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Abstract: Alcoholism is a serious public health issue, and early diagnosis of 

this brain disease can be performed by analyzing Electroencephalogram (EEG) 

signals. However, the high dimensionality of EEG datasets requires significant 

computational time and resources for the automatic processing of EEG signals. This 

study proposes a novel method to reduce EEG dataset dimensionality using a Discrete 

to Continuous algorithm (DtC) by selecting optimal EEG channels. The DtC 

approach compares alcoholic and nonalcoholic EEG signals as two-time series in a 

two-dimensional space based on a distance measurement between the two-time 

series. The Dynamic Time Warping (DTW) algorithm is used to compare the 

performance of the DtC approach. Classification performance metrics were evaluated 

for both the DtC and DTW algorithms. The optimal selected channels by our 

approach are the C3, CP5, PO7, and F8 channels with accuracy values of 100, 100, 

94 and 81%, respectively. These findings are consistent with previous research on 

statistical analysis and machine learning methods and with the DTW algorithm 

results. Our findings are also in line with scientific evidence from clinical 

research. The DtC approach was efficient in selecting the best channels to reduce 

the EEG dataset dimensionality, allowing us to select four out of the 64 EEG channels 

(C3, CP5, PO7, and F8) that retain essential information related to alcoholism, 

which is useful in reducing computational time and resources during the 

classification task of alcoholic EEG. 

 

Keywords: Discrete to Continuous, Optimal Channel Selection, Alcoholism, 

Electroencephalography, Biological Time Series 
 

Introduction   

 Alcoholism is a serious condition that is linked to 

substantial morbidity and mortality (CDCP, 2022; 

Dwivedi et al., 2017). Approximately 2.3 billion people 

drank alcohol regularly in 2016, with 237 million men and 

46 million women experiencing health issues. The World 

Health Organization (WHO) estimates that alcoholism 

caused more than three million deaths in 2016. At the 

international level, alcohol abuse accounts for more 

than 5% of the morbidity burden (WHO, 2018). 

Alcoholism is defined as severe and persistent                   

alcohol urges despite being aware of the many physical 

and mental issues that alcohol can cause (Liang and 

Olsen, 2014). Alcoholism affects a person's behaviour 

and impairs the functioning of vital organs. Most 

negative consequences concern the heart, immune system, 

liver, and brain. It has serious effects on memory and 
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cognitive function. Alcohol inhibits the production of 

new synapses, slows the development of the brain's 

functional areas, and can even result in cerebral death.  

Developing an awareness of alcohol dependence relies 

on an early diagnosis of alcoholism that might be challenging 

to diagnose using traditional techniques. As part of standard 

alcohol disorder screening, clinicians might use, individually 

or together, questionnaires, interviews, or blood tests. 

Questionnaires and clinical interviews focus on drinking 

habits or the negative effects of alcohol consumption. These 

methods assess the quantity and frequency of drinks and 

evaluate patients’ responses to criticism, the urge to drink, 

and feelings of guilt. Due to subjectivity, feelings of fear, and 

social stigma, alcoholic patients are less likely to provide 

relevant information. Furthermore, the blood test is often 

inaccurate in addition to being intrusive and uncomfortable 

(Buriro et al., 2021). These traditional methods suffer from 

subjectivity and a lack of accuracy. As a result, fewer 

alcoholics will test positive for alcoholism.  

Neuroimaging technologies have demonstrated 
encouraging research findings in establishing objectivity 

and improving the accuracy of screening and diagnosis. 
Valuable information has been derived from the analysis 
of neurological data. Magnetic Resonance Imaging 
(MRI), Positron Emission Tomography (PET), Single 
Photon Emission Computed Tomography (SPECT) and 
Electroencephalography (EEG) techniques have been 

used to study changes in brain activity and discovered 
alterations related to alcohol consumption (Mumtaz et al., 
2018). EEG is recognized as a significant approach to 
diagnosing alcoholism. It detects the brain's functioning 
states and records, at the scalp level, the electrical 
potentials generated by the brain’s neurons. Due to its 

inherent features, such as noninvasiveness, high time 
resolution, and its evident association with alcoholism 
biomarkers (Enoch et al., 2002; Kayser and Tenke, 2015), 
EEG is deemed to be the appropriate method for studying 
electrical brain signals and early Alcohol Use Disorder 
(AUD) discrimination (Neeraj et al., 2021). 

Traditional approaches to the analysis and 

interpretation of EEG recordings are extremely time-

intensive processes involving highly skilled professionals. 

In addition, the reliability of EEG reports may be 

compromised due to the presence of noise and artifacts. 

Therefore, applying high-performance computerized 

techniques to analyze digital EEG signals can address the 

need for timely diagnosis and improve the reliability and 

efficiency of EEG reports supporting traditional 

approaches. Owing to the advancement of computer and 

digital technologies, automatic EEG analysis methods 

have been developed over the years as an effective 

advance toward their use in real-world applications. 

The automatic classification of EEG signals has been 

the focus of recent research in various fields. This is either 

to provide automated decisions concerning a patient's 

disease or to assess brain activity. This includes studies on 

biometric authentication (Alariki et al., 2018), sleep stages 

(Prabhakar et al., 2022), epilepsy identification (Ren and 

Han, 2019), autism disease detection (Peya et al., 2022), etc. 

EEG-based alcoholism detection has also been 

investigated in the literature during the past few years 

through different approaches for early alcoholism 

diagnosis (Mumtaz et al., 2018). 

Strengthening conventional methods for alcoholism 

screening, monitoring and treatment are essential. However, 

using traditional approaches for EEG interpretation at the 

level of Emergency Hospitals (EH) and Primary Health Care 

services (PHC) presents challenges to accurately identifying 

AUD patients. A combination of conventional methods and 

automatic EEG interpretation is required to ensure the quality 

and effectiveness of patient care, from screening through 

diagnosis and treatment to rehabilitation. The presence of 

noise and artifacts in EEG signals, in addition to their 

nonstationary and nonlinear nature, are key issues that can 

affect the performance of automatic identification methods. 

Hence, instead of using the entire EEG data, relevant and 

useful features need to be selected for AUD detection. The 

following are the main issues that can be addressed by 

preprocessing data to retain only relevant features: (1) 

Overfitting can have a negative impact on the performance 

of the method of identifying AUD patients. This is due to the 

presence of unneeded data and redundant features and (2) 

Handling high-dimensional datasets such as EEG recordings 

that can constrain memory and computing complexity and 

require substantial processing time. 

The literature emphasizes the growing demand for 

accurate diagnosis and classification of neurological 

disorders (Khosla et al., 2020). The challenge lies in 

achieving high classification performance with less time 

complexity and fewer memory resources. Hence, 

preprocessing data is necessary to reduce data 

dimensionality (Adiwijaya et al., 2018). Dimensionality 

reduction techniques involve the selection of features 

after the extraction step has been performed from the raw 

EEG data and the selection of a subset of channels 

(Rabcan et al., 2020). According to studies in the fields of 

emotion recognition and mental fatigue detection, the use 

of a limited number of EEG channels can achieve 

similarly or even improved classification performances 

within a shorter time (Dura and Wosiak, 2021). 

Thus, the purpose of the present work is to propose 

a subset of EEG signals that are reduced in 

dimensionality by selecting only pertinent and relevant 

EEG signals. The present paper pertains to the 

improvement of a point pattern matching method, 

namely, the Discrete to Continuous algorithm (DtC). 

