. This means in some way the
addresses are compromised with the level of security.
Tony Gallippi from bitpay states top 100 addresses will
be protected by multi-sig where 1 means insecure and
3 means added level of security. It means those
addresses were created using multi-sig. Multi-sig
facilitates you to have a trustless setup with a wallet
provider. The wallet provider can monitor and
safeguard your account, but they are too not
empowered completely to spend funds as they have
access to a single signature and to spend bitcoins you
need a minimum of two signatures.

This eliminates them from any sort of liability and

they will not be able to go out of business and leave you cold.

Multi-signature provides another massive layer of security to

any cryptocurrency. The multi-signature also enables to have

a three-party escrow setup where there is a credit transaction

from Alice to Bob and both are trust-less parties to each other

but they trust a centralized transaction like eBay. If there is a

transaction dispute between Alice and Bob then eBay would

resolve this dispute as eBay possess the third key and now

will be able to finish the transaction by sending funds from

Alice to Bob or vice versa. Having a multi-signature is also

better than having a Shamir's secret which is a kind of system

like having one private key on five pieces of paper and any

permutation and combination from it will form a complete

private key (Breitner and Heninger, 2019). For example,

4 pieces of paper out of five will give you back the original

private key. Though its technique is based on permutations

and combination it pops out all the flaws we had earlier

because any time you bring those four pieces of paper together

one of the people who has helped to get those pieces of paper

together will have access to the private key and can quickly

spend the bitcoins using the obtained private key or it can lead

to any form of a man in middle attacks (Shaikh et al., 2017).

Initially, we use a bitcoind client which generates a

multi-sig address on a brand new address or it can be an

old address as well. As long as you have a private key to

a public address you can add it to a multi-signature

address. Suppose two brothers each independently can

set up their own private keys, and set up their own little

wallet with that you generate their multi-signature

Mohammed Mujeer Ulla and Deepak S. Sakkari / Journal of Computer Science 2023, 19 (1): 112.125

DOI: 10.3844/jcssp.2023.112.125

114

address than a combination of three can sign off the

transactions without having compromised the keys with

either one of you. For our research, we generate three

brand new address pairs such as a compressed public

address (key) of 34 characters, a private key of 52

characters, less compressed public address (key) of 66

characters which we can use to create multi-signature

addresses this is shown in Table 1. Then all three less

compressed public addresses generated are given as input

to the bitcoind /bitcoin-QT client which will spit out

multi-signature addresses starting with number 3 as

shown in Table 2. Bitcoind creates a multi-sig (number)

will create a multi-signature account, where the number

stands for the number of private keys you need to unlock

the funds, in our case we have the number as 2 which

means we need a minimum of two signatures to unlock

the funds. If you switch it to 1 any one of these private keys

could spend from a multi-sig address. If you switch it to 3

then all their private key is needed to spend from a multi-

sig address. Currently, we have worked with a maximum

of three keys to generate the multi-sig address while in

the future there may be 6 out of 10 keys or 8 out of 12

keys, or any other permutations that can be predicted. To

do this we need bitcoind to have calls to your version of

the blockchain. A redeem script is generated which is

210 bits which are required to spend the bitcoins from a

multi-signature account irrespective of 1 of 3 multi-

signature or 2 of 3 multi-signature or 1 of 3 multi-

signature account, Table 3 and Fig. 3 shows different

multi signatures generated using variable N.

Fig. 1: Generation of the multi-signature using bitcoin

Mohammed Mujeer Ulla and Deepak S. Sakkari / Journal of Computer Science 2023, 19 (1): 112.125

DOI: 10.3844/jcssp.2023.112.125

115

Table 1: Bitcoin rich list -2022

Public Address

bc1qgdjqv0av3q56jvd82tkdjpy7gdp9ut8 bitcoin balance: 166,510.99
Security assured: Not secure account
Public address:
1P5ZEDWTKTFGxQjZphgWPQUpe554WKDfHQ
bitcoin balance: 112,155.62
Security assured: Not secure account
Public address:
1FeexV6bAHb8ybZjqQMjJrcCrHGW9sb6uF bitcoin balance: 79,957.21
Security assured: Not secure account
Public address:
1LdRcdxfbSnmCYYNdeYpUnztiYzVfBEQeC bitcoin balance: 53,880.06
Security assured: Not secure account
Public address:
1AC4fMwgY8j9onSbXEWeH6Zan8QGMSdmtA
bitcoin balance: 51,830.36
Security assured: Not secure account
Public address:
bc1q5shngj24323nsrmxv99st02na6srekfctt30ch bitcoin balance: 45,558.99
Security assured: Not secure account
Public address:
1LruNZjwamWJXThX2Y8C2d47QqhAkkc5os bitcoin balance: 44,000.09
Security assured: Not secure account
Public address:
1NDyJtNTjmwk5xPNhjgAMu4HDHigtobu1s bitcoin balance: 36,116.16

Security assured: Not secure account

Public address:

17hf5H8D6Yc4B7zHEg3orAtKn7Jhme7Adx bitcoin balance: 36,000.01

Security assured: Not secure account

Public address:

bc1qvpgyac88vqtslewxu7yu9dqwp8rd83z bitcoin balance: 35,829.98

Security assured: not secure account

Table 2: Brand new address pairs generated

Address pair: Number 1 compressed public address-34 chars

1L2hyX0KmtRffKBhQBXGyWFVB9ZHJckkbx Private Key - 52 chars:

