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Abstract: As the sizes of realistic hub location problems increase as time goes 
on (reaching thousands of nodes currently) this makes such problems difficult to 
solve in a reasonable time using conventional computers. This study aims to show 
that such problems may be solved in a short computing time and with high-quality 
solutions using the computational power of the GPU (actually available in most 
personal computers). So, we present a GPU-based approach for the uncapacitated 
multiple allocations p-hub median problems. Our method identifies the nodes that 
are likely to be hubs in the optimal solution and improves them via a parallel 
genetic algorithm. The obtained GPU implementation reached within seconds the 
optimal or the best solutions for all the known benchmarks we had access to and 
solved larger instances up to 6000 nodes so far unsolved. Compared to this study, 
no other article dealing with hub location problems has presented results for 
instances as large. 
 
Keywords: Genetic Algorithm, P-Hub Median Problem, Multiple Allocations, 
GPU 

 
Introduction 

Hub location models appear in various fields such as 
transportation, telecommunications, etc., and have a wide 
range of applications in air or ground transportation 
networks, postal delivery systems, and so on. In these 
models, traffic from origin to destination is not sent 
directly but must be routed through a specific set of nodes 
called hubs. Every other non-hub node is assigned to a 
single hub (single allocation) or to multiple hubs (multiple 
allocations). Assuming (i) Open hubs are fully connected 
to more efficient paths, allowing a discount factor α to be 
applied to transport costs between hubs. (ii) The triangle 
inequality applies to the distance between nodes (iii). 
There is no direct connection between the two non-hub 
nodes. Thus, the traffic flow will flow through one or two 
nodes, and economies of scale are achieved by 
consolidating traffic at the hubs. More precisely, the 
transmission cost of flow wij from i to j via hubs k and l is 
given by Cijkl = (χdik +αdkl +γdlj)wij where dik, dkl, and dlj 
are respectively the distances from i to k, from k to l and 
from l to j, χ is the collection cost per unit, γ is the 
distribution cost per unit, where α < χ and α < γ. 

In the multiple allocation hub location problems, a 
non-hub node is allowed to be assigned to more than one 
hub, depending on the destination of the flows originating 
from that node. The goal is to locate p hubs and map non-

hubs (spook) to hubs so that the overall shipping cost is 
minimized. Given the number p of hubs a priori, the 
problem is called the p-hub median problem. Also, if the 
hubs have no capacity constraints, the problem is known 
as the Uncapacitated Multiple Allocation p-Hub Median 
Problem (UMApHMP). Multiple allocations increase the 
flexibility of the model and it is expected to have lower-
cost solutions compared to the single allocation case. 

Since the UMApHMP belongs to the class of NP-hard 
problems, it is difficult for exact optimization methods to 
solve large benchmarks (for instance, the hub and spook 
network of the China Deppon logistics includes 50 hubs 
and 5400 nodes and these numbers increase as time goes 
by Wang and Huang (2016). Therefore, heuristic and 
parallel computing methods are promising approaches for 
solving real problems with large sizes (Benaini et al., 2022). 
So, we propose a genetic algorithm parallelized for the 
GPU for solving the UMApHMP. To our knowledge, this 
is the first GPU-based approach dedicated to this problem. 
Our Genetic Algorithm (GA) starts from different initial 
solutions and improves them via classical genetic 
operators. The initial solutions locate the hubs which are 
likely to be hubs in the optimal solution. Consequently, 
they greatly enhance the convergence of the GA. We 
present this approach and we show the efficiency of our 
GA under experimental results on well-known 
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benchmarks and on large random instances of up to 6000 
nodes generated by us. 

Several efficient heuristics have been implemented for 
both single and multiple allocations p-hub median 
problems. Among the most promising algorithms are 
Tabu Search (TS), Genetic Algorithm (GA), scatter 
search, simulated annealing, greedy randomized adaptive 
search, and electromagnetism like methods. A brief 
presentation of the corresponding references is below. 