The main aim and novelty of our research are to 

empirically investigate the effectiveness of the DtC 

algorithm to accurately select optimal EEG channels 

for alcoholism discrimination. 
The main contributions of the present study are as follows: 
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 The DtC point pattern matching algorithm was 
applied for the first time to EEG channel selection 

 The proposed approach was compared to the dynamic 
time-warping algorithm in terms of selecting optimal 
EEG channels. The feasibility of the DTW algorithm 
has been studied in the field of EEG data analysis since 
1985 using simulated and actual EEG data 

 The effectiveness of the proposed approach was 
demonstrated by running rigorous experiments on 
an open dataset 

 In light of scientific evidence from clinical research 

regarding AUD’s impact on the brain, the proposed 

approach results were discussed 

 

Related Works 

In the last few years, many EEG based signal processing 
and analysis techniques have been investigated in the 
literature to identify brain changes related to alcoholism 
through computer-aided technologies (CAD). The major 
step in EEG signal processing involves using either statistical 
analysis or Machine Learning (ML) methods to discriminate 
between nonalcoholic and alcoholic EEG signals. 
Salankar et al. (2022) used four supervised learning 
techniques, namely, Random Forest (RF), K-Nearest 
Neighbors (KNN), Multilayer Perceptron Neural Network 
(ML-PNN), and Least Square Support Vector Machine (LS-
SVM), to differentiate between alcoholic and nonalcoholic 
EEG recordings. Segmentation and decomposition of raw 
EEG data were initially performed and features were selected 
considering Second-Order Difference Plots (SODPs). 
Siuly et al. (2019) extracted statistical features from an 
optimum allocation-based sampling scheme. Supervised 
learning algorithms, including logistic regression, decision 
table, Support Vector Machine (SVM), and KNN, were 
utilized on the obtained vector set during the classification 
step to identify alcoholic EEG recordings. Correlation 
Dimension (CD)-based feature extraction was performed by 
Prabhakar and Rajaguru (2020) through four distance 
metrics: Chebyshev distance, city block distance, cosine 
distance, and correlation distance. To classify EEG 
signals as alcoholic or nonalcoholic subjects, the authors 
proposed and compared adaboost-based approach 
performances with various ML algorithms employing 
suitable extracted features. Buriro et al. (2021) investigated 
the utility of Wavelet Scattering Transform (WST)-based 
features using two Conventional Machine Learning (CML) 
tools, namely, SVM and Linear Discriminant Analysis 
(LDA). According to the authors, interesting results were 
produced by combining CML algorithms and WST-based 
features compared to the convolutional neural network.       
Padma Shri and Sriraam (2016) identified the optimal feature 
subset as having the least correlation and maximal class 
separation between a selected set of EEG channels based on 
variance measures. The classification was performed using 
Multilayer Perceptron-Back Propagation (MLP-BP) and 
KNN networks. Deep learning classification of EEG signals 
was performed (Neeraj et al., 2021) by processing both 

spatial and temporal features. First, spatial features were 
extracted based on the moving-window technique and Fast 
Fourier Transform (FFT) and combined with a 
Convolutional Neural Network (CNN). Then, temporal 
feature extraction was performed using Long Short-Term 
Memory (LSTM) and an attention mechanism. Khan et al. 
(2021) relied on the causal effects that are exchanged 
between various areas of a specific resting-state network 
known as the Default Mode Network (DMN). Using the 
Partial Directed Coherence (PDC) algorithm, the authors 
calculated the Effective Connectivity (EC) between the 
DMN brain regions that served as input to a 3D-CNN to 
identify alcoholic cases. Mukhtar et al. (2021), raw EEG 
time series data were fed into an optimized CNN. Both 
feature extraction and classification tasks were included in 
the optimized CNN to identify alcoholic and nonalcoholic 
subjects. Chaotic measures were employed by 
(Kannathal et al., 2005) to perform alcoholic and epileptic 
data analysis. These measures included entropies, 
Correlation Dimension (CD), the Largest Lyapunov 
Exponent (LyE), and Hurst Exponent (HE). Acharya et al. 
(2012) used an SVM classifier to identify alcoholic cases 
based on nonlinear features such as LyE, sample entropy, 
and approximate entropy. Feature selection consists of a 
statistical t-test performed on the nonlinear extracted 
parameters. Ren and Han (2019), the authors combined 
linear and nonlinear methods (wavelet transform, 
autoregression, and wavelet packet decomposition) to 
extract features. Then, they employed class separability 
techniques to eliminate redundant features. An LDA-based 
ensemble of extreme learning machines was then used to 
perform classification on two datasets related to alcoholism 
and epilepsy. The feature extraction methods considered in 
(Yazdani et al., 2007) include the second-order 
autoregressive model parameters, mean absolute value, the 
peak amplitude of the power spectrum, and variance of the 
signal. A Principal Component Analysis (PCA)-based 
dimensionality reduction was performed on the feature 
vector and then the reduced vector was fed to a fuzzy 
inference system for the classification of alcoholic and 
nonalcoholic cases. Rahman et al. (2020) assessed the 
effects of dimension reduction techniques on the 
classification performances of both traditional ML and Deep 
Learning (DL) methods in identifying alcoholic cases. The 
authors concluded that the PCA technique achieves 
interesting results when used with a DL method. The 
Wavelet Packet Decomposition (WPD) technique was 
applied (Saddam et al., 2017) to decompose the EEG signal, 
and features were extracted using descriptive statistical 
measures. The PCA technique was implemented in this 
research to reduce EEG signal dimensionality. 
Classification of alcoholic and nonalcoholic cases was 
performed based on an optimized Back Propagation 
Neural Network (BPNN). It has been shown that higher 
accuracy with shorter run times was achieved with PCA-
selected features than without using the PCA technique.  

Various approaches to reducing dimensionality have 

been proposed in the literature. Preprocessing and 



Hayat Sedrati et al. / Journal of Computer Science 2023, 19 (1): 126.144 

DOI: 10.3844/jcssp.2023.126.144 

 

129 

postprocessing operations are typically performed on raw 

EEG recorded data, including feature extraction and 

selection steps before data are fed to ML models or 

statistically analyzed. Similar to feature selection techniques, 

EEG channel selection was also investigated in the health 

field as a dimension reduction guided by physiological 

considerations. Puri et al. (2022), identified relevant EEG 

channels for Alzheimer's disease detection as those having 

the maximum ratio of energy to entropy based on a wavelet 

packet analysis. The highest performance metrics were 

obtained with six EEG channels out of 16 channels using an 

SVM classifier. In the field of motor imagery classification, 

Tang et al. (2022) applied a modified Sequential Backward 

Floating Selection (SBFS) to discard irrelevant pairs of 

channels on a preprocessed EEG dataset. This was followed 

by a filtering method to extract features from selected 

channels based on the coefficients of the Common Spatial 

Pattern (CSP) filter. In the same field, a recent study 

(Ghorbanzadeh et al., 2023) employed the same SBFS 

approach to reduce the initial dimension of the feature 

space. Hardware limitations dictate the size of the 

selected subset of channels that may be prefixed or 

determined by classification performance metrics. The 

SBFS resultant features were improved based on a 

genetic algorithm before the final selection of channels.  