L2MluR9dwgCotoPBprWJYYWz2zWW9sMa9TJwqARG7nFxkpdvBSsm Less compressed Public Key/Address - 66 chars:

020743d44be989540d27blb4bbbcfd1772lc337cb6bc9a 20eb8a3252Ob393532f

Address pair: Number 2 Compressed Public Address - 34 chars:

13XTNTMpsAc4a.EPniAncmnDxWJcY6QcPF Private Key - 52 chars:

LlM2ZgjOAtDVU9uemahiZBQPWFA5Tyj4GLdlECkDryv iFrGp6m7k Less compressed Public Key/Address - 66 chars:

02c0120aldda9e51a93Bd39ddd9fe0ebc45ea97eld27a7cbd671d5431 416d3dd87

Address pair: Number 3 Compressed Public Address - 34 chars:

lDT8Ki2BKzFYUVnv9h99P91EESG32kmP3Y Private Key - 52 chars:

L5PkVBzR4SdQimMsf8nRqRe9JZDJ22sGjSbfp3SsPSnVoBBvRFE Less compressed Public Key/Address - 66 chars:

p213820eb3dSf509d743Bc9eeecb4157b2f595105e7cd564b3cdbb9ead3da4leed

For fun, you can paste this into bitcoind to verify multi-sig address bitcoind createmulti-sig 2

’[”020743d44be989540d27blb4bbbcfdl772lc337cb6bc9af20eb8a32520b393532f”,”02c0120aldda9e5la938d39ddd9f

e0ebc45ea97eld27a7cbd67ld5431416d3dd87”,”0213820eb

3d5f509d7438c9eeecb4157b2f595105e7cd564b3cdbb9ead3da4leed”] ’ The multi-sig address is 34 chars:

35Z3xG92YkW5Xo4ngQw6w5b3Ce6MDw94A8

Table 3: Different multi-signatures generated using variable N

Trial I Generating the same multi-signature using N=2 bitcoind creates multi-sig 2

(”020743d44be9S9540d27b1b4bbbcfd1n21c337cb6bc9af20ebS a32520b393532f, ”02c0120a1dda9e51a93Sd39ddd9fe0ebc4Sea

97eld27a7cbd671d5431416d3ddS7”,”0213S20eb3d5f509d743Sc

9eeecb4157b2f595105e7cd564b3cdbb9ead3da41eed”)

Multi Sig address:”35Z3xG92YkWSXo4ngQw6w5b3Ce6MDw94A8”,

RedeemScript:”5221020743d44be989540d27b1b4bbbcf dlm1c337cb6bc9af20eb8a32520b393532f2102c0120a1dda9e51a93Sd3

9ddd9fe0ebc4Sea97e1d27a7cbd671d5431416d3ddS7210213S20eb3d5

f509d743Sc9eeecb4157b2f595105e7cd564b3cdbb9ead3da41eed53ae”

Trial II Generates the same multi-signature using N = 2 and gives the same multi-signature as in trial I bitcoind create multi-sig 2

(”020743d44be9S9540d27b1b4bbbcfd1n21c337cb6bc9af20e

Mohammed Mujeer Ulla and Deepak S. Sakkari / Journal of Computer Science 2023, 19 (1): 112.125

DOI: 10.3844/jcssp.2023.112.125

116

Table 3: Continue

bSa32520b393532f,”02c0120a1dda9e51a93Sd39ddd9fe0ebc

4Sea97eld27a7cbd671d5431416d3ddS7,”0213S20eb3d5f509 d743Sc9eeecb4157b2f595105e7cd564b3cdbb9ead3da41eed”)

Multi Sig address:”35Z3xG92YkWSXo4ngQw6w5b3Ce6MDw94A8”, Redeem Script: ”5221020743d44be989540d2

7b1b4bbbcfdlm1c337cb6bc9af20eb8a32520b393532f2102c012 0a1dda9e51a93Sd39ddd9fe0ebc4Sea97e1d27a7cbd671d543141

6d3ddS7210213S20eb3d5f509d743Sc9eeecb4157b2f595105e7cd 564b3cdbb9ead3da41eed53ae”

Trial III Generating the same multi-signature using N = 1 bitcoind create multi-sig 2

(”020743d44be9S9540d27b1b4bbbcfd1n21c337cb6bc9af20ebSa32520b393532f,”02c0120a1dda9e51a93Sd39ddd9fe0ebc4Sea97

eld27a7cbd671d5431416d3ddS7,”0213S20eb3d5f509d743Sc9eee cb4157b2f595105e7cd564b3cdbb9ead3da41eed”)

Multi Sig address:”3PjTyDnZy8rjy!-ti00nlpSbled98TBdfJ”,

RedeemScript:”5221020743d44be989540d27b1b4bb bcfdlm1c337cb6bc9af20eb8a32520b393532f2102c0120a1dda9e51a93S

d39ddd9fe0ebc4Sea97e1d27a7cbd671d5431416d3ddS7210213S20eb3d5

f509d743Sc9eeecb4157b2f595105e7cd564b3cdbb9ead3da41eed53ae”

Table 4: Public key generation and verification

Input:

