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Abstract: Stocks price analysis has been a critical area of research as the 

stock market is a very fluctuating market. Stocks price is affected by 

demand and supply dynamics making it difficult to forecast the price of 

a stock at a particular instant. The entire idea of predicting stocks price 

is to gain significant profits but predicting how the stock market will 

perform is a difficult task to carry out. In an attempt to do this, we 

construct a dynamical system for the stock’s price and simulate it using 

the Kalman filter. The dynamic tracking features of the filter here enable 

us to track the price of the Boeing stock. The stock price variation appears 

to be a maneuvering system from which we derive the state space model. 

Further, the robustness of the model is investigated by examining 

observability and controllability in the state space and proving that the 

system can be stabilized through state feedback. Finally, the forecasting 

result of 252 stock closing prices from January 01, 2021, to January 01, 

2022, is provided by Kalman predictor and Python simulation. The 

evaluation of the prediction is done using absolute and relative error which 

gives relatively small values and thus makes the filter accurate for prediction.  

 

Keywords: Stocks Price, Maneuvering System, State Space Model, 

Controllability, Observability, Stability, Kalman Filter, Predictor, Python 

Simulation, Absolute and Relative Error 
 

Introduction 

A number of papers on the use of the Kalman filter have 

been published in recent years contributing many 

variations and solutions to specific problems especially 

related to robotic systems. This filter has many 

applications for example in the military, biomedical and 

automotive industry. Therefore, it is not limited only to the 

field of engineering but also works in computational 

finance (Urrea and Agramonte, 2021). 

Recently, financial time series has become an 

important topic in quantitative finance. Accurate analysis 

and forecasting of a range of financial changes can 

provide operators and investors with reliable 

management and decision-making (Sezer et al., 2020). 

It consists of a collection of values known as a time 

series. Research and analysis of these categories will 

help investors make appropriate investment decisions 

and a suitable method should be found to predict and 

control the stock price. Filtering is an iterative process 

that helps infer a model’s parameter when the latter 

relies upon a large quantity of observable and un-

observable data (Javaheri et al., 2003). The problem of 

estimating these unobserved latent variables from 

observed market data often arises in mathematical 

finance (Date and Ponomareva, 2011). In the year 

1960, American researcher Rudolf Kalman and Ruslan 

Bucy introduced the concept of state variables and state 

space of dynamical systems Meinhold and 

Singpurwalla (1983). At that time they proposed the 

state space method and developed the concept of the 

Kalman filter, and for decades its generalizations have 

been a key tool in econometrics and engineering for 

estimating unobserved variables from observed 

variables and now their use has become commonplace 

in finance. The Kalman filter is an estimator of the 

conditional moments of a Gaussian linear system and 

an optimal recursive algorithm that has real-time 

implementation in a computer (Kleeman, 1996). It is 

also used in the calibration of time series model 

predictor variables and data smoothing applications. It 

is suitable for dealing with multivariable systems time-

varying systems and non-stationary stochastic processes. 

Antoulas (2013). The stock market fluctuates greatly and 

changes with time and the Kalman filter has good real-

time dynamic tracking characteristics. The stock price 
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analysis here is done using the Kalman filtering theory 

(Hagiwara, 2021). 
Yan and Guosheng (2015) established a state space 

model for Changbaishan (603099) stocks variation 

using a maneuvering system. They did the forecasting 

of 27 stocks using kalman predictor and MATLAB. 

They found out that the relative error of the stock 

Changbaishan’s (603099) closing price is maintained 

under 4%. Its average relative error is 2.42%, but its 

maximum relative error attains 9.84%. This 

phenomenon is mainly due to abnormal fluctuations in 

the stock price at its bottom and it declines to 6 .68%, 

therefore the abnormal changes of the stock price is 

increased by the prediction method (Yan and 

Guosheng, 2015). As a limit, we do not have 

information on observability of different model states. 

To describe the application of a linear Kalman filter, 

(Rhudy et al., 2017) proposed a problem in which a 

simple object is in free fall and has no resistive force 

acting on it. The purpose of the filter here was to 

determine the objects position based on the uncertain 

information about its initial position and the position 

measurements provided by the laser range finder. 