The selection of optimal EEG channels has been the 

focus of research for the identification of many diseases. 

However, despite the AUD burden, it has been less common 

for researchers to study and analyze EEG signals to select 

optimal channels. To the best of the authors’ knowledge, 

only a few studies have investigated dimensionality 

reduction by selecting optimal EEG channels to address 

AUD concerns (Bavkar et al., 2021; 2019; Ong et al., 2006; 

Palaniappan et al., 2002; Shooshtari and Setarehdan, 2010; 

Zhu et al., 2014). The aforementioned EEG analysis studies 

reduced the dimension of the EEG dataset either by applying 

feature extraction techniques alone or by performing features 

or channel selection based on extracted features. The 

selection of optimal EEG channels in most of the previously 

mentioned studies (Bavkar et al., 2019; Ong et al., 2006; 

Palaniappan et al., 2002; Shooshtari and Setarehdan, 2010; 

Zhu et al., 2014) is based on gamma band power being a 

major discriminating factor in AUD patients. An emphasis 

was placed on the gamma band power since visual 

stimulation is reported to invoke the gamma band spectra 

(Zhang et al., 1997). Bavkar et al. (2021) also depended on 

frequency band power to select optimal EEG signals; they 

decomposed the signal into different Intrinsic Mode 

Functions (IMFs) and derived only the first five IMFs with 

frequencies greater than 0.5 Hz. However, the novelty of our 

study's approach lies in broadening the focus outside the 

gamma frequency band. This is done by investigating any 

dissimilarities that may exist between alcoholic and 

nonalcoholic EEG signals. The DtC approach evaluates the 

relevance of data retained in each EEG channel by 

comparing raw data of a specific alcoholic EEG channel to 

the corresponding nonalcoholic EEG channel.  

Our approach to reducing the dimensionality of the 

dataset to be analyzed relies on the concept that alcoholic 

patients' EEG readings display abnormal neuronal activity in 

specific areas of the brain (Gilman et al., 2010). By 

measuring the similarity degree between alcoholic and 

nonalcoholic EEG signals, it is possible to identify relevant 

electrode positions and, in turn, reduce the dimensions of the 

full EEG dataset to be analyzed to an optimal number of 

channels. Since EEG recordings can be seen as time series in 

2-dimensional space, the correspondence degree of two EEG 

signals can be assessed by measuring similarity distances 

between two point sets.  

Materials and Methods 

EEG Data  

Electroencephalogram is a noninvasive method to 

diagnose diseases and monitor brain function. EEG signals 

represent electrical brain impulses that are created by neural 

activity in the brain along the scalp. To measure electrical 

signals, electrodes are positioned to make contact with the 

surface of the scalp. The most widely known and globally 

recognized system for positioning these electrodes on the 

scalp is the international 10-20 system. These electrode 

signals are also known as channels. Each electrode is referred 

to by a letter ("F": Frontal, "T": Temporal, "C": Central, "P": 

Parietal, "O": Occipital) and by an even or an odd number, 

corresponding, respectively to the right or the left 

hemisphere, or by "z", corresponding to the midline between 

the two hemispheres. An EEG measures voltage differences 

(in microvolts) produced by nerve cells in the brain. Five 

main types of brain waves (delta, theta, alpha, beta, and 

gamma) may be differentiated according to their signal 

amplitude and frequency band (Luján et al., 2021).  

 The data analyzed in this study are retrieved from the 

ML repository archive (Begleiter and Porjesz, 1999) of the 

University of California at Irvine (UCI), USA. The data 

come from a study whose objective was to examine chronic 

alcoholics' deficiencies in knowledge encoding, retention, 

and retrieval. The task for the participants was to determine 

whether the displayed picture was the same as the precedent 

picture. EEG signals were recorded from 122 individuals, 

including 77 alcoholic subjects and 45 nonalcoholic subjects. 

Each of the 122 subjects completed 120 trials in which 

various stimuli were displayed. There are three 

different versions of the EEG dataset: Small, large, and 

full. Recording of EEG signals was taken from 64 

electrodes placed on the scalp at a sampling frequency 

of 256 Hz. The EEG recordings were referenced using 

the Cz electrode. Two bipolar derivations were used to 

record the Electrooculograms (EOG) for both the 

horizontal and vertical axes. 
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Fig. 1: Average nonalcoholic EEG signal amplitude (in μV) 

by time and channel over 10 trials in the case of a 

single stimulus 

 

 

 
Fig. 2: Average alcoholic EEG signal amplitude (in μV) by time 

and channel over 10 trials in the case of a single stimulus 

 

 

 

Fig. 3: Illustrative example of discrete alcoholic points () 

and nonalcoholic points (⁕) EEG recording structures 

to be aligned. Each point represents an EEG signal 

amplitude over time 

 
 
Fig. 4: Points of the nonalcoholic EEG recordings pattern 

interpolated by a continuous function. Points of the 

alcoholic signal are put aside 
 

 
 
Fig. 5: The transformation T that would bring the alcoholic EEG 

signal points structure (points) back onto the 

nonalcoholic EEG signal points structure (points⁕)  
 

 
 
Fig. 6: The alcoholic EEG signal point structure (points) is 

fitted onto the polynomial interpolation of the 

nonalcoholic EEG signal point structure 
 

 
 
Fig. 7: Assignment of each point of the alcoholic EEG 

recording pattern (A) to its nearest neighbor in the 

nonalcoholic EEG recording pattern (N). The X-axis 

represents EEG recording time and the Y-axis 

corresponds to its amplitude 
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Fig. 8: Steps of the DtC algorithm 

 

 
Fig. 9: A warping path referring to an alignment between 

alcoholic and nonalcoholic time series, where each point 

Pk of this warping path corresponds to a point (ai, nj) 

 

 

 

Fig. 10: Computation and comparison processes of distance measures between alcoholic EEG recordings (Alcoholic Trials (AT) 

set) and nonalcoholic EEG recordings (Nonalcoholic Trials (NT) set) illustrated for one channel and the k-index trial. 

DM (NTk) are distance measure values calculated between two nonalcoholic signals (NTk). DM (ATk) are distance 

measure values calculated between an Alcoholic (ATh) and a Nonalcoholic (NTk) signal 
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Fig. 11: Flowchart of the proposed methodology to select optimal EEG channels. C is a channel index out of 64 EEG channels. H and 

K are the total numbers of EEG signals in the alcoholic and the nonalcoholic EEG trial sets, respectively. DM (NTk) are 

computed distance measures, for the C-index channel, between the k-index nonalcoholic EEG trial (NTk) and all trials from 

the NT set (i.e., H trials) according to the NTk trial. DM (ATk) are computed distance measures for the C-index channel between 

an Alcoholic (ATh) and an NTk EEG signal. The threshold “ThDMk” is the maximum Distance Measure (DM) out of all DM 

values within the nonalcoholic EEG trials set according to the k-index trial
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Fig. 12: The amplitude of the EEG signal (in μV) depicted by 

time for the alcoholic C3 channel recording 
 

 
 
Fig. 13: The amplitude of the EEG signal (in μV) depicted by 

time for the nonalcoholic C3 channel recording  
 

 
 
Fig. 14: Distance measures generated by the DtC algorithm at the 

C3 channel level, according to the 4-index trial. (a) 

Distance measures plot of the nonalcoholic EEG dataset 

between each other (DM (NT4)). (b) Distance measures 

plot of alcoholic EEG dataset compared to nonalcoholic 

EEG data (DM (AT4)) 
 

The subjects who were alcoholics had been sober for 
at least one month. The majority of alcoholics began 
drinking heavily when they were approximately 20 
years old for at least 15 years. Criteria from the third 
edition of the Diagnostic and Statistical Manual of 
Mental Disorders (DSM-III) were used to make the 
initial diagnosis of alcohol abuse or dependence. 
Alcoholics with overt liver, metabolic, vascular, or 
neurological disorders were not selected (Zhang et al., 1997). 