Sangsawang (2011) proposed a multiple tabu search 
for solving the UMApHMP based on the convex hull 
technique to identify the nodes that send/receive flows to 
multiple hubs. He uses an n × 2n array to identify the 
intermediate hubs between origin-destination pairs. Rabbani 
and Kazemi (2015) presented a GA optimization approach 
for the uncapacitated multiple allocation p-hub center 
problem. He compared the nearest hub and all pair 
shortest path strategies for multiple allocations on the 
CAB and the AP data set. Zhang et al. (2023), the authors 
used Variable Neighborhood Search (VNS) heuristics to 
solve this problem. Shobeiri (2015) presented greedy 
deterministic and randomized algorithms for constructing 
an initial feasible solution and improving it by using local 
improvement techniques. He studies the impact of the 
quality of the initial feasible solution on the local 
improvement phase of AP data instances. Sender and 
Clausen (2013) developed different versions of a local 
search approach for solving the capacitated version of the 
problem derived from a practical application in the 
network design of German wagonload traffic. Boland et al. 
(2004) observe characteristics of optimal solutions for 
three versions of the multiple allocation problems. Then, 
they used these characteristics to develop preprocessing 
techniques and tightening constraints and apply them to 
the appropriate problems. Chen (2006) gives an approach 
to derive an upper bound for the optimal number of hubs for 
the Uncapacitated Multiple Allocation Hub Location 
Problem (UMAHLP). He uses this upper bound with the 
simulated annealing method to solve this problem. Zetina et al. 
(2017) study cases where the demand and the transportation 
cost are subject to interval uncertainty. They present mixed 
integer programming formulations for these problems and 
computational results with a general-purpose solver. For 
a robust optimization, Benaini and Berrajaa (2020) 
propose a genetic algorithm to solve the robust 
uncapacitated single allocation and also Rouzpeykar et al. 
(2022) developed a genetic algorithm to solve p-hub 
location and revenue management problem. 

Yaman (2011), introduces the R-allocation p-hub 
median problem, where each node must be allocated to at 
most r hubs. This problem generalizes two versions of the 
p-hub median problem, single and multiple allocations 
(r = 1 and r = p). His computational study shows that 
single-allocation solutions can be significantly more 
expensive than multiple-allocation solutions. However, 

assigning one node to another hub or two can save 
significant routing costs, and the resulting network may 
be easier to manage. Kratica (2013) introduced the 
original electromagnetism like metaheuristic with a 
scaling technique. Results on several benchmarks and on 
large instances up to 1000 nodes showed high 
performance of the proposed method. 

Several Genetic Algorithms (GA) are proposed to 
solve different variants of the hub location problems. 
Most of them use binary/integer arrays as encoding. A 
simple and powerful GA for the multiple allocation 
problem was proposed by Kratica et al. (2005). This 
GA uses binary N-string encoding and original genetic 
operators. The author proposed caching to reduce the 
computational time in the evaluation function and 
shows the effectiveness of the GA through tests on 
CAB and AP instances up to 200 nodes. We adopt the 
binary N-string encoding for our GA. However, the 
particularity of the UMApHMP is that once the set of hubs 
is defined, an optimal allocation of non-hubs to hubs is 
obtained by the shortest paths rule. So, given the N-string 
encoding, it is necessary to compute all pair shortest paths 
to fully determine the solution and to evaluate its fitness 
which is expensive computationally. To avoid re-
computing all the paths at each iteration of the GA, we 
update those of the current solution after each 
modification of the latter. So, we must indicate how to 
represent all the shortest paths of a solution and how to 
update them after a change in the solution. 

Our GA starts from an initial solution that locates hubs 
at the nodes that are likely to be hubs in an optimal 
solution, in order to accelerate the convergence to the 
optimal or best solution. It is therefore necessary to 
identify potential optimal hubs. For this purpose, we are 
inspired by the work of Peker et al. (2016) on the analysis 
of optimal hub locations for single allocation problems 
and by other researchers on this subject due to Demir et al., 
(2022); Alvarez Fernandez et al. (2022); Contreras and 
O’Kelly (2019); Shobeiri (2015). 

Finally, it should be mentioned that very few GPU 
solutions for the hub location problems are proposed in the 
literature. Benaini et al. (2019) proposed a GPU 
implementation for solving the single allocation phub 
median problem. Lim and Ma (2013) presented a GPU-based 
parallel vertex substitution algorithm for the p-hub 
median problem and Santos et al. (2010) proposed a GPU 
implementation of the GRASP metaheuristic for the p-hub 
median problem. More recently, AlBdaiwi and 
AboElFotoh (2017) presented a new genetic algorithm 
based on a pseudo-Boolean formulation of the p-median 
problem that he implemented on GPU. Interesting 
experimental tests on hard instances of sizes up to 900 are 
reported. We would like to highlight that, compared to our 
work, no article dealing with the hub location problems, 
proposed results for instances as large as 6000 nodes. In 
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view of these related works, we can affirm that the 
contributions of this study are in the method of locating 
optimal hubs and in the GPU-based approach for solving 
the UMApHMP. 

Problem Statement and Formulation 
The UMApHMP can be informally stated as follow. 