Below are the public specifications for bitcoin’s curve - The secp256k1
The proven prime
Pcurve = 2**256 - 2**32 - 2**9 - 2**8 - 2**7 - 2**6 - 2**4 -1
Number of points in the field
N=0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFF FFEBAAEDCE6AF48A03BBFD25E8CD0364141 # These two define the elliptic
curve
Acurve = 0; Bcurve = 7 y2 = x3 + Acurve ∗ x + Bcurve Gx= 55066263022277343669578718895
168534326250603453777594175500187360389116729240 Gy= 326705100207588169780830851305
07043184471273380659243275938904335757337482424
This is our generator point. Trillions of dif ones possible G Point = (Gx, Gy) #Individual Transaction/Personal Information privKey=
0xA0DC65FFCA799873CBEA0AC
274015B9526505DAAAED385155425F7337704883E
Extended Euclidean Algorithm/’division’ in elliptic curves def modinv(a, n = Pcurve): l m, hm = 1,0
low, high = a % n,n while low> 1:
ratio = high/low
nm, new = hm-lm*ratio, high-low*ratio

lm, low, hm, high = nm, new, lm, low return lm % n

Not true addition, invented for EC

Could have been called anything

def EC add (a, b):

LamAdd = ((b[1]- a[1]) * modinv(b[0]- a[0],Pcurve)) % Pcurve x = (LamAdd*LamAdd-a[0]-b[0]) % Pcurve

y = (LamAdd*(a[0]-x)-a[1]) % Pcurve return (x,y)

This is called point doubling, also invented for EC. def ECdouble(a):

Lam = ((3*a[0]*a[0]+Acurve) * modinv((2*a[1]),Pcurve)) % Pcurve x = (Lam*Lam-2*a[0])% Pcurve

y = (Lam*(a[0]-x)-a[1]) % Pcurve return (x, y)

This is invented EC multiplication

#Double add. Not true

EccMultiply(GenPoint,ScalarHex): if ScalarHex == 0 or ScalarHex >= N: raise Exception

(”Invalid Scalar/Private Key”)

ScalarBin = str(bin(ScalarHex))[2:]

Q=GenPoint for i in range (1, len(ScalarBin)):

This is invented EC multiplication.

Q=ECdouble(Q); # print ”DUB”, Q[0]; print if ScalarBin[i] == ”1”:

Q=ECadd(Q,GenPoint); print ”ADD”, Q[0]; print return (Q)

”******* Public Key Generation *********”

PublicKey = EccMultiply(GPoint,privKey) print printPublicKey;

”*******SignatureGeneration*********” xRandSignPoint, yRandSignPoint =EccMultiply(Gx,Gy,RandNum) r = xRandSignPoint

% N; print ”r =”, r

s = ((HashOfThingToSign + r*privKey)*

(modinv(RandNum,N))) % N; print ”s =”, s

”******* Signature Verification *********” w = modinv(s,N) xu1, yu1 = EccMultiply(Gx,Gy,(HashOfThingToSign * w)%N)

xu2, yu2 = EccMultiply(xPublicKey,yPublicKey,(r*w)%N) x,y = ECadd(xu1,yu1,xu2,yu2) if print r==x;

Signature verified

Signature not verified

Mohammed Mujeer Ulla and Deepak S. Sakkari / Journal of Computer Science 2023, 19 (1): 112.125

DOI: 10.3844/jcssp.2023.112.125

117

Table 5: Your bitcoin-QT/D HAS 5 unspent outputs

Output 1 has 0.00156511 bitcoins, or 156511 Satoshi’s

The transaction ID for output 1 is

Oecbdl0719f54b2ac2df7a267e698bedea3f256386bldabf33e38473917d9aa5

The script pub key

76a9142516e4b2f3458b93d570ff09289ll409463c7b3988ac public address:

14P7Rkr393vWZrfXZrMizTsGP2BE9tfms8

Output 2 has 0.00052340 bitcoins, or 52340 Satoshi’s

The transaction ID for output 2 is

666a23ba57c3407296a7ald7742a62d02033cblfd5ffe64lb8ce2a537defd088

The script pub key

a914fc27b629f7796130b714267d27la8ble0bd4c2bl87 public address:

3QgRn6PsMuszHSMdrB6cmN5bNncyfGQTpi

Output 3 has has 0.00275793 bitcoins, or 275793 Satoshi’s

The transaction ID for output 3 is

6e595al20de49b009cal4207f60b08allee69efb52ac2224b2fefld830aca946 the script pub key

76a9144a3f38a5634057710lb85c748b62e7922aaa5a3b88ac public address:

17majtRM jCjpSCasbXFXWiHWAmzLTSdtga

Output 4 has 0.00155300 bitcoins, or 155300 Satoshi’s

The transaction ID for output 4 is

73926dl2845ecf0dbb5labe0d64alelldeb385dc58df2d7e2c6ed0ab3556lf8d

The script pub key

a9142a5edea39971049a540474c6a99edf0aa4074c5887 public address:

35Z3xG92YkW5Xo4ngQw6w5b3Ce6MDw94A8

Output 5 has 0.00142000 bitcoins, or 142000 Satoshi’s

The transaction ID for output 5 is bd488ce0d9bae299cfb83c418046aldc6lc79b34f07ld66aa491292400675ea3 the script pub key

76a9144a3f38a5634057710lb85c748b62e7922aaa5a3b88ac public address:

17majtRMjCjpSCasbXFXWiHWAmZLTSdtga

Table 6: Bitcoin account selected for debiting

Spend from which output? 4

The public address on that account is

35Z3xG92YkW5Xo4ngQw6w5b3Ce6MDw94A8

The address starts with the number '3'which makes it a multi-signature

All multi signatures transactions Need: txid, script Pub Key, and redeem script fortunately all of this is right there in the bitcoind 'list

unspent' the transaction ID is:

73926dl2845ecf0dbb5labe0d64alelldeb385dc58df2d7e2c6ed0ab3556lf8d the script pub key is:

a9142a5edea39971049a540474c6a99edf0aa4074c5887 and only multi signatures have redeem scripts the redeem script is:

522102074Jd44be989540d27blb4bbbcfdl7721c337cb6bc9af20ebBa3

2520b393532f2102c0120aldda9e51a938d39ddd9feOebc45ea97eld27a

7cbd67ld5431416d3ddB7210213820eb3d5f509d743Bc9eoecb4157b2f

595105e7cd564b3cdbb9ead3da4leed5Jae

You have 155300 Satoshi’s in this output

How much do you want to spend? 7777!!!