 
 
Fig. 15: Distance measures generated by the DTW algorithm at the 

C3 channel level, according to the 4-index trial. (a) Distance 

measures plot of the nonalcoholic EEG dataset compared 

between each other. (b) Distance measures plot of alcoholic 

EEG dataset compared to nonalcoholic EEG data  

 

No history of mental or neurological disorders and no history 

of personal or family usage of psychoactive substances are 

key selection criteria for nonalcoholic subjects. Since the 

EEG signals of the dataset corresponded to the recordings of 

the brain's response to a visual stimulus, all subjects needed 

to have no vision issues.  

 Subjects were shown either one stimulus or two stimuli; 

they underwent either a matched or a nonmatched condition of 

exposure in the case of two stimuli. The stimulus set consisted 

of 90 images of various items that were selected from a 

standardized set of pictures. A state is said to be matched when 

the two stimuli exposed are the same; otherwise, it is said to be 

nonmatched. The interval between trials was set at 3.2 s, with a 

300 sec stimulus period for each trial. Trials containing noises 

and artifacts during signal recordings, such as excessive body 

movements, eye blinks, and power line noise, were rejected. The 

international 10-20 system was employed and extended with the 

following sites: "FPz", "AFz", "AF1", "AF2", "AFz", "AF8", 

"F1", "F2", "F5",  "F6", "FCz", "FC2", "FC3", "FC4", "FC5", 

"FC6", "FC7","FC8", "C1", "C2", "C5", "C6", "CPz", "CP1", 

"CP2", "CP3", "CP4", "CP5", "CP6", "TP7", "TP8", "PI", "P2", 

"P5", "P6", "POz", "POI", "PO2", "PO7" and "PO8". Two EOG 

electrodes were added as bipolar deviations (Zhang et al., 1997).  

The EEG data analyzed in the present study correspond to 

the small dataset in the case of a single Stimulus exposition (S1). 

Every subject underwent 10 trials, each lasting one second. 

Figures 1 and 2 show typical one-second EEG signals for 

nonalcoholic and alcoholic subjects, respectively. These plots 

show the 64-channel EEG signal power differences between 

alcoholic and nonalcoholic subjects.  

Discrete to Continuous (DtC) Algorithm 

The DtC method was first designed to measure 

chirality and recognize shapes (Raji and Cossé-Barbi, 

1999). Point pattern matching is the key component of the 

DtC approach, aimed at finding similarities between two 

point sets. In this study, it is used to match EEG signals in 
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two-dimensional space. Most approaches perform this 

point-by-point comparison using matrices of distances 

between point sets. Therefore, such an approach may lead 

to long response times due to combinatorial problems, 

which come from the discrete nature of point sets to 

match. In contrast, the DtC method addresses the problem 

of searching for correspondence in a comprehensive way 

rather than point-by-point matching. 

The basic idea of the DtC algorithm is to map the discrete 

representation of a signal to the continuous representation 

of a reference signal to address the problem. 

The DtC approach is employed in the present study to 

compare alcoholic and nonalcoholic EEG signals 

according to specific metrics. 

Let A and N be two EEG signals of alcoholic and 

nonalcoholic individuals, respectively, with A being the 

test set and N the reference set: 
 

1{ }S T

i iA a 

   (1) 

 

1{ }T

j jN n    (2)  

 
where, S and T denote A and N lengths and i and j are the 

time series indexes, respectively.  

Alcoholic and nonalcoholic EEG recording patterns 

are depicted in Fig. 3 in the case of the same length 

time series (S = T), which are seven fictitious points 

used to illustrate the DtC algorithm concept. The key 

challenge is determining whether a discrete alcoholic 

EEG recording pattern (points) corresponds to a 

pattern of nonalcoholic EEG recordings (points ⁕). In 

other words, check for the existence of an allowed 

transformation T such as:  

 

( )T A N  (3) 

As stated before, without knowing the correspondence 

particularities between point sets A and N, searching 

directly for the T transformation inevitably leads to long 

response times. This leads to the risk of a combinatorial 

explosion. The DtC approach first converts the discrete 

form of the N set to a continuous representation by 

polynomial interpolation while retaining the discrete form 

of point set A (Fig. 4). The problem of determining 

whether A is included in N then becomes a matter of 

determining if there exists a transformation T that would 

bring A back onto N.  

The EEG signal is a time series plot with 

measurements of amplitude as the ordinate and time as the 

abscissa. Points of the reference set N (nonalcoholic) and 

the test set A (alcoholic) are examined in a 2-Dimensional 

(2D) space, i.e., the Oxy plane.  

Considering the polynomial interpolation P in the Oxy 

plane, for each point nj that, belongs to N, we have:  

 

( )nj njP x y  (4)  

 

where, (xnj, ynj) refers to the nj point coordinate. 

Various interpolation methods are available to express 

P. The interpolation approach adopted in this study relies 

on the "cubic spline" technique. This polynomial 

interpolation technique prevents the polynomial's degree 

from being influenced by the size of the set of N points. 

Continuity and differentiability are also ensured 

throughout the interpolation interval (Fig. 4). 

As explained previously, determining the 

correspondence between A and N is a matter of identifying 

whether a transformation T exists. Given the polynomial 

interpolation P, the transformation T aims to bring the 

points set A back onto the continuous representation of the 

points set N along the plane Oxy. 

 

 

 

Fig. 16: False Negative Rate (FNR) values of all channels where FNR values of C3, CP5, PO7, and F8 tend to zero 
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As depicted in Fig. 6, this is done by translating points 

of the test set (A) along the time axis (x-axis) and 

computing the distance between the polynomial 

interpolation of the reference set and the points of set A 

(points of the test set). This is repeated until a minimal 

distance is obtained.  

The converted points of A by the transformation T 

must also satisfy P, specifically: 

 

( ' ) 'ai aip x y   (5) 

 

where, ( ' , ' )ai aix y  refers to the a'i point coordinates and a'i 

refers to the transformation by T of a point ai  A.  

The present paper aims to align EEG signals that are 

time series; hence, alignment of A and N signals is 

performed along the time axis Ox (Fig. 5 and 6). 

Therefore, the transformation T is transformed into a 

function with a single argument (Eq. 6 and 7), i.e., the 

translation tx along the axis Ox: 

 

ai ai xx x t    (6) 

 

ai aiy y   (7) 

 

Consequently, the polynomial interpolation P may be 

expressed as:  

  

( ' ) ' 0ai aiP x y   (8) 

 

  
2

' ' 0ai aiP x y   (9) 

 

Extended to all points of dataset A:  

 

  
2

1
' ' 0

S

ai aii
P x y


   (10) 

 

where, S is the number of points in time series A (i.e., 256 

points). Let DM denote the following function: 

 

  
2

( ) 1
' '

x

S

ai ait i
DM P x y


   (11) 

 

DM is a distance measure related to the “Euclidean 

distance” between the discrete reference set and the 

continuous polynomial interpolation P.  