Given a set N of n nodes, find a sub-set of p hubs H ⊂ N 
that minimizes: 
 

 

 
where the decision variable xijkl = l if the flow wij from i 
to j goes via hubs k and l (k may be equal to l) and 0 
otherwise. Given that there are no capacity constraints 
on the hubs or links of the network, there always exists 
an optimal solution in which each flow wij fully routed 
on a single path (Contreras and O’Kelly, 2019) which 
justifies the fact that the xijkl are binary variables. The 
general constraints imposed by the UMApHMP are the 
following p is the number of hubs. It is assumed that 
transportation costs and traffic flow are known and 
determined. The traffic between a pair of nodes i and j 
must be routed through either one or two established 
hubs k and l. All hubs are interconnected and none of the 
non-hubs are directly connected. Each non-hub can be 
allocated to multiple hubs. We call the hubs of optimal or 
best solution optimal hubs. A more precise formulation of the 
UMApHMP can be found in (Boland et al., 2004; 
Kratica et al., 2005). 

Figure 1(a) shows an example of a hub network with 
n = 5 nodes. The number of located hubs is p = 2. Figure 1(b) 
presents a solution for the single allocation case with hubs 
located at nodes 2 and 4. The non-hubs 1 and 5 are 
allocated to hub 4 and non-hub 3 to hub 2. For instance, 
the flow from 1-3 takes path 1-4-2-3. A multiple 
allocation solution is presented in Fig. 1(c) with hubs 
located at nodes 2 and 4. The non-hub 3 is allocated to 
hubs 2 and 4, non-hub 1 is allocated to hubs 2 and 4, and 
non-hub 5 is allocated to hub 4. The flow from 1 to 3 takes 
the path having the minimum cost among the three paths 
1-4-2-3 or 1-2-3 or 1-4-3. 
 

 
 
Fig. 1: An example of p-HMP with solutions for single and 

multiple allocations 

Materials 
This study is implemented on GPU Nvidia Quadro 

with 2 GB and 2 SM and 384 cores running under CUDA 
11.0 environment. 

Methods 
Location of Initial Hubs 

The authors are inspired by the work of Peker et al. 
(2016), that have an interesting analysis of the optimal hub 
locations in the case of a single allocation. Using the optimal 
solutions for small CAB and AP instances, they observe that 
the spatial distribution of nodes (betweenness and centrality) 
and the size of node requirements are the most influential 
parameters for locating optimal hubs. They proposed a CBS 
algorithm that partitions the nodes into clusters each centered 
at a node that is likely to be an optimal hub. We adopted the 
same methodology to conceive another simple and efficient 
algorithm to partition the set of nodes into p disjoint clusters 
each likely to contain an optimal hub for the UMApHMP. 
We showed the effectiveness of our approach by tests on 
several known benchmarks (including large random 
instances). The result is that the percentage of the number of 
clusters each containing at least one optimal hub is about 
82%. Our clustering algorithm is based on the following two 
observations: (i) In an optimal solution of the UMApHMP, a 
non-hub node is necessarily allocated to the hub closest to it 
(ii) A node k with the greatest index I(k) = Ok +Dk is a 
potential optimal hub and the closest nodes to it are unlikely 
to be also optimal hubs, they are rather the nodes allocated to 
hub k. The following simple algorithm partitions the set of 
nodes into p disjoint clusters Ci each likely to contain a hub 
of an optimal or best solution. 
 
Clustering algorithm: 
L = the list of nodes sorted in decreasing order according 
to their indexes I();  
r = ⌈N/p⌉; i = 1;  
while (i < p) do 
 hi = is the first node of L not assigned to C1 È···ÈCi−1;  
 if (i < p) then Ci = the set of the r nodes closest to hi 
(including hi);  
 else Ci = the remaining nodes in L; 
 Remove Ci from L (L = L\Ci); i = i+1;  
end while 
 

Two remarks on this algorithm. First, as this algorithm 
is dedicated to the UMApHMP, the Ci may be non-disjoint 
and consequently may contain different numbers of nodes 
instead of r nodes. Secondly, the algorithm can be 
improved to take into account the isolated nodes as in 
Peker et al. (2016) where the generated clusters (circles) 
have the same radius and are centered at nodes selected 
among the 2p most important nodes. These centers are 

,
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located in hubs. Here, the clusters Ci, have a different 
radius and are centered at hi, and each contains the same 
number of nodes (except for Cp). Identifying the potential 
optimal hub in each Ci is a more delicate task. Indeed, the 
potential hub in Ci is not necessarily hi but may be a node 
close to hi (according to some criteria). We tested different 
criteria to select the optimal hub in each cluster. We 
observed that the node k ∈ Ci with 
small  is the best candidate 

optimal hub in Ci for several benchmarks but not for all. 
We confess that we failed to define an efficient criterion, 
common to all tested benchmarks. 