Using, particle kinematics, they expected the 

acceleration of the object equals the acceleration due to 

gravity. Here the position of an object is modeled as a 

maneuvering system. 

Relying on these results, we establish a state space 

model, study the observability, controllability and 

stability of our model. 

Materials and Methods 

Preliminaries 

In this segment, we recall basic notions, 

fundamental definitions, and important theorems. In 

general, filters are typically used to estimate the state 

of a dynamic system from partial observations usually 

associated with some noise. 

Typically, we dispose of a sequence Y0, Y1,…, Yn of 

observations. Each observation is linked to the unknown 

state Xn through a mapping of the form: 
 

 n n n nY h X    (1) 

 

where, γn ∈ is some noise. State space model can be 

represented in a similar way. 

State Space Model (SSM) 

Definition 1.1 

SSM refers to a class of probabilistic graphical 

models that describe probabilistic relationships 

between latent state variables and observed 

measurements. The state or the measurement can be 

either continuous or discrete. 

This is a time series model where the time series, Yt is 

interpreted as a result of a noisy observation of a stochastic 

process Xt. The SSM belongs to the realm of Bayesian 

inference and is successfully applied in many fields. The 

state process Xt is assumed to be a Markov process; Xt 

depends solely on Xt-1 and Yt depends only on Xt: 
 

   1~ | ~ |t t t t t tX p X X Y p Y X
 

 
A well-studied SSM is the Kalman Filter, for which 

the above processes are linear and Gaussian. 

Proposition 1.2 

The sequence (Zt = (Xt,Yt)) is a gaussian random 

process in m+d. In particular, at the instant t, the random 

vector Zt is Gaussian with mean and convariance matrices: 
 

ˆ

ˆ

X XY
t t t

YX Y

t tt

X Q Q
and

Q QY

   
    

  

 (2) 

 

Proof 

See proposition 3.1 in the book by Gland (2016). 

Kalman Filter 

The Kalman filter belongs to a family of filters called 

Bayesian filters. The Kalman filter uses an estimate of the 

previous state and current measurements or observations 

to compute an estimate of the current state. This means 

that it doesn’t need historical values like a batch estimator 

and hence it is a recursive estimator. 

Kalman filters are based on discrete linear dynamical 

systems in the time domain. They are designed on Markov 

chains and constructed on linear operators that are 

perturbed by some Gaussian noise. The state of the system 

is an n × 1 real vector, where n is the dimension of the 

system (Chopparapu et al., 2017). 

Gu (2012), the authors show that there is a duality 

between the Kalman filter equation and the hidden 

Markov model equation. The hidden Markov model can 

represent an arbitrary distribution for the next value of 

the state variables, in contrast to the Gaussian noise 

model that is used for the Kalman filter. In order to use 

the Kalman filter to estimate the internal state of a 

process given only a sequence of noisy observations, one 

must model the process in accordance with the 

framework of the Kalman filter. In the Kalman filter, the 

following linear model with nth-order multiple inputs is 

assumed for the evolution of the true state at time t +1: 

 

1t t t t t tx A x B u      (3) 
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where: 
 

At ∈ n×n = The state transition matrix 

Bt ∈ n×m = The control input matrix applied to the 

control vector ut 

εt = The noise process assumed to follow a 

multivariate normal distribution with zero 

mean and covariance matrix Qt. That is: 

 

 ~ 0,t tQ
 

 
Here xt is an n × 1 real vector. An observation 

(measurement) yt of state xt is made at time t and we 

consider the following measurement equation: 
 

t t t ty C x    (4) 

 

where, Ct ∈ p×n is the observation matrix and ηt is the 

observation noise assumed to be Gaussian with zero mean 

and covariance Rt, that is: 
 

 ~ 0,t tR
 

 

The initial state x0 and the state noise vectors ε1,…, 

εt and measurement noise vectors η1,…, ηt are assumed 

independent. 

The state of the filter is given by the following variables: 
 

 
1|

ˆ
t tx 

the estimate of the state at time t +1 considering 

some observations up to and including time t 

 
1| 1

ˆ
t tx  

the estimate of the state at time t+1 having 

observations up to and including time t +1 

 
1|t tP

the error covariance matrix (a measure of the 

estimated accuracy of the state estimate) at time t +1 

given some observations up to and including time t 

 
1| 1t tP 

the error covariance matrix at time t given some 

observations up to and including time t 
 

Filtering is done in two stages: Time update or 

prediction and measurement update or filtering. 