The parameters of the transformation T that minimize 

the DM distance measure must now be determined based 

on this formulation. The distance measure DM thus 

obtained is a nonlinear equation that can be solved using 

a variety of numerical techniques. The DtC algorithm uses 

the Nelder-Mead simplex method to minimize the 

distance measure DM.  

Once the alignment of the points in set A on the 

continuous representation of N is performed as defined by 

T, it is then possible for the DtC algorithm to assign each 

point in set A to its nearest neighbor in N, i.e., its 

isomorph. As shown in Fig. 7, dashed circles refer to the 

assignment between points of the reference set and the test 

set; only discrete points of the reference set are 

considered, while polynomial interpolation is ignored. 

The accuracy of this assignment is assessed by computing 

the Root Mean Square (RMS). Since the present paper 

aims to calculate the distance between the A and N time 

series (i.e., DM values) and does not focus on computing 

the number of common points between the A and N time 

series, the RMS computation is omitted in this study. 

 Figure 8 illustrates the operating steps of the DtC 

algorithm.  

Dynamic Time Warping Algorithm 

The Dynamic Time Warping algorithm (DTW) 

enables the comparison of two sets of time series signals 

that may have shifts or distortions concerning each other. 

In this method, time series signals are locally compressed 

or stretched until an optimum distance (i.e., the shortest) 

is found between the warped sequences to determine the 

degree of similarity between them. The first applications 

of the DTW algorithm were in the area of speech 

recognition in the 1970s (Sakoe and Chiba, 1978). In the 

field of EEG data analysis, DTW feasibility has been 

investigated since 1985 to cluster EEG waveforms using 

simulated and actual EEG data (Bavkar et al., 2021). 

DTW proved its effectiveness in detecting Alzheimer’s 

disease by monitoring gait and physiological signals 

(Varatharajan et al., 2018).  

Using the DTW algorithm, EEG signals of alcoholic 

and nonalcoholic individuals are compared to each other 

as two-time series, A (Eq. 1) and N (Eq. 2), of length S 

and T by measuring the distance between these time series 

with a similarity function f (Eq. 12). 

DTW allows comparing a point from the alcoholic 

series (i.e., A) with several other points of the other series 

(i.e., N) and determines where and how many points from 

the first series can be aligned to points of the second 

series. In this study, alcoholic and nonalcoholic EEG time 

series are of the same length (S = T): 
 

   , ,i jd i j f a n  (12) 

 
where, d (i, j) denotes the distance between points ai and nj. 

Nonlinear adjustment of A and N is represented by a 

path P (Fig. 9) in the matrix [1, S]*[1, T]: 

 

{ ( ) ( ( ), ( )) 1 }P k u k v k k to K   (13) 

 

where the functions u(k) and v(k) of an admissible path P 

should satisfy specific conditions:  



Hayat Sedrati et al. / Journal of Computer Science 2023, 19 (1): 126.144 

DOI: 10.3844/jcssp.2023.126.144 

 

136 

 Boundary condition: The first and last indexes from 

the first series must match the first and last indexes 

from the second series, respectively, without 

requiring their unique match 

 Continuity condition: This prevents the alignment 

path from jumping in "time" axes, ensuring that 

useful features are not skipped during alignment  

 Monotonicity condition: This prevents the alignment 

path from going back in the time axes, which ensures 

that no features are repeated 

 

As illustrated in Fig. 9, the only paths leading to point 

Pk(i, j) have to originate from points (i-1,j), (i-1,j-1), or (i, 

j-1). Various warping paths are possible through the grid 

in Fig. 9. The DTW approach involves choosing the path 

with the smallest distances d(i, j) so that the sum of the 

distances along the path is minimal.  

The main goal of the DTW technique is to calculate 

the similarity distance between two-time series datasets 

by using warping functions (Eq. 13). Considering P, the 

algorithm calculates the distance between time series A 

and N as follows, where weight coefficient mP(k) is 

applied to the kth segment of the path P and MP is a 

normalization coefficient depending on the function mP:  
 

1
( , ) min ( ( ))* ( ) /

K

p pk
dp A N d P k mp k M


 
   (14) 

 

Selection of Optimal EEG Channels 

The proposed approach uses the DtC algorithm to select 

the optimal channel. The DTW algorithm is used to compare 

the performance of the DtC technique. As outlined earlier, to 

select the most significant and optimal EEG channels, it is a 

matter of finding a subset of channels that allows the 

classification of a given subject into its appropriate category 

(alcoholic or nonalcoholic). To test the applicability of our 

approach, the data employed correspond to EEG recordings 

from one alcoholic and one nonalcoholic subject in the case 

of a single stimulus exposition. Recordings of EEG signals 

were taken from 64 channels with 256 points per channel 

lasting one second per trial. Each subject performed 10 trials.  

 The DTC-based approach compares two EEG 

recordings, which are two-time series. The DtC aims to 

identify similarities or dissimilarities between these two-

time series using the Distance Measure (DM). When 

"DM" tends to zero, as minimized by the parameters of 

the transformation T in Eq. 11 shows that the two-time 

series are similar; otherwise, they are dissimilar.  

 Figure 10 describes key elements of EEG signal 

classification, namely, the computation and comparison 

procedures of DM values. Figure 11 depicts the overall 

flowchart of the proposed methodology, which illustrates 

the steps of the EEG signal classification and optimal 

EEG channel selection procedures. To assess the 

performance of our approach, the same flowchart in 

Fig. 11 was adopted using the DTW method to generate 

DM values. A detailed description of these processes is 

provided below: 

  

1- Let NT denote the set of trials performed by the 

nonalcoholic subject. For each channel, the distance 

measure DM is computed according to a specific 

element of the NT set. That is, for a given k-index trial 

from the NT set (NTk), DM is calculated between NTk 

and itself (where DM = 0) and between NTk and the nine 

remaining trials in the same set. This step is repeated for 

k = 1 to 10 (10 is the number of trials performed by the 

nonalcoholic subject). Let us refer to DM(NTk) as DM 

values calculated in this way (i.e., according to the 

k-index trial performed by the nonalcoholic subject) 

2- Let AT denotes the set of trials performed by the 

alcoholic subject. For the same channel, DM is 

computed between each element of the AT set and a 

specific trial NTk from the NT set. This step is 

repeated for h = 1 to 10. Let us refer to DM(ATk) as 

DM values calculated in this step according to the k-

index trial performed by the nonalcoholic subject 

3- Next, the maximum value from the DM (NTk) set is 

selected as a threshold DM value ThDMk according to the 

k-index trial, with which elements from the DM              

(ATk) set are compared. The ThDMk value represents the 

greatest dissimilarity between nonalcoholic trials. Each 

time the DM (ATk) value is less than the reference ThDMk, 

this is counted as a false negative prediction of an EEG 

signal. This step is also repeated for h = 1 to 10 

4- Finally, considering that TP, FN, FP, and TN are true 

positive, false negative, false positive, and true 

negative predictions, respectively, by the same 

channel, where FP and TN values equal zero since the 

AT set contains only alcoholic cases, the False 

Negative Rate (FNR) and Accuracy (Acc) metrics are 

calculated for each channel as follows: 

  

( %) *100
FN

FNR in
TP FN




 (15) 

 

( %) *100
TP TN

ACC in
TP FN FP TN




  
 (16) 

 

Equation 15 and 16 are used to determine the 

performance measures, which are employed in the 

selection of the most representative channels.  