Figure 2 illustrates this on the AP20.5 instance with 
n = 20 and p = 5. The ordered list is L = (14, 15, 2, 19, 
6, 13, 20, 16, 3, 5, 9, 4, 12, 18, 10, 7, 8, 17, 1, 11). The 
five clusters are C1 = (14, 19, 15, 18), C2 = (2, 3, 1, 6), 
C3 = (13, 9, 10, 5), C4 = (20, 16, 11, 12), C5 = (4, 7, 8, 
17) and are represented in Fig. 2 by different symbols 
(C1 with stars, C2 with circles, etc.,). The optimal hubs 
are {14, 2, 13, 12, 6} and are represented by filled 
symbols in this figure. Only C5 does not contain an 
optimal hub. If we select hi as a hub in Ci then we obtain 
the set of initial hubs {14, 2, 13, 20, 4}. Three of them 
are actually optimal hubs but not the other two. 

The Genetic Algorithm 
Most of the GAs for the hub location problems proposed 

in the literature use binary or integer arrays to encode the 
solutions. The operators mostly used in genetic algorithms 
for the UMApHLP consist in randomly exchanging some 
hubs with non-hub nodes regardless of the encoding used. 
Indeed, once the set of hubs is defined, an optimal allocation 
is obtained by the shortest path algorithm and therefore, 
operators that change the node allocations are useless. 

Solution Representation and Encoding 
We adopt a simple encoding by a binary string s of length 

n where s(k) = 1 denotes that k is an established hub and s(k) 
= 0 denotes that k is a non-hub node. We represent all 
shortest cost path i-k-l-j of a solution encoded by s by a 
two-dimensional array Ts of size n × 2n; where a row 
represents the origin node, a column identifies the 
destination node, and the l-column and k-column 
represent the intermediate hubs. Sangsawang (2011) used 
this representation in a tabu search approach. 

For instance, the representation T of the solution of 
Fig.1(c) is given in Table 1. 

In this example, T(3, 5) = (2, 4) means that the 
shortest cost path from node 1 to node 3 is 3-2-4-5, and 
T(1, 5) = (4, 4) means that the shortest cost path from 
node 1 to node 5 is 1-4-5, etc. Note that if the l-column 
of T(i, j) = j or the k-column of T(j, i) = j for all i then 
j is hub. This allows the identification of hubs from T. 
The representation Ts is associated with the encoding s 
and defined by Ts(i, j) = argmink,1: s(k) = s(l) = lCi,jkl. 

 
 
Fig. 2: Clustering and optimal hubs for the AP20.5 instance 
 

The genetic operators operate on the N-string s and the 
representation Ts, which must be updated after the change 
of hubs of s, gives the fitness ∑i,jCijT(i,j) of s. 

Genetic Operators 
The following classical operators have been 

implemented in our GA. 
 
• Given an individual s and its representation Ts, 

generate new individual s′ from s by k exchange() 
consists in randomly choosing k hubs of s and 
exchanging them with k non-hubs then update Ts to 
get Ts′ 

• A population of R individuals is obtained from an 
initial individual s by applying R times k-
exchange() to s 

• The crossover with single random point crossover 
exchanges the two parts of parents p1 and p2 to 
generate two springs ch1 and ch2. If the number of 
ones in the code of chi, (i = 1, 2); is different from p 
then chi is corrected to feasible as follows. If the 
number of hubs of chi is > p then keep the p hubs with 
greatest I() else the missing hubs are randomly 
chosen from the non-hub nodes. This produces two 
feasible individuals c1 and c2. The representation 
Tci (i = 1, 2) is computed as follows. If the number of 
hubs common to ci and p1 is greater than the number 
of hubs common to ci and p2 then update Tp1 else 
update Tp2 to get Tci 

• The aim of the mutation is to enlarge the search space 
and to avoid the local optima. We use a mutation 
operator that changes the hubs for 2% of individuals 
randomly chosen and updates the representations T of 
the obtained individuals 

 
Exchanging hubs with non-hubs and consequently, 

updating the representation T is the most expensive 
operation, in computing time, of this GA. Therefore, we 
designed the updating process to be as efficient as possible 
without re-computing all pair shortest paths. 