Time Update 

Predicted state estimate: 
1| |

ˆˆ
t t t t t t tx A X B u    predicted 

estimate covariance: 
 

1| |

T

t t t t t t tP A P A Q    (5) 

 

Measurement Update 

 

 Measurement residual: 
1 1|

ˆˆ
t t t t tz y C x    

 Residual covariance: St+1 = CtPt+1|tCt
T +Rt 

 Kalman Gain: 1

1 1| 1

T

t t t t tK P C S 

    

 Updated state estimate: 
1| 1 1| 1 1

ˆ ˆ ˆ
t t t t t tx x K z       

 Updated estimate covariance: 
 

 1| 1 1 1|t t t t t tP I K C P      (6) 

 

The combination of Eqs. 3-4 give rise to our state 

space model: 

 

1t t t t t t

t t t t

x A x B u

y C x






   


 

 (7) 

 

Theorem 1.3 

Discrete-time state-space is the solution to the linear 

time-invariant discrete-time system: 

 

1 0 0,t t t t t

t t t

x A x B u x X

y C x


   




 (8) 

 

is: 

 
1

1

0

0

t
t t i

t i

i

x A X A Bu


 



 
 

 

Proof 

From: 

 

1t t t t tx A x B u  
 

 

and assuming A and B are t-independent we have: 

 

1 1

1 2 2 1

2

2 2 1

3 2

3 3 2 1

1
1

0

0

0

t t t

t t

t t t

t t t t

t
t t i

t i

i

x Ax Bu

A Ax Bu Bu

A x ABu Bu

A x A Bu ABu Bu

x A x A Bu t

 

  

  

   


 



 

    

  

   

  

 

 

Theorem 1.4 

Cayley Hamilton let A be an n × n matrix with entries 

in a ring (commutative) with identity and let: 

 

    1

1| | 1
n n n

np A I a a              (9) 

 

be the characteristics polynomial of A, then A satisfies the 

characteristics polynomial in Eq. 9, i.e.: 
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    1

11 0
n n n

np A A a A a I         
 

Proof 

We have: 

 

       p det A I and det A I I p I          

 

         A I adj A I det A I I p I              

 

and so, the adjoint matrix is of the form: 

 

    ijadj A I p  
 

 

where, pij are polynomials in λ of degree at most n-1 for 1 

≤ i, j ≤ n. 

Therefore, the adjoint matrix may be written as: 

 

  1

0 1 1

n

nadj A I B B B   

    
 

 

for some n × n matrices B0 + B1,…, Bn-1 and from (∗) we 

have: 

 

   

 

1

0 1 1

1

1

**

1 .

n

n

n n n

n

A I B B B

a a I

  

 







     

        
 

Now, equating coefficients of like powers of λ in (∗∗) 

we have: 

 

   

   

0 0 1 1

2 1 1 1

1 1

1 1

n n

n n

n n

n n n

AB a I B AB a I

B AB a I B I



  

     

      

 

 
Multiplying these equations on the left by I, A,…, and 

An, respectively we get: 
 

   

   

2

0 0 1 1

1 1

2 1 1 1

1 1

1 1

n n

n n

n nn n n n n

n n n

AB a I AB A B a A

A B A B a IA A B A



 

  

     

      

 

 
and adding, the sum on the left telescopes to the zero 

matrices 0, while the sum on the right is just p(A), so that: 
 

    1

11 0
n n n

np A A a A a I         

 

Definition 1.5 

Complete state controllability: The state Eq. 8 (or the 

pair (A, B)) is said to completely state controllable or 

simply state controllable if, for any initial state x0 and final 

state xN, there exists an input sequence ut, t = 0, 1, 2,…, N-1, 

which transfers x0 to xN for some finite N. 

Althougth the controllability theory was proposed in 

Kalman (1960), a test called Kalman’s test is used to 

determine whether or not a system is controllable. 