Experimental Results  

The EEG signal dataset was downloaded from the UCI 

ML repository (Begleiter and Porjesz, 1999). In this 

experimental step, EEG readings from one alcoholic and 

one control (nonalcoholic) subject were used. Ten trials 

per person were performed and one stimulus was 
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presented to each individual in each trial. The DtC and 

DTW algorithms were coded in the Java programming 

language. They were implemented on a computer with a 

2.30 GHz AMD Ryzen 3700 U processor and 8 GB of 

RAM. The experiments were conducted in two stages: (a) 

Classification of alcoholic EEG signals in comparison to 

nonalcoholic signals and (b) Selection of optimal 

channels for alcoholism screening and diagnosis (Fig. 11).  

Discrimination between alcoholic and nonalcoholic 

subjects is a matter of finding whether there is a 

correspondence between two EEG recordings, which are 

two-time series. The DtC algorithm targets checking for 

the existence or absence of such correspondence between 

these two-time series. Alcoholic EEG signals were 

classified in comparison to nonalcoholic signals by 

calculating the distance measure between two-time series 

using the DtC and DTW algorithms. Nonalcoholic EEG 

signals were compared, and the maximum distance 

measure value was adopted as a threshold value in the 

classification process. 

Table 1 summarizes the optimal channel selection 

results of the proposed approach compared to the DTW 

method. It reports false negative rates and accuracy 

percentages by channel. Four channels were selected as 

the best channels, namely, C3, CP5, PO7, and F8, with 

accuracy values of 100, 100, 94, and 81%, respectively. 

For the same channels, the DTW algorithm achieves 

100, 98, 96, and 65% accuracy values. 

As demonstrated by these results, the DtC and DTW 

algorithms produce almost similar results for C3, CP5, and 

PO7 channels. False negative rates for the DtC algorithm are 

similar to those for the DTW algorithm, except for the F8 

channel, where FNR is 19 and 35%, respectively. 

Figure 12 reveals that the alcoholic EEG signal 

recorded from the C3 channel has faster wave oscillations 

and higher amplitude (nearly six times) than the 

nonalcoholic EEG signal (Fig. 13) at the same channel.  

As depicted in Table 1, the highest accuracy (100%) 

and the lowest FNR (0%) values were obtained at the 

C3 and CP5 channel levels using the DtC algorithm and 

at the C3 channel level using the DTW algorithm, 

followed by PO7 and F8 channels in decreasing order 

of performance using both algorithms. 

Figure 14 and 15 display the distance measures 
generated by the DtC and DTW algorithms, 
respectively, at the C3 channel level. As shown, no 
correspondence exists between A and N EEG signals 
according to the 4-index trial. The x-axis refers to trials 
and the y-axis indicates DM values. Plot (a) depicts 
distance measures within the nonalcoholic trial set 
based on the 4-index trial (DM(NT4)). Plot (b) refers 
to DM values computed between the set of trials 
performed by the alcoholic subject and the 4-index trial 
performed by the nonalcoholic subject (DM(AT4)). 
The DM plot cancels at the 4-index point on the x-axis 
since it compares the nonalcoholic EEG signal with itself.  

As stated earlier, the DtC approach consists of 
comparing patterns of EEG signals and searching for 
the degree of similarity or dissimilarity. This is done to 
investigate the ability of the DtC algorithm to select 
optimal EEG channels that retain the most significant 
information for alcoholism detection. The dissimilarity 
degree is assessed using performance metrics (FNR and 
accuracy). The lower the FNR value, the higher the 
similarity between EEG signals. Figure 11. illustrates 
the bloc diagram of the DtC methodology. To further 
explain the selection process of the aforementioned channels, 
the DtC and DTW plots in Fig. 16 provide FNR values 
predicted for all 64 EEG channels. The x-coordinate 
represents EEG channels and the FNR values are 
reported on the y-coordinate. When compared to the 
DTW algorithm, DtC displays similar results. As 
illustrated, the minimum points that correspond to 
channels C3, CP5, PO7, and F8 are quite distinctive on 
both plots, where the y-coordinate value (i.e., FNR 
value) is smaller and decreases toward zero compared 
to the other y-coordinates on the plots. Out of 64 EEG 
channels, C3, CP5, PO7, and F8 are selected as relevant 
and optimal EEG channels based on their classification 
Accuracy (Acc) in detecting AUD patients. 

Discussion  

In this study, the DtC algorithm was adapted and 
improved to provide a novel method for selecting the most 
significant and optimal EEG channels. This method may 
assist in patient classification for alcoholism screening or 
diagnosis. It is worth mentioning that the main objective of 
this study is not to propose an EEG signal classification 
model. It is intended to demonstrate a novel approach to 
reducing the multichannel EEG database's dimensionality. 
Hence, this section discusses the effectiveness of the 
proposed optimal channel selection approach. 

According to the classification performances shown in 

Table 1, similar channels were selected by both the DtC and 

DTW approaches (Fig. 16). This shows that the C3, PO7, 

CP5, and F8 electrode sites retain essential information for 

alcoholism discrimination and correspond to the brain area 

that alcohol consumption affects the most. 

Hu and Prado (2023) computed the beta-band squared 

coherence between EEG channels for alcoholic and 

nonalcoholic subjects. The C3 channel exhibits a high 

squared coherence with the C1 channel in the alcoholic 

EEG data, while in the control (nonalcoholic) data, the 

C3-C1 squared coherence was essentially nil. When 

comparing the coherence values of actively associated 

channel pairs in the alcoholic EEG data, the authors 

demonstrated that C3-C1 was the unique channel pair 

presenting a high coherence in the alcoholic data, while it 

was zero for the nonalcoholic data. These findings 

indicate the presence of representative characteristics and 

abnormal activity at the placement site of the C3 electrode 

for the alcoholic subject, which confirms our results. 
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Table 1: Performance comparison of the DtC and DTW algorithms by optimal selected channels 

 Performances (in %) by optimal selected channels 

 -------------------------------------------------------------------------------------------------------------------------  

The algorithm  Channel  Accuracy  False negative rate  

Discrete to continuous C3  100  0  

 CP5  100  0  

 PO7  94  6  

 F8  81  19  

Dynamic time warping  C3  100  0  

 CP5  98  2  

 PO7  96  4  

 F8  65  35  

 
Table 2: Comparison of the DtC approach with existing channel selection methods 

 Selection approach characteristics  

 ----------------------------------------------------------------------- Classification approach characteristics 

Existing channel Channel selection  Number/{localizations} ----------------------------------------------------------------------------- 

selection methods methods of electrodes Accuracy (in %) Feature selection Classification  

Bavkar et al. (2021) Harmony search 61/{The entire EEG 96.50 Amplitude and Ensemble 

 algorithm dataset except three  frequency modulated subspace KNN 

  reference electrodes.}  bandwidth features 

  19/{FP2, F7, F8, FC5, T7, C3, 91.50 

  O2, O1, AF7, AF8, F6, FT7, FPz, 

  C6, P6, PO7, PO8, Oz, and P1} 

  12/{FP1, FC6, FC5, T7, Cz, O1, 93.87 

  AF7, AF8, FC4, PO7, PO8, Oz} 

Bavkar et al. (2019) Improved Binary 13/{FP1, FPz, FP2, AF7, 92.50 Gamma band Ensemble subspace