Table 7: Bitcoin account selected for crediting

Send funds to which bitcoin address?

Nice!!! You chose to send funds to sean's OUT post in pensacola florida this send to 1M72SfpbzlBPpXFffz9m3CdqATR44JVaydd

will leave 142062 Satoshi's in your accounts. A transaction fee of 5461 will be sent to the miners creating the raw transaction for User

one-private key one

Table 8: Decode, sign and send raw transactions

Decode the raw transaction bitcoind decoderawtransaction

Ol000000018dlf5635abd06e2c7e2ddf58dc85b3dellle4ad6e04b5lb b0dcf5e84126d9273oooooooooottffffff02611eOOOOOOOOOOOOl976

a914dc863734a21Bbfe83ef770ee9d4la27f824a6e568Bacee2a02000

0000000 17a9142a5edea39971049a540474c6a99edf0aa4074c588700000000 and now we’ll sign the raw transaction. The first user gets a

’False’

This makes sense because, in multi-signatures, no single entity can sign alone

Sign the raw transaction

Bitcoind signrawtransaction:

’01000000018dlf5635abd06e2c7e2dd f58dc85b3dellle4ad6e0ab5lbb0dcf5e84l26d92730000000000ffffffff

Mohammed Mujeer Ulla and Deepak S. Sakkari / Journal of Computer Science 2023, 19 (1): 112.125

DOI: 10.3844/jcssp.2023.112.125

118

Table 8: Continue

026lle0000000000001976a914dc863734a218bfe83ef770ee9d4la27f824

a6e5688acee2a020000000000l7a9142a5edea39971049a540474c6a99edf

0aa4074c588700000000”’[”txid”:”73926dl2845ecf0dbb5labe0d64a lelldeb385dc58df2d7e2c6edOab3556lf8d”,”vout”:O,”scriptPubKey”:

”a9142a5edea39971049a540474c6a99edfOaa4074c5887”,”redeem5cript”:

”5221020743d44be989540d27blb4bbbcfdl772lc337cb6bc9af20eb8a32520b3

93532f2102c0120aldda9e5la938d39ddd9fe0ebc45ea97eld27a7cbd67ld54314

16d3dd87210213820eb3d5f509d7438c9eeecb4157b2f595105e7cd564b3cdb b9ead3da4leed53ae”] ’

’[”L2MluRgdwgCotoP8prWJYYwz2zWWgsMa9TJwqARG7nFxkpdvBSsm”]’

u’hex’:u”01000000018dlf5635abd06e2c7e2d¡ff58dc85b3dellle4ad6e

0abSlbbOdcf5e84126d927300000000b50048304502100ae3b4e589dfc9d48c

b82d41008dc5fa6a86f94dSc54f9935531924602730ab8002202f88cf464414

c4ed9fallb773c5ee944f66e9b05ccle5ld97abc22ce098937ea014c6952210

243d44be989540d27blb4bbbcfdl772lc337cb6bc9af20eb8a32520b393532f

2102c0120aldda9e5la938d39ddd9fe0ebc45ea9ld27a7cbd67ld5431416d3d

d87210213820eb3dSfS09d7438c9eeecb4lis7b2f595105e7cd564b3cdbb9ea

d3da4leed53aeffffffff026lle0000000000001976a914dc863734a218bfe8

3ef770ee9d4laQ7f824a6e5688acee2ao2000000000011a9142aSedea399710

49a540474c6a99edfOaa4074c588700000000’,u ’complete’: False

Send the Raw Transaction bitcoind sendrawtransaction:

’01000000018dlf5635abd06e2c7e2d¡ff58dc85b3dellle4ad6e0abSlbbOd

cf5e84126d927300000000b50048304502100ae3b4e589dfc9d48cb82d4100

8dc5fa6a86f94dSc54f9935531924602730ab8002202f88cf464414c4ed9fa

llb773c5ee944f66e9b05ccle5ld97abc22ce098937ea014c6952210243d44

be989540d27blb4bbbcfdl772lc337cb6bc9af20eb8a32520b393532f2102c

0120aldda9e5la938d39ddd9fe0ebc45ea9ld27a7cbd67ld5431416d3dd872

10213820eb3dSfS09d7438c9eeecb4lis7b2f595105e7cd564b3cdbb9ead3d

a4leed53aeffffffff026lle0000000000001976a914dc863734a218bfe83ef

770ee9d4laQ7f824a6e5688acee2ao2000000000011a9142aSedea39971049a

540474c6a99edfOaa4074c588700000000’

Transaction ID:8e3730608c3b0bb5df54f09076e196bc292o8e39a78e73b44b6ba08c78f5cbb0

Initiating the Same Transaction leads to Declined Transaction bitcoind sendrawtransaction:

’01000000018dlf5635abd06e2c7e2d¡ff58dc85b3dellle4ad6e0abSlbbOd

cf5e84126d927300000000b50048304502100ae3b4e589dfc9d48cb82d4100

8dc5fa6a86f94dSc54f9935531924602730ab8002202f88cf464414c4ed9fa

llb773c5ee944f66e9b05ccle5ld97abc22ce098937ea014c6952210243d44

be989540d27blb4bbbcfdl772lc337cb6bc9af20eb8a32520b393532f2102c

0120aldda9e5la938d39ddd9fe0ebc45ea9ld27a7cbd67ld5431416d3dd872

10213820eb3dSfS09d7438c9eeecb4lis7b2f595105e7cd564b3cdbb9ead3d

a4leed53aeffffffff026lle0000000000001976a914dc863734a218bfe83ef

770ee9d4laQ7f824a6e5688acee2ao2000000000011a9142aSedea39971049a

540474c6a99edfOaa4074c588700000000’

Error: "code":-22,"message":"TX rejected"

Table 9: Features of nodes used in our research

Type of node Processor CPU type CPU speed RAM Operating system

Raspberry pi HP ARM CPU 64 bits 1.20 GHz 8GB Rasbian 5.10
Laptop Intel core i3 64 bits 1.99 GHz 4GB Windows 10

Table 10: Elliptic curve point generation times in milli seconds

 A B P N p 2p Time in ms

Creating 2P from P 0 7 37 2 (6, 1) (18, 17) 0.00013
Creating nP from P 0 7 37 2 (3, 16) (35, 31) 0.00025
Creating 2P from P with real curves 0 7 37 38 (00, 09) (00, 28) (03, 16) NA 0.00038
 (03, 21) (04, 16) (04, 21)
 (05, 13) (05, 24) (06, 01)
 (06, 36) (08, 01) (08, 36)
 (09, 12) (09, 25) (12, 12)
 (12, 25) (13, 13) (13, 24)
 (16, 12) (16, 25) (17, 6)
 (17, 31) (18, 17) (18, 20)
 (19, 13) (19, 24) (22, 6)
 (22, 31) (23, 1) (23, 36)

Mohammed Mujeer Ulla and Deepak S. Sakkari / Journal of Computer Science 2023, 19 (1): 112.125

DOI: 10.3844/jcssp.2023.112.125

119

Table 10: Continue

 (24, 17) (24, 20) (30, 16)

 (30, 21) (32, 17) (32, 20)

 (35, 6) (35, 31)

ECC point addition 0 7 37 2 P1(6, 1) NA 0.00018

 P2(8, 1)

 P1 + P2 (23, 36)

ECC point addition with range of points (4, 16) P1 + P2 = (0, 28) NA 0.00023

 P1 = (6, 1) P2 = (5, 13)

 P1 + P2 = (22, 6)

 P1 = (6, 1) P2 =

 (6, 1) P1 + P2 = (18, 17)

 P1 = (6, 1) P2 =

 (8, 1) P1 + P2 = (23, 36)

 P1 = (6, 1) P2 = (9, 12)

 P1 + P2 = (19, 13)

 P1 = (6, 1) P2 = (12, 12)

 P1 + P2 = (9, 12)

 P1 = (6, 1) P2 = (13, 13)

 P1 + P2 = (30, 16)

 P1 = (6, 1) P2 = (16, 12)

 P1 + P2 = (4, 16)

 P1 = (6, 1) P2 = (17, 6)

 P1 + P2 = (35, 6)

 P1 = (6, 1) P2 = (18, 17)

 P1 + P2 = (23, 1)

 P1 = (6, 1) P2 = (19, 13)

 P1 + P2 = (3, 16)

 P1 = (6, 1) P2 = (22, 6)

 P1 + P2 = (13, 13)

 P1 = (6, 1) P2 = (23, 1)

 P1 + P2 = (8, 36)

 P1 = (6, 1) P2 = (24, 17)

 P1 + P2 = (32, 17)

 P1 = (6, 1) P2 = (30, 16)

 P1 + P2 = (17, 6)

 P1 = (6, 1) P2 = (32, 17)

 P1 + P2 = (32, 20)

 P1 = (6, 1) P2 = (35, 6)

 P1 + P2 = (12, 12)

B. Credit-Debit Bitcoin Multi-Signature Address

This section deals with spending bitcoins from 2 of 3

multi-signature accounts live on a bitcoin network.

Implementation is done using python 2.7.6, which relies

on bitcoind and bitcoin RPC.

We had to rewrite the original python library

connection.py to take advantage of multi signatures.

Initially, we make an object call to the bitcoind blockchain

available on localhost. As bitcoind has all the updated

transactions on my local hard disk. The size of the updated

bitcoin transactions while writing this study is 30

gigabytes and will be growing day to day. Downloading

the entire blockchain takes a couple of days depending on

the network bandwidth and disk space. In the previous

section, we generated three brand new private keys as

shown in Table 1. Any time you generate a new address

in bitcoind or bitcoin qt client it stores in a wallet.dat file

that is hidden on your computer system. One can always

use these private keys. To send from any bitcoin address

one needs to have his respective private keys. The best

practice is to create all three private keys on three different

machines. Even used by three different people. All three

keys should never be on the same machine.