Theorem 1.6. (Kalman’s Condition for Controllability) 

Suppose we have a linear time-invariant system with 

nth-order multiple inputs such that the state equation is as 

in Eq. 8. This system is stable if and only if the rank of the 

controllability matrix (also called the composite matrix), 

Qc is equal to n where, Qc is given by: 
 

2 1: : : n

cQ B AB A A B     (10) 

 
So, in Kalman’s test, the determinant of Qc is 

calculated. The value of the determinant of Qc shows 

whether the system is controllable or not. 

If the value is non-zero it indicates a completely 

controllable system. 

Proof. (⇒) 

Let p(z) = zn + pn-1Zn−1 + ··· + p0. By the Cayley 

Hamilton theorem, this implies that the matrix An is a 

linear combination of the matrices I, A,…, An−1 and so An 

+ k(k ≥ 0) is also a linear combination and hence: 
 

   k n for all k n   R R
 

 

Since Θ is controllable is reachable and so R n(Θ) = 

 
1

k

n

R  R = Im (B, AB, …, An-1B) where Im (B, AB, 

…, An-1B) is the image of the partitioned matrix Im (B, AB, 

…, An-1B) and this shows Θ is controllable. 

The converse part can be seen in the book by 

Heij et al. (2007).  

Definition 1.7 

A realization, Θ = (A, B, C) is called reachable if 

originating from a point x0, all other states can be attained 

with an appropriate input sequence ut in a definite time 

interval. So, a controllable realization is reachable. 

Let’s consider the set R t(Θ) of states that can be 

reached at time t with an appropriate input sequence 

u0,…,ut-1 i.e., R t(Θ) = {x ∈ R n| there exist u such that x = 

x(t; 0, ui.)}. 

Definition 1.8 

Observability the state model in Eq. 8 (or the pair (A, 

C)) is said to be observable if any initial state x0 can be 

uniquely determined from the knowledge of yt and 

input sequence ut, for t = 0,1,2,…, N -1, where N is 

some finite time. 
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Theorem 1.9. (Kalman’s Rank Condition for 

Observability) 

The dynamics equation given by Eq. 8 is completely 

observable if and only if the rank of the composite 

matrix, Qo is n. 

where:  
 

 
1

: : :
n

T T T T T

oQ C A C A C
 

  
 (11) 

 

In Kalman’s test, we need to calculate the determinant 

of the matrix. A non-zero determinant indicates we have 

an observable system. 

Proof 

See theorem 3.3 in the book by Gu (2012).  

Application 

Here, we model the variation of Boeing stock prices 

for a sampling period of one year using a maneuvering 

system. Based on the highly fluctuating nature of the stock 

market and the dynamic tracking features of the Kalman filter, 

the stock price is viewed as a maneuvering system, that is: 
 

 
2

1

1

1

2
t t t t

t t t t

x x x t x t

x x x x t





    

   

 (12) 

 
Let the state vector, xt+1|t contain the stock price and its 

price change, it can be modeled as: 
 

 
2

1

1

1

2
t t tt

t

t
t t

x x t x tx
X

x
x x t





 
          

     

 (13) 

 
These linear equations are transformed to: 

 

 
2

1

1

1
1

2
0 1

t t

t

t t

t tx x
x

x x
t





 
                     

 (14) 

 

 
21

1
2

0 1

t

t t

t

t tx
X x

x
t

 
                

 (15) 

 

Comparing Eqs. 15-8, we have: 

 

 
21

1
2

0 1

t t
A and B

t

 
            

 

 
Take ∆t = 1 measurements of the system can be 

performed according to the model in 8: 

1|t t t t tY C x  
 

 

This can be written as: 

 

  1|1 0t t t tY x    (16) 

 

and thus C = [1 0]. 

Process Noise 

The process noise covariance matrix Q or error in the 

state process can be written as (according to prop 1.2): 

 
2

2

x x x

x x x

Q
  

  

 
  
 

 (17) 

 

where, σx and σẋ are the standard deviations of the stock 

price and its variation, respectively. 

We define the standard deviation of the stock price as 

the standard deviation of acceleration 
x multiplied by 2

2

t . 

Therefore, by multiplying the standard deviation of the 

acceleration by 2

2

t we’ll have the standard deviation of 

the stock price. 