 Gravitational Search AF8, FC5, FC6, T7, TP7,  power KNN 

 Algorithm (IBGSA) TP8, Cz, PO8 and PO7} 

Zhu et al. (2014) Statistical test 1/{CP6} 79.4(with SVM) Horizontal Visibility KNN or SVM 

 (nonparametric 3/{C1, C3 and FC5} 87.6(with SVM) Graph Entropy (HVGE) 

 wilcoxon tests) 13/{AF8, C1, C2, C3, C4, 95.8(with SVM) 

  CP1, CP5, CP6, FC5, FT7, 

  P8, PO8 and PZ}  

  63/{The entire EEG dataset except 98.2(with KNN) 

  the "nd" reference electrode}  

Shooshtari and Absolute 2/{F8, AF8} 82.98 Absolute gamma Least Squares 

Setarehdan gamma band 4/{F8, F6, AF8, FT8} 82.27 Band power Support Vector 

(2010) power and 1/{AF8} 81.56  Machine (LS- 

 correlation 2/{AF8, F8} 81.56  SVM) 

 analysis 3/{F6, AF8, FT8} 81.56 

  2/{AF8, FT8} 80.85 

   3/{F8, F6, AF8} 80.85 

Ong et al. Principal 61/{The entire EEG dataset 95.83 Gamma band MLP NN 

(2006) Componen except for three reference electrodes}  power 

 Analysis (PCA) 16/{FP1, AF7, F7, AF8, F8, 94.06 

   FT8, T8, PO8, O2, O1, PO7, 

   TP7, T7, CZ, F1, FC2} 

   8/Not available 86.01 

   4/Not available 75.13 
Palaniappan et al. Genetic Algorithm 61/{The entire EEG dataset except 95.90 

(2002) (GA) with Fuzzy three reference electrodes}  Spectral power FA or MLP-BP 
 Artmap (FA) 7/{CP5, AF8, FT8, FPZ, 94.30 ratios 

 Classifier F1, TP8 and C2} 

Our proposed DtC algorithm 1/{C3} 100.00 Raw data Based on DM 
Approach  1/{CP5} 100.00  Values computed 

  1/{PO7} 94.00  with the DTC 

  1/{F8} 81.00  algorithm in the 

        channel selection step 
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A comparison of our approach with previous studies 

on optimal EEG channel selection of alcoholic subjects from 

the dataset introduced in (Begleiter and Porjesz, 1999) is 

summarized in Table 2. The findings of the DtC optimal 

selection channel approach were in line with previous 

studies' results. As shown in Table 2, all the channels that 

were selected by the DtC algorithm, i.e., the C3, PO7, CP5, 

and F8 channels, were also selected in previous studies. 

Classification performances in these studies showed that the 

optimal selected subsets of channels retain significant 

information in comparison to the entire EEG dataset. 

By using WST-based features, Buriro et al. (2021) 

concluded that the occipital and parietal areas generate 

the most informative signals, which correspond to the 

CP5 and PO7 electrode positions selected by our 

approach. Bavkar et al. (2021), the authors recommend 

19 channels as the most appropriate for classifying 

EEG data, including three electrode locations selected 

by our approach, namely, the C3, PO7, and F8 

channels. The ensemble subspace KNN classifier 

achieved accuracies of 96.5 and 91.5 by using the entire 

data and the 19-channel subset, respectively. The 

selection process utilized the binary harmony search 

algorithm. Bavkar et al. (2019), several classifiers were 

employed to assess their accuracies in the classification 

of EEG data for the discrimination of alcoholic cases. 

Without using optimization, i.e., with the 61 EEG 

channels, the ensemble subspace KNN classifier 

achieved a higher accuracy rate (95.1%). By evaluating 

four optimization methods, a reduced dataset 

containing 13 EEG channels was selected based on the 

improved binary gravitational search algorithm with 

less accuracy (92.5%) for the same. Zhu et al. (2014) 

proposed three subsets of optimal channels that include 

C3 and CP5 electrode sites. The authors used the 

Horizontal Visibility Graph Entropy (HVGE) method 

to extract features and selected channels based on the 

Wilcoxon statistical test. By analyzing the entire EEG 

data and the 13 EEG channel data, the SVM classifier 

achieved accuracies with a minor difference (98.2 and 

95.8). The selection method employed by Ong et al. 

(2006) focuses on the PCA technique. The authors 

propose a reduced EEG dataset dimensionality with 16 EEG 

channel sites, including F8 and PO7 electrodes. The CP5 

electrode location was also identified in (Palaniappan et al., 

2002); it is part of an optimal subset composed of seven 

EEG channels that were deemed to retain enough 

information to be used in the classification of alcoholic 

cases. The MLP-BP classifier achieved almost similar 

performance (95.9 and 94.3) on the entire dataset and the 

optimal selected subset of channels, respectively. Studies 

(Bavkar et al., 2021; 2019; Ong et al., 2006; 

Palaniappan et al., 2002; Shooshtari and Setarehdan, 

2010; Zhu et al., 2014) present findings from research 

on the discrimination of alcoholic EEG signal cases 

using the same EEG dataset. These studies propose a 

higher number of channels compared to the DtC approach. 

However, optimally reducing the EEG dataset 

dimensionality helps enhance memory performance and 

computing complexity, resulting in improved 

classification performance and accuracy.  
Most of the research in Table 2 looks for the subset of 

channels that achieve the closest classification 
performance to the entire dataset performance to reduce 
the database's dimensionality. To the same end, the 
proposed approach in this study is focused on comparing 
the performance of EEG channels with each other. In this 
way, only EEG channels retaining the most significant 
information would be involved in the classification 
process and irrelevant channels should be discarded. 
Shooshtari and Setarehdan (2010) substantially reduced 
the number of channels to be fed into the classification 
model. Based on absolute gamma-band power and 
correlation analysis, the authors selected combination sets 
of one or a maximum of four channels located essentially 
in the frontal lobe of the brain. The common optimal 
selected EEG channel between this study and the DtC 
approach is the F8 electrode.  

Researchers define alcohol consumption from more 

than one perspective. A psychological perspective views 

alcohol consumption as deviant behavior that conflicts 

with social norms and values and is dependent on 

socioenvironmental factors (Dullas et al., 2021). Insights 

into brain structure and function in both normal and 

deviant behavior can be provided by state-of-the-art 

imaging (Pujol et al., 2019). Studies on risky deviant 

behavior reveal alterations in the frontal lobe and reduced 

gray matter in brain regions, which are linked to social 

cognition (Straiton and Lake, 2021; Yang and Raine, 

2009). However, most correlations between behavior and 

brain function remain undiscovered (Marek et al., 2022). 