( ), i
ok kd odo d C
d d wc g

Î
+å



Achraf Berrajaa et al. / Journal of Computer Science 2023, 19 (5): 629.640 
DOI: 10.3844/jcssp.2023.629.640 
 

633 

Table 1: Example of T representation  
 1  2  3  4  5 
j ------------------ ----------------- ------------------ ------------------- ---------------- 
i k l k l k l k l k l 
1 4 4 2 2 2 2 4 4 4 4 
2 2 2 2 2 2 2 2 4 2 4 
3 2 2 2 2 2 2 2 4 2 4 
4 4 4 2 2 4 2 4 2 4 4 
5 4 4 4 2 4 2 4 4 4 4 

 

 
 

Fig. 3: The proposed algorithm steps
 
Updating the Representation T after the Change of 
Hubs 

Let H be the set of hubs of a solution s represented by 
Ts. Then: 
 

 

 
Let, s′ the solution obtained by exchanging t hubs 

h1,···,ht of s with t non-hubs h1',…,h't of s and Ts′ its 
represented. Let H1 = {h1,…,ht}, H'1 = {h'1,…,h't} and 
H' = (H\H1) È H'1. Then H' becomes the set of bubs of 
s′ and Ts′(i, j) = argmink,l∈H′ Cijkl. We show how to 
compute Ts′(i, j) for all i, j. Assume that jÎH'1 then 
any path (of s′) from i to j passes through at most 
another hub. 

Hence: 
 

 

 
is done in O(p) steps. Likewise, if  then: 
 

 

is done in O(p) steps. Now, suppose that neither i nor 
j is a hub of s′ and let Ts(i, j) = (k0, l0). Then: 
 

 

 
If neither k0 nor l0 is in H1 then: 

 
 

 
Hence: 

 
 

 
and computing or 
requires O(tp) steps. 

Finally, if k0 ∈ H1 or l0 ∈ H1 then the computation of 
Ts′(i,  j) needs O(p2) steps. So, the computation of most of 
the Ts′(i, j) requires O(p) steps in the case where a single 
hub is exchanged (1-exchange() used in our 
implementation). Finally, it should be noted that some 
properties presented in Boland et al. (2004) may be used 
to improve these computations with little impact if all the 
Ts′(i, j) are computed in parallel. 

The overall structure of our system is shown in Fig. 3. 
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GPU Implementation of the GA 
Before presenting the GA, we briefly recall the main 

features of the GPU and CUDA. 

CUDA and GPU 
Graphics Processing Units (GPUs) are actually 

available in most personal computers. They are used to 
accelerate the execution of a variety of problems. 
CUDA is a scalable parallel programming model that 
runs on Nvidias GPU architecture making it possible to 
use the GPU as a massively parallel machine. Since 
GPU and CUDA are actually available in most personal 
computers, massively parallel computing has become a 
commodity technology. The smallest unit in the GPU 
that can execute a kernel is called a thread. All threads 
execute the same code (kernel) but on multiple data. 
Threads are grouped into blocks and blocks are 
grouped in the grid. CUDA enables defining grids and 
blocks according to the parameters of the problem. 

Threads can access data in parallel from different 
memory locations. GPU memory is divided into three 
levels: (i) Global memory, which can be accessed by 
all threads. (ii) Shared memory, accessible to all 

threads of the same block, and (iii) Local memory 
(register), accessible by a thread and only by it. Shared 
memory has low latency (2 cycles) and is limited in 
size. Global memory has high latency (400 cycles) and 
is large. Each block is divided into Warps of 32 threads 
that run in parallel on a single Stream Multiprocessor. 
Programmers must control block size, number of 
warps, and various memory accesses. Typical CUDA 
programs are C programs whose functions are 
classified according to whether they are designed to run 
on the CPU or on the GPU. 

Outline of the GA 
GAs is preferred to be executed on parallel 

architectures such as the GPU since they exploit the 
availability of many threads performing the same code on 
multiple data. In the classical thread per chromosome 
model, one thread performs fitness evaluation as well as 
genetic operations (Benaini et al., 2019). Here, we use 
several threads to perform these operations on a single 
chromosome, resulting in better utilization of GPU 
resources. Our GA uses R blocks, each of n × 2n threads, 
to process a population of 2 × R chromosomes as follows. 

 

 
 

Fig. 4: The parallel GA for the UMApHMP
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Each pair of individuals (parents) is processed by a 
single block. The representations T and T′ of the two 
parents, the W costs matrix, and the D distances matrix 
are stored in the shared memory of the block (to allow 
all threads of the block to access these data without 
going through the global memory). The sub-block 
composed of threads (i, j) (resp. threads (i, j + n)), 0 ≤ i, 
j < n, updates and evaluates the fitness of one new 
(resp. the other new) produced individual at each 
iteration. The fitness of an individual represented by T 
is simply computed as the ∑i,jCijT(i, j). 