Similarly, if we multiply the standard deviation of the 

acceleration by delta ∆t, we’ll get the standard deviation 

of the price change. So, we can write the process 

covariance noise Q as follows: 

 
4 3

3

4 2 2

2

2

t t

x
t

Q
t


 



 
  

  

 (18) 

 

with 2 1x  . 

Measurement Noise 

The covariance of the measurement noise R is a scalar 

and is equal to the variance of the measurement noise. It 

can be written as: 

 
2

yR 
 

 

with σy
2 = 1. 

Controllability 

Now from: 

 

 
2

1 1

1
1

2
0 1

t t t

t t
x x x

t
 

 
            

 

 

where, n = 2. So 
1

2
1 1

0 1 1
A and B

  
    
   
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1 1

2 2
1 1

0 1 1 1
AB

    
     
       

 
The controllability matrix is given by: 

 

 
31

2 2

1 1
cQ B AB

 
   

   
 

Further: 
 

31

2 2| | 1 0
1 1

cQ
 

    
   

 
Also, the rank of Qc = 2 = n thus the SSM is controllable. 

Observability 

Verifying now the Observability, we extract from Eq. 16, 

the transformation matrix: 
 

 
1 1 0

1 0
1 10

T TC C and A
   

      
    

 
So: 

 

1 0 1 1

1 1 0 1

T TA C
    

     
       

 
The observability matrix is given by: 

 

1 1

0 1

T T T

oQ C A C
 

     
   

 
Further: 

 

1 1
| | 1 0

0 1
oQ

 
   
 

 

 

Also, the rank is equal to 2 and the state space model 

is completely observable. 

Stability Analysis 

Definition 3.1. (State Stability) 

Consider the system given by 8, we say this system is 

stable in the sense of state stability if, for every time t, we 

have that ||xt|| ≤ M for some constant M ∈ . 

It is worth noting that M may not depend on the time t 

and that this definition still holds if we add some 

disturbance to the system. 

Definition 3.2 (Asymptotic Stability) 

The system in 8 is asymptotically stable if lim 0t
t

x


  for 

any solution with ||x0|| ≤ M. 

Definition 3.3 

The spectrum of A is the set of eigenvalues of A: 
 

   1 2, , , nA     (19) 

 
Let’s recall that any eigenvalue can be written as λ = ζ + 

jω, if ω = 0 the eigenvalue is real and we denote it by (λ) 

Proposition 3.4 

The system in Eq. 8 is stable if and only if A has all its 

eigenvalues in the open unit disc. i.e., if λ is an eigenvalue 

of A, A is stable if and only if: 
 

   , 0 | | 1ifor any A wehave or for all i     R  
 

Feedback Stabilization 

The concept of controllability ensures that we can fully 

control the state of a system using a control signal ut, thereby 

allowing the system to go from any initial state to a final state 

in a given time interval. It is commonly called "point-to-point 

control". Even though point-to-point control is how 

controllability is defined, we are interested in another control 

problem in some real-world situations: Stabilization. 

Without control input (ut = 0) in Eq. 8, the eigenvalue of 

A, λ = 1 with a multiplicity of 2 which is internally unstable. 

Now for u  0, given the matrices A ∈ n×n, B ∈ n×m, 

does there exist a matrix K ∈ k×n such that the system: 

 

t tAx Bu
 

 
is stable? 

Stabilization (regulation) is the task of designing the 

control input ut such that the controlled system becomes 

stable. The most common approach is through a state 

feedback mechanism. 

In this configuration the input is a fixed (matrix) gain 

multiplied by a state i.e., we feedback the state xt: 
 

t tu Kx   
 

By direct substitution, we readily see that: 

 

 1t t t t t tx Ax Bu Ax BKx A BK x      
 

 

So the stability of the close loop system is a function 

of A - BK. 