A medical perspective classifies alcohol consumption 

either as a health risk factor that includes hazardous and 

low-risk consumption or as a disorder (Saunders et al., 

2019). The fifth version of the diagnostic and statistical 

manual of mental disorders code (DSM-5) distinguishes 

three severity degrees of alcohol use disorders, namely, 

mild, moderate, or severe, which are equivalent to 

“alcohol dependence” and “harmful pattern use of 

alcohol” in the latest revision of the International 

Classification of Diseases (ICD-11) (Saunders et al., 

2019). Chronic and heavy alcohol use can cause 

permanent brain atrophy; indeed, drinking in this way 

alters brain size and shape and has a depressive effect 

on the central nervous system both in middle-aged and 

adults (Mukherjee, 2013; Sullivan and Pfefferbaum, 

2019). Excessive alcohol use has been linked to numerous 

patterns of macro-and microstructural alterations especially 

changes in the frontal, diencephalon, hippocampus, and 

cerebellar regions (Daviet et al., 2022). Alcohol interferes 
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with neurotransmitter function by slowing it down and 

even blocking it from performing its essential functions 

so that these neurotransmitters are destroyed (Banerjee, 

2014). Heavy alcohol consumption also leads to thiamine 

deficiency, which is known to cause brain injuries (Rao and 

Topiwala, 2020). While alcohol consumption has been 

largely documented to negatively impact brain health 

when consumed chronically and heavily, research findings 

regarding the effects of Low-to-Moderate (LtM) alcohol use 

on brain health have been inconsistent; indeed, it was found 

that consuming LtM amounts of alcohol improves brain 

function (Zhang et al., 2020). However, recent research 

revealed that the harmful effects of alcohol consumption on 

brain macro and microstructure are well perceptible in 

those who drink an average of one to two units per day 

(one unit is equivalent to ten milliliters or eight grams 

of ethanol), which is defined as LtM alcohol use 

(Daviet et al., 2022). In addition, research on sex-

specific moderate alcohol use suggests that women are 

more susceptible than men to developing alcohol-

induced brain dysfunction (Harper et al., 2018).  
The DtC approach identified significant effects of 

alcoholism from a medical perspective. The EEG data 
analyzed in our study correspond to recordings of the 
brain's response to a visual stimulus. This is done to assess 
alcoholics' deficiencies in visual information encoding, 
retention, and retrieval. Functionally, more than one brain 
region is involved in visual information processing. 
Previous research has revealed visual processing 
abnormalities in the frontal area, particularly in the right 
hemisphere and in the temporal and occipital areas for 
alcoholics compared to nonalcoholic subjects (Gilman et al., 
2010; Zhang et al., 1997). In the present study, the DtC 
approach findings are consistent with previous research 
since optimal selected channels F8, CP5, and PO7 are also 
located in these areas (Fig. 17). As mentioned in the 
results section, the highest classification performance 
achieved by the DtC approach was at the C3 channel 
level; the DTW algorithm also confirmed this. In addition, 
the C3 channel was selected as containing significant 
information in previous studies (Bavkar et al., 2021; 
Zhu et al., 2014) studies. Given these findings, it may be 
concluded that the C3 electrode site generates 
representative characteristics for the alcoholic subject. 
However, these characteristics are not related to visual 
processing deficiencies since the C3 channel corresponds 
to the left sensorimotor hand area. Indeed, during EEG 
recordings, all subjects were asked to handle a mouse key 
to accomplish tasks. These findings raise the question of 
whether EEG investigation of sensory-motor nerves 
may assist in identifying nerve deficiencies related to 
alcohol consumption.  

Feature selection techniques involve removing 

redundant and irrelevant features from the initial set of 

data to enhance classification performance and reduce 

dataset dimensionality (Zhang, 2021). The qualitative 

comparison of the DtC approach with existing methods to 

select optimal EEG channels revealed that the feature 

selection that was used did not enhance classification 

accuracy (Table 2). It is possible that some relevant 

information was omitted since these studies' approaches 

focus on frequency band power as a discriminating 

marker of AUD. However, our approach is an exhaustive 

search of optimal EEG signals and performed a raw data-

based AUD discrimination that gives the highest accuracy 

among all other EEG channel selection methods.  

  Furthermore, implementation of EEG analysis for early 

and objective diagnosis at the level of Emergency Hospitals 

(EH) and Primary Health Care services (PHC) requires 

professional assistance due to the high dimension of EEG 

signals and the complex processes needed for installation. 

Our approach proposes a subset of relevant EEG signals, 

which may assist in implementing practical EEG devices for 

AUD discrimination. In addition to accelerating the adaptive 

efforts that must be taken in the follow-up, monitoring, and 

managing recovery and withdrawal among AUD patients.  

The main limitation of the present study is that the DTC-

based classification task relies on the availability of an 

adequate reference for nonalcoholic EEG recordings. As 

explained earlier, DTC-based discrimination between 

alcoholic and nonalcoholic EEG signals was performed 

using the threshold value ThDMk, which is the maximum 

distance measure between two nonalcoholic EEG 

recordings. The DtC algorithm was efficient in selecting 

optimal EEG signals, but its generalization as a 

classification model is not an appropriate approach for 

AUD discrimination. Another limitation is the paucity of 

information in the open EEG database, especially on the 

severity of alcohol-use disorder. As mentioned earlier, 

the provided description of the dataset indicates that a 

majority of the enrolled AUD patients for EEG recordings 

were Heavy Drinkers (HD) for at least 15 years, while the 

severity of AUD disease in the rest of the patients is not 

available. In addition, no information was given in the 

dataset about which EEG recordings pertained to heavily 

drinking individuals or if there was a mild or moderate 

degree of dependence.   

To overcome the study's limitations, there is a need 

to create a dataset with labeled EEG recordings based on 

patients' age, gender, and severity of alcohol 

dependence. In the future, we could compensate for 

these limitations by generalizing the DtC approach to 

labeled EEG recordings. This would enable us to gain 

more insight into the similarity in the optimal channels 

between labeled EEG recordings. To determine the key 

points in preventing, treating, and recovering from 

alcohol dependency, a wide variety of solutions have 

been investigated. This includes the understanding of 

brain transition and evolution mechanisms from 

hazardous use to dependence. 
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Fig. 17: EEG channel placement according to the international 

10-20 system showing the positions of optimal channels 

selected by the DtC algorithm (positions C3, CP5, PO7 

and F8 are marked with a different background color) 

 

Conclusion  

The DtC approach was efficient in selecting optimal 

EEG channels for AUD discrimination. Our approach 

findings reveal that the C3, CP5, PO7, and F8 electrode 

sites retain relevant information to discriminate 

alcoholism. Locations of the CP5, PO7, and F8 electrode 

sites correlate perfectly with the regions of the brain that 

alcohol use severely affects.  

Those four locations maintain sufficient information for 

alcoholism discrimination. This is concordant with the 

scientific evidence currently available from clinical research 

that shows that three brain areas are affected by alcohol 

consumption as a response to visual stimuli. Thus, the 

amount of EEG data to be analyzed in alcoholism 

discrimination may be reduced to only three channels instead 

of 64 EEG channels. These three channels may be employed 

to propose a useful classification model, which could 

substantially decrease the computation time and hardware 

requirements. Moreover, the abnormal brain functioning 

detected by the DtC algorithm at the C3 electrode site 

suggests that the C3 channel may be a biomarker to predict 

alcoholism-related damage at the hand nerve level in an early 

stage before the first symptoms manifest.  
Although the present work focused on reducing the 

dimensionality of an alcoholic EEG dataset, the proposed 
approach can also be used to decrease the dimensionality 
of EEG datasets from other diseases.  
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