We will be sending back the received
bitcoins/Sathoshi's to generate a multi-signature
account generated in the previous section. We set the
minimum transaction amount of 0.00005461 Sathoshi
as the transaction fee for miners. Later we query how
many bitcoins are available in our user accounts, where
users can have multiple accounts. Table 5 displays five
unspent user accounts with bitcoins/Sathoshi's in each
account, transaction IDs, and script public key on public
address. One can notice that user accounts 1,3 and 5 are
not multi-signature accounts as they don't start with 1 and
account 2 and 4 is a multi-signature account. In our case
multi signature account 4 is selected as debiting account
which displays the transaction ID, script public key, and

Mohammed Mujeer Ulla and Deepak S. Sakkari / Journal of Computer Science 2023, 19 (1): 112.125

DOI: 10.3844/jcssp.2023.112.125

120

redeems the script. The minimum we can spend is 5460
sathoshi's any number higher than that should form a valid
transaction. We send 7777 sathoshi's to a charity
organization at sean's outpost in pensacola florida will
leave the balance in the account and the transaction fee
will be sent to the miners.

Table 8 demonstrates decoding, signing, and sending the

raw transactions, where user 1 uses his private key to sign the

decoded raw transaction with a false ability to spend and

sends it to any one of the remaining two users. Instead of our

user 1 private key, we have an elliptic curve coded digital

signature user 2 or user 3 will not be able to change the

amount or who the transaction is destined to. The only thing

they can do is decide whether to sign the transaction or not.

As well the transactions will get added level of security with

online wallet providers who administer your accounts with

features like daily limits, and preferred merchants then they

will sign the transaction. Once the transaction is signed by

any two users then it will have the true ability to spend on it.

Finally, one among them can decide to spend the bitcoins. If

we ever try to spend from the transaction which is already

spent, then the transaction will be rejected. Figure 5

demonstrates the flow chart to generate a multi-signature

account. Table 5 displays unspent outputs. Table 6 displays

the bitcoin account selected for debiting. Table 7 displays the

bitcoin account selected for crediting. Figure 2 demonstrates

flow chart spending from multi-signature using bitcoin.

Figure 4 demonstrates sending bitcoins to a multi-signature

account using a coin base. Figure 5 demonstrates transaction

details on the blockchain.

C. Elliptic Curve Cryptography-Generation of

Public Key to Sign the Bitcoin Multi-Signature

Transaction

In this section, we will be discussing the generation of the

public key to sign the transactions generated in section B

using elliptic curves. Elliptic curve cryptosystems were first

proposed in 1985 by Neil Koblitz and Victor Miller (Sakkari,

2022). The heart of elliptic cryptosystems is based upon a

discrete logarithm problem. A discrete logarithm problem is

defined by Q C generator point G, find x such that Q = XP.

An elliptic curve is a curve of form y2 = x3 + ax + b, over a

finite field Fp where p is prime. Several points on an elliptic

curve are a finite set of points within the field F. Let us

consider an elliptic curve defined over y2 = x3 + ax + b where,

a = 2, b = 3, and modulo prime field p = 5. The values of a,

b, and prime p are random. (Sakkari and Ulla, 2022a-b;
Guicheng and Zhen, 2013; Kodali and Naikoti, 2016):

2

2

2

2

2

 0 3 (Mod 5)

 1 6 1 (1,4)(Mod 5)

 2 15 0 0(Mod 5)

 3 36 1 (1,4) (Mod 5)

 4 75 0 0(Mod 5)

x y No Solution

x y y

x y y

x y y

x y y

Then points on the elliptic curve are

(1,1), (1,4), (2,0), (3,1), (3,4), (4,0). The recommended

bitcoin curve by NIST is SECP256K1. Figure 9

demonstrates the flow chart for elliptic curve

cryptography for signing and verifying bitcoin for public

key generation and verification and the recommended

elliptic curve design parameter constants that one needs to

follow to use the SECP256K1 curve. Elliptic curve

operations used for our study are point addition, point

double, point multiply, and extended euclidean algorithm

or mod-inverse or division. The two fundamental

operations on an elliptic curve are explained below.

Point Addition

Draw a line that crosses P and Q at two places on the

elliptic curve P (x1, x2) and Q (x2, y2), and label the third point

on the curve as R. (x3, -y3). We create a perpendicular line

from R (x3, -y3) that intersects the curve once more at the

addition of two points P + Q and is shown as R in Fig. 6.

ECC-point addition coordinates:

 Let XR = X3 and YR = −Y3

 XR = S2 − x1 − x2 mod P

 YR = S (x1 − XR) − y1 mod P

 S = (y2 − y1)/(x2 − x1) mod P

 S= Slope of line through P (x1, y1) and Q (x2, y2)

Point Doubling

In point doubling, a tangent line is drawn that touches

the elliptic curve’s point P but does not pass through it,

intersecting the curve at a different location. From the

point of intersection, which we refer to as P + P or 2.P, a

vertical line is drawn. The results are 3.P, 4.P, 5.P, and

6.P. As seen in Fig. 7, this is also referred to as integer

multiplication. An Abilean group is formed by the points

on an elliptic curve, and the resulting points can be joined

together or multiplied by an integer:

i.e.,

3. 2. 2.

5.(7.) 7.(5.)

P Q Q P

P P P P

P P

Point doubling is very fast, to go from a point P to 100·

P, we need only eight Steps rather than ninety-nine steps

as shown below:

. , 2. 12. 24.

2. 3. 24. 25.

3. 6. 25. 50.

6. 12. 50. 100.

i e P P P P

P P P P

P P P P

P P P P

If you try to multiply integers of 50 digits or more the

same procedure is followed.