Now, the authors explain the GPU implementation of 
the GA. Starting from an initial solution s constructed as 
described. In each blocki, 0 ≤ i < R, sets a first parent pi to 
s and generates a second parent p′i = 1-exchange(s). This 
constitutes a population of R × 2 chromosomes distributed 
per pair of two per block. Next, each blocki applies the 
crossover operator to pi, p'i producing two feasible 
children ci and c′i, then evaluates their fitness. The 
individual si with the best fitness among pi, pi', ci, ci' is re-
injected in the blocki as the first parent for the next 
iteration if any. After N1 iterations (the same for all 
blocks) the si, 0 ≤ i < R, are copied in the global memory. 
A mutation operator is eventually applied to them and the 
individual s with the best fitness among them is selected 
and re-injected in each block as an initial solution for the 
next iteration if any. The process terminates after a certain 
number of N2 of iterations. This process is illustrated in 
Fig. 4 where pi, fi, and Ti denote respectively the first 
parent, its fitness, and its representation. 

Finally, note that: 
 
• This implementation has two levels of 

parallelism. First, in the processing of each pair 
of parents (pi, pi') and secondly in the treatment of 
the population (pi, pi'), 0 ≤ i < R 

• The initial solution s is simply generated in parallel by 
computing the list L and sorting it on a block of n × n 
threads. Then determine the p clusters from which the 
initial hubs are located in O(n) parallel steps 

• Other powerful genetic operators proposed 
especially in Kratica et al. (2005); Naeem and 
Ombuki-Berman (2010) can be implemented in 
this GA without causing data exchange between 
the blocks and therefore without additional access 
to the global memory 

• If the shared memory is not enough to store the 
representations then either one stores them in the 
global memory or one re-computes all the shortest 
paths at each iteration or one uses the cache memory 
technique as in Kratica et al. (2005) all these 
possibilities induce an additional execution time 

Results and Discussion 
The objective of this section is to give new best 

results or results for instances that have not been solved 
before (to our knowledge). Moreover, through these 
tests, we highlight the relevance of our clustering 
algorithm et GPU implementation. So, we tested our 
implementation on the following benchmarks: 
 
• The Australian Post (AP) data set represents mail 

flows in Australia where the flows are not 
symmetric, there are flows between each node and 
itself, and χ = 3, γ = 2, and α = 0.75 

• The Urand dataset is random instances of up to 400 
nodes generated by Meyer et al. (2009), and instances 
of up to 1000 nodes proposed by Ilić et al. (2010) where 
the node coordinates and the flow matrix were randomly 
generated. We completed random instances of large 
sizes up to 6000 that we generated according to the same 
rules that those of URAND instances 

• The planet lab instances are node-to-node delay data 
for performing measurements of the legacy internet 
(Ilić et al. (2010). In these instances, χ = γ = α = 1, the 
distance matrix does not respect the triangle 
inequality, and the flows wij = 0 if i = j and 1 otherwise 

 
We used a modest Nvidia quadro to realize our tests. 

We report our results for the single and for multiple 
allocation cases for each tested instance. Thus, the costs 
of the solutions can be compared in the two cases. We 
compare our single allocation results to those of (Ilić et al., 
2010) and the multiple allocation results to those of 
Kratica et al., 2005). 

The following notations are used in all tables. n is the 
number of nodes in the instance, and p is the number of 
hubs. M stands for multiple allocations, and S stands for 
single allocation. Best sol is the best solution if known, 
otherwise, the dash is written. GPUsol is our solution with 
OPT when the solution is known optimal or best the best 
solution found in the literature. Clust opt is the number of 
clusters each containing at least one hub of the optimal or 
the best solution for the UMApHMP. The average of these 
numbers is given in bold at the end of this column. Some 
results for the single allocation case (USApHMP) 
reported here are presented in Benaini et al. (2019). For 
all benchmarks considered our implementation reaches 
the optimal or the best solutions in execution times ≤ 7s 
for n ≤ 419 and between 10 and 15s for n = 1000 and 
between 25s and 600s for n ∈ [1500,6000]. 