Mohammed Mujeer Ulla and Deepak S. Sakkari / Journal of Computer Science 2023, 19 (1): 112.125

DOI: 10.3844/jcssp.2023.112.125

121

Fig. 2: Flow chart-generation of multi-signature

Fig. 3: Generation of 2:3 multi-signature account

Mohammed Mujeer Ulla and Deepak S. Sakkari / Journal of Computer Science 2023, 19 (1): 112.125

DOI: 10.3844/jcssp.2023.112.125

122

Fig. 4: Sending bitcoins to generated multi-signature address using coin base (debiting)

Fig. 5: Transaction details on the block chain

Fig. 6: Point addition

Mohammed Mujeer Ulla and Deepak S. Sakkari / Journal of Computer Science 2023, 19 (1): 112.125

DOI: 10.3844/jcssp.2023.112.125

123

Fig. 7: Point doubling

Fig. 8: Elliptic curve signing and verifying bitcoin transactions

Fig. 9: Creating 2.P from P on elliptic curve when A = 0, B = 7, P = 37, N = 20

Mohammed Mujeer Ulla and Deepak S. Sakkari / Journal of Computer Science 2023, 19 (1): 112.125

DOI: 10.3844/jcssp.2023.112.125

124

ECC-Point Doubling Coordinates

 Let X
R = X3 and Y

R = −Y
3

 X
R = S2 – 2 X

1 mod P

 YR = S (x
1 − X

R
) − y

1 mod P

 S = (3 X
1
2 + a)/(2y1) mod P

 S = Slope of tangent line through P (x
1
, y

1
)

Initially, the public key is obtained by multiplying the

private key with the generator point without using

SHA256. Remember that the elliptic curve public key is

not as same as the public address generated in section B.

For elliptic curve cryptography, you need prime p, a, b

which defines the curve, the generator point G (Gx,Gy), n

the number of points in the field, and h is the co-factor.

D. Elliptic Curve Cryptography-Signing and

Verifying the Bitcoin Transactions

In this section, we focus on signing the transaction and

verifying without having the private key. By simply

having the public key, a hash of the message, and all the

elliptic curve parameters one verifies whether the

message was sent with a private key i.e., Only the sender

has the private key and the receiving party is unaware of

the private key. The public key in ECC is simply an (x, y)

coordinate on the elliptic curve which is the result of the

multiplication of generator point G on the curve with the

private key. Table 4 shows the steps involved in public

key generation and verification of bitcoin transactions.

Each of the steps in Table 4 is explained below:

 Here we have predefined six constants that are

specific to SECP256k1 which is the actual curve

bitcoin uses. Where Pcurve is the prime number

SECP256k1 uses, N is the valid number of points on

the field. The acyclic property of elliptic curves

makes them unique i.e., when we multiply the

original generator point G, N times we reach the

infinity point which is also the beginning. We know

elliptic curves are defined by the equation of form

y2 = x3 + ax + b if we have a generator point we don't

need to have all the information of the line or the curve.

For example, suppose we have point on the line and the

slope of the line we do not need to know where the line

intersects on the x or y axis same is true when we are

dealing with curves. Gx, Gy is the x coordinate and the y

coordinate is the generator points on the elliptic curves.

H is the co-factor and another domain coefficient of this

curve and will always be one. The private key, random

number, and hashofthingstosign vary for each

transaction. The hashofthingstosign is the SHA256 hash

of the actual message. In terms, of bitcoin

hashofthingstosign will always be the transaction itself

 In step two we apply the fundamental operations of

elliptic curves like point addition- is not true addition

rather invented for elliptic curves here we add point P

with point Q. Point doubling-, point multiplication-

which is, in turn, achieved using point addition and point

doubling and mod inverse-also known as extended

euclidean algorithm or the division in elliptic curves

Steps involved in ECC signature generation are as

follows:

1) Pubkey = privKey*genpoint

2) (x
1
, y

1
) = randnum*genpoint

3) r = x
1
(mod N),

4) s = (Hashofmsg + r ∗ privkey)* rand Num−1 (mod N),

∴ signatureis (r,s)

Steps involved in ECC signature verification are as

follows:

1) w = s−1 (mod N)

2) u
1 = Hashof Msg ∗ W (mod N)

3) u
2 = r ∗ w (mod N),

4) (x
2
, y

2
)= u

1 ∗ gen point + u
2 ∗ pub key

5) if r = x
2
 (mod N)

∴ signatureisvalid

Table 4 shows public key generation and

verification using elliptic curve cryptography and Fig. 8

shows the process of elliptic curve signing and

verifying bitcoin transactions.

Results and Discussion

For a finite field elliptic curve of the form y2 = x3 + ax + b

with a determined prime number (p) we compute 2 P if we

have a point P and use this to find nP, where n is the number

of times we add P. Table 10 demonstrates elliptic curve point

generation times in milliseconds to Create 2P from P,

nP from P, 2P from P with real curves- Curve25519

Montgomery with x-points 9 10 respectively, ECC

point addition with a couple and ECC point addition

with a range of points. Figure 9 demonstrates creating

2P from P on an elliptic curve when A = 0, B = 7, P = 37,

and N = 20. B = 7, P = 37, N = 20. Table 9 shows

features of nodes used in our research.

Conclusion

This study aims to investigate the security of bitcoin

wallets, how users manage their private keys, and

illustrate the application of asymmetric key

cryptography using elliptic curves. The results from a

survey of the top 100 bitcoin users show that their

security is at stake due to the use of non-multi-signature

accounts. The results show that only 34.5% of bitcoin

Mohammed Mujeer Ulla and Deepak S. Sakkari / Journal of Computer Science 2023, 19 (1): 112.125

DOI: 10.3844/jcssp.2023.112.125

125

users use multi-signature accounts. Many bitcoin users

still back up their keys on a piece of paper and

remaining who back up their keys do not encrypt their

keys. For future work, we could bring out the

vulnerabilities with other digital currencies like

Ethereum and Ripple by conducting similar surveys by

considering the correlation study on the security of

wallets, features of wallets, and their adoption methods.