Table 2 provides the results of the AP instances with 300 
and 400 nodes. We do not know other UMApHMP solutions 
for these instances to compare them with our results. The 
average of the CLUST OPT column is 87%. This means that, 
on average, the percentage of clusters each containing at least 
one optimal hub is 87% (or the optimal hubs of each instance 
problem are distributed on 87% of clusters). This shows the 
efficiency of our clustering algorithm. 
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In Table 3, we reported new best costs for Planet Lab 
instances for the single and multiple allocation cases. The 
old best solutions for USApHMP reported in this table are 
due to Ilić et al. (2010). Given that there are no other known 
UMApHMP results for these instances, our results become 
henceforth the best. The average of the CLUST OPT 
column is 69%. This percentage is quite low compared to 
the others benchmarks. We think that this is due to the non-
respect of the triangle inequality in the planet lab instances. 
We complete this table with the results for other values of 
p in Table 4. Only the results for instances 06, 07, 08, and 
09 are reported (to avoid overloading the paper with tables). 
Note that there are no other known UMApHMP solutions 
for these instances with these values of p. Here, the 
percentage of clusters each containing at least one hub of 
the best solution is quite high. 

Ilić et al. (2010); Kratica (2013) reported the best-
known results for URAND instances for n = 100, 200, 

300, 400, and (χ = 3 and 1, α = 0.75, γ = 2 and 1). Our 
GPU implementation achieves the same results. So, in 
Table 5 we report only the CLUST to OPT column for 
these instances with (χ = 1; α = 0.75, γ = 1). We observe 
that the numbers in this column are not very sensitive to 
the variation of n. Here too, the average of the CLUST 
OPT column is quite high. In Table 6 we report new 
results (for single and multiple allocation cases) on the 
Urand instances with 1000 nodes with (χ = 1, α = 0.75, γ = 1) 
since Ilić et al. (2010); Kratica (2013) reported only the 
results for (χ = 3, α = 0.75, γ = 2). 

Table 7 reports our results with the parameters (χ = 3,           
α = 0.75, γ = 1) for the large Urand instances up to 6000 
nodes. To our knowledge, no results for instances of sizes 
larger than 1000 have been published. The efficiency of our 
clustering algorithm and GPU implementation is clearly 
established in solving these large random instances. 
Compared to this study, no article dealing with hub location 
problems has presented results for instances as large. 

 
Table 2: Results on large AP instances 
 n p Type alloc Best sol GPU sol Hub OPT 
 300 5 M - 170679.01 5 
  10 M - 131788.68 9 
  15 M - 112806.91 13 
  20 M - 101884.17 17 
 400 5 M - 172818.43 5 
  10 M - 133487.54 8 
  15 M - 114314.49 13 
  20 M - 103404.57 17 
      87% 
 
Table 3: Results on planet lab instances *-2005 
Inst. n p Type alloc Best sol GPU sol Hub OPT 
  1 127 12 M - 2566990 9 
   S 2927946 2904434 
  2 321 19 M - 16518458 13 
   S 18579238 18329984 
  3 324 18 M - 18238014 12 
   S 20569390 20284132 
  4 70 9 M - 682596 6 
   S 739954 730810 
  5 374 20 M - 20653586 14 
   S 25696352 25583240 
  6 365 20 M - 19365696 14 
   S 22214156 22151862 
  7 380 20 M - 27417830 15 
   S 30984986 30782956 
  8 402 21 M - 28540846 14 
   S 30878576 30636170 
  9 419 21 M - 26593496 13 
   S 32959078 32649752 
10 414 21 M - 26355946 14 
   S 32836162 28211380 
11 407 21 M - 24664598 15 
   S 27787880 27644374 
12 414 21 M - 22317134 14 
   S 28462348 28213748 
      69% 
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Table 4: Results on Planet Lab instances *-2005 for other values of p 
Inst. n p Type alloc GPU sol Hub OPT Inst. n p Type alloc GPU sol Hub OPT  
6  365  2  M  25569616 2  7  380  2 M 37733504 2 
   S 26192564     S 38605660  
  3 M 23799100 3   3 M 34195694 3 
        S  25416392     S 26882642 
  4 M 22574576  3    4 M 32060818 4 
   S 24528130     S 33874708 
  5 M 21787425 4   5 M 30676098 4 
   S 23977334     S 33416162 
  10 M 20630906 8   10 M 28554634 7 
   S 22708070     S 31556270 
  15 M 19610164 12   15 M 27813764 11 
   S 22398924     S 30958920 
  20 M 19365696 17   20 M 27417830 15 
   S 22190348     S 33272248 
8 402 2 M 36642406 2 9 419 2 M 40178280 2 
   S 37259814     S 40995336 
  3 M 33907736 3   3 M 36736314 3 
   S 35895074     S 39179832  
  4 M 32545826 3   4 M 35088016 4 
   S 34535748     S 38151236 
  5 M 31788464 4   5 M 34019204 5 
   S 33569834     S 37019968 
  10 M 29699488 8   10 M 31467516 7 
   S 32108626     S 34335578 
  15 M 28980246 11   15 M 27208466 13 
   S 31008768     S 33178544 
  20 M 28614800 16   20 M 26663202 17 
   S 31558084     S 32601346 
           81.7% 
 