Acknowledgment

The authors would like to acknowledge the support

provided by Presidency University- Bengaluru, India.

Funding Information

Authors have received a grant of 50,000 (Fifty

Thousand Indian Rupees) from Research and Innovation

Council, Presidency University- Bangalore 56006.

Author’s Contributions

Mohammed Mujeer Ulla: Contributed in all
experiments, coordinated the data-analysis and
contributed to the writing of the manuscript.

Deepak S. Sakkari: Designed the research plan and
organized the study.

Ethics

This article does not contain any studies with human

participants or animals performed by any of the authors.

References

Boneh, D., & Venkatesan, R. (1996, August). The
hardness of computing the most significant bits of
secret keys in Diffie-Hellman and related schemes. In
Annual International Cryptology Conference (pp.
129-142). Springer, Berlin, Heidelberg.

 https://doi.org/10.1007/3-540-68697-5_11
Breitner, J., & Heninger, N. (2019, February). Biased

nonce sense: Lattice attacks against weak ECDSA
signatures in cryptocurrencies. In International
Conference on Financial Cryptography and Data
Security (pp. 3-20). Springer, Cham.

 https://doi.org/10.1007/978-3-030-32101-7_1
Guicheng, S., & Zhen, Y. (2013, October). Application of

elliptic curve cryptography in node authentication of
internet of things. In 2013 Ninth International
Conference on Intelligent Information Hiding and
Multimedia Signal Processing (pp. 452-455). IEEE.

 https://doi.org/10.1109/IIH-MSP.2013.118
Hammi, B., Fayad, A., Khatoun, R., Zeadally, S., &

Begriche, Y. (2020). A lightweight ECC-based
authentication scheme for Internet of Things (IoT).
IEEE Systems Journal, 14(3), 3440-3450.
https://doi.org/10.1109/JSYST.2020.2970167

Khan, M. A., Quasim, M. T., Alghamdi, N. S., & Khan,

M. Y. (2020). A secure framework for authentication

and encryption using improved ECC for IoT-based

medical sensor data. IEEE Access, 8, 52018-52027.
Kodali, R. K., & Naikoti, A. (2016, December). The

ECDH-based security model for IoT using ESP8266.
In 2016 International Conference on Control,
Instrumentation, Communication and Computational
Technologies (ICCICCT) (pp. 629-633). IEEE.
https://doi.org/10.1109/ICCICCT.2016.7988026l0
.30l0.30

Ouni, N., & Bouallegue, R. (2016). Performance and

complexity analysis of a reduced iterations LLL

algorithm. arXiv preprint arXiv:1607.03272.

Park, Y., & Park, J. (2016). Analysis of the upper

bound on the complexity of the LLL algorithm.

Journal of the Korean Society for Industrial and

Applied Mathematics, 20(2), 107-121.

 https://doi.org/10.12941/jksiam.2016.20.107

Patel, C., & Doshi, N. (2020). Secure lightweight key

exchange using ECC for user-gateway paradigm. IEEE

Transactions on Computers, 70(11), 1789-1803.

https://doi.org/10.1109/TC.2020.3026027

Sakkari, D. S. (2022). Review on Insight into Elliptic

Curve Cryptography. In Modern Approaches in

Machine Learning & Cognitive Science: A

Walkthrough (pp. 81-93). Springer, Cham.

https://doi.org/10.1007/978-3-030-96634-8_8

Sakkari, D. S., & Ulla, M. M. (2022a). Design and

Implementation of Identifying Points on Elliptic

Curve Efficiently Using Java. In Modern Approaches

in Machine Learning & Cognitive Science: A

Walkthrough (pp. 95-105). Springer, Cham.

https://doi.org/ 10.1007/978-3-030-96634-88.”

Sakkari, D. S., & Ulla, M. M. (2022b). Design and

Implementation of Elliptic Curve Digital Signature

Using BitCoin Curves Secp256K1 and Secp384R1

for Base10 and Base16 Using Java. In Innovation

in Electrical Power Engineering, Communication,

and Computing Technology (pp. 323-337).

Springer, Singapore. https://doi.org/10.1007/978-

981-16-7076-328

Shaikh, J. R., Nenova, M., Iliev, G., & Valkova-Jarvis, Z.

(2017, November). Analysis of standard elliptic curves

for the implementation of elliptic curve cryptography

in resource-constrained E-commerce applications. In

2017 IEE International Conference on Microwaves,

Antennas, Communications and Electronic Systems

(COMCAS) (pp. 1-4). IEEE.
https://doi.org/10.1109/COMCAS.2017.8244805

Zhang, X., & Wang, X. (2018). Digital image encryption

algorithm based on elliptic curve public

cryptosystem. IEEE Access, 6, 70025-70034.
https://doi.org/10.1109/ACCESS.2018.2879844

https://doi.org/10.1007/3-540-68697-5_11
https://doi.org/10.1109/IIH-MSP.2013.118
https://doi.org/10.1109/ICCICCT.2016.7988026l0.30l0.30
https://doi.org/10.1109/ICCICCT.2016.7988026l0.30l0.30
https://doi.org/10.12941/jksiam.2016.20.107
https://doi.org/10.1007/978-3-030-96634-8_8