Table 5: Results on large Urand instances (χ = 1, α = 0.75, γ = 1) 
n p Clust OPT n p Clust OPT n p Clust OPT n p Clust OPT 
100 2 2 200 2 2 300 2 2 400 2 2 
 3 3  3 2  3 3  3 3 
 4 4  4 3  4 4  5 4 
 5 5  5 5  5 4  5 4 
 10 9  10 9  10 9  10 8 
 15 13  15 12  15 14  15 12 
 20 17  20 16  20 17  20 16 
           85.6% 
 
Table 6: Results on large URAND instances  
n  p  Type alloc  GPU sol  Clust   
1000 2 M 3380404.48 2 
  S 3644705.83  
 3 M 3086100.81 3 
  S 3397386.83  
 4 M 2907515.00 4 
  S 3206255.10  
 5 M 2825585.52 4 
  S 3119060.41  
 10 M 2572595.51 9 
  S 2823592.72  
 15 M 2460725.82 14 
  S 2679974.67  
 20 M 2393602.47 16 
  S 2577234.14 
    88.1% 
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Table 7: Results on large urand instances generated by us 
  Type GPU Clust   Type GPU Clust  
n p alloc sol OPT n p alloc sol OPT 
1500 20 M 448739772 17 4000 20 M 3163446506 17 
  S 454787506    S 3234999192 
 30 M 406017592 26  30 M 2935022500 23 
  S 407155164    S 2983891783 
 40 M 377761261 36  40 M 2727794413 33 
  S 380114045    S 2769550514 
 50 M 358245622 44  50 M 2604040619 41 
  S 363586538    S 2644606684 
2000 20 M 800331930 17 5000 20 M 5001798606 16 
  S 805749722    S 5085803132 
 30 M 724383243 27  30 M 4610179267 25 
  S 733375448    S 4656787498 
 40 M 679709297 37  40 M 4277839570 32 
  S 686515363    S 4353561395 
 50 M 647033467 44  50 M 4060895916 39 
  S 655938000    S 4143849388 
3000 20 M 1777794117 17 6000 20 M 7217166936 15 
  S 1804950952    S 7398401957 
 30 M 1616819166 24  30 M 6586643628 24 
  S 1642145354    S 6675723961 
 40 M 1522572071 33  40 M 6197499299 34 
  S 1538548764    S 6293053841 
 50 M 1445702469 42  50 M 5902887457 43 
  S 1468780124    S 5999780197 
         84% 
 
Conclusion 

The authors proposed a GPU-based approach for 
solving the multiple allocations p-hub median problems 
with a parallel genetic algorithm. The initial solutions of the 
GA are generated using a simple and efficient clustering 
algorithm that partitions the set of nodes in p clusters, each 
likely to contain an optimal hub. This clustering algorithm 
seems very efficient at least for the tested benchmarks. 
However, we failed to define an efficient criterion, 
common to all these benchmarks, to identify the potential 
hub in each cluster. The initial solutions thus generated are 
improved by the genetic algorithm. A binary encoding and 
two-dimensional array that specifies all pair shortest paths 
between origin-destination nodes are used by the GA. The 
most expensive operation of the GA is the updating of the 
shortest cost paths (representation T) after each change of 
the hubs. This was efficiently done by a block of threads 
and without re-computing all pair shortest paths. 

Exploiting the enormous computational power of the 
GPU, our CUDA program obtains solutions that match 
with optimal ones known and outperforms the previously 
published results for the UMApHMP. Moreover, it solved 
instances of problems so far unsolved (URAND instances 
of size up to 6000 nodes). Obviously, this program 
executed on a more powerful GPU such as the Nvidia-
Kepler will give better results in time and quality and 
especially, it will allow to solve large hard instances 

which require the exhaustion of the entire search space 
AlBdaiwi and AboElFotoh (2017). Future studies might 
consider studying other versions of the hub location problem 
including robust and dynamic problems. Improving the 
clustering process and defining an efficient criterion for 
selecting the optimal hub in each cluster is another future work. 
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