Now and taking K = (k1 k2)  1  2: 

 

 
1 2

2 2
1 2

1 2

1 1 0.5 1 1

0 1 1 1

k k

A BK k k
k k

     
                 
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 
1 2

2 2

1 2

1 1

1

k k
s

sI A BK
k s k

   
     

     
 

Now, det(sI −(A−BK)) = 0 and so: 
 

   2

1 2 2 1: 0.5 2 1 0.5 0p s s s k k k k         (20) 

 

We want the closed-loop system to be 

asymptotically stable and therefore the roots of this 

polynomial have to be in the left half plane. Assume we 

want closed loop Eigenvalue: s
1
 = −1, s

2
 = −2 which 

gives the desired characteristic polynomial: 

 

   21 2 3 2 0s s s s     
 

 

Now comparing this with Eq. 20 we have: 

 

1 2

2 1

0.5 3

1 0.5 2

k k

k k

  

  

 

 

Solving this system of linear equation gives k1 = 6 and 

k2 = 2, thus: 

 

 6 2K 
 

 

The above results show that our system can be 

stabilized through state feedback. 

Results and Discussion 

Numerical Simulation of Kalman Filter 

We use 252 stock closing price historical data of 

Boeing Stock from January 1st, 2021 to January 1st, 2022 

as the experimental data. 

Let: 

 

0 0

210.71 1 0

0 10.74
x and P

   
    

    

 

and the Kalman predictor is implemented using Python 

simulation. The plots below show a simulation of the 

filtered value against the observed and actual data. 

Figure 1 presents the general state feedback 

mechanism Fig. 2 shows a graph of filtered estimates, 

true value of stocks price and the observation at a 

particular instant. It can be seen that the estimates are 

close to the true values and hence captures well the 

exact value. 

Figure 3 here shows the variation of the filtered 

estimates in a stock’s price which provides information 

about the volatility of the stock’s price. This reveals 

that the Kalman filter can efficiently capture the 

volatility of the stock’s price. 

Evaluation 

Evaluation metrics explain the performance of a 

model. An important aspect of evaluation metrics is their 

capability to discriminate among model results. For our 

evaluation here we shall consider two metric, absolute and 

relative errors which are given by the formula: 
 

 Absolute error: AE = |xact - xfil| 

 Relative error: 1
act fil

act

RE x x
x

    

 
From Table 1, we observe that the relative error of 

the Boeing stock closing price is kept below 5%, the 

average relative error is 2.43% but the maximum 

relative error is 12.8%. This result can be improved by 

adding the dimensionality of the state space model. It 

can be done by adding the number of tracking features. 

Kalman filters are powerful tools for analyzing and 

modeling time series data that can handle non-

stationary models with exogenous control inputs as 

well as compute difficult probability functions. 

Informally, we can evaluate the goodness of our model 

by evaluation the gaussianity of the residue (zt). One 

important assumption made in the development of Eq. 6 

is that the residual is gaussian and Fig. 4 shows that our 

modeling obeys this assumption. The histogram’s 

empirical data distribution should mirror the normal 

distribution and have a bell-shaped form. 

A Quantile-Quantile plot (QQ plot) in Fig. 5 is used 

to assess the normality of the residues in our 

application. It represents the probability plot of the 

standardized data against the standard normal 

distribution. Here the correlation between our data and 

normal quantiles measures how well the data are 

modeled by a normal distribution. For normal data the 

points plotted in the QQ plot should fall approximately 

on a straight line, indicating high positive correlation. 

 

 
 
Fig. 1: State feedback mechanism
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Table 1: Absolute and relative errors for some estimated values 

Time Actual closing price Filtered value Abs error Relative error 

  1 210.700 Initial value   

  2 211.400 Initial value   

  3 207.414 215.64 8.220 0.0390 

  4 205.839 215.20 9.370 0.0450 

  5 203.360 206.69 3.300 0.0164 

  6 202.060 202.16 0.090 0.0004 

  7 194.030 205.17 11.13 0.0570 

  8 197.220 196.46 0.770 0.0039 

  9 194.190 196.94 2.740 0.0141 

10 195.840 198.93 3.090 0.0157 

11 200.940 197.24 3.700 0.0184 

12 207.380 200.92 6.470 0.0310 

13 210.630 205.64 4.990 0.0237 

14 207.920 215.84 7.910 0.0380 

15 211.940 219.38 7.430 0.0350 

16 215.120 214.32 0.790 0.0036 

17 211.920 212.98 1.070 0.0050 

18 210.660 218.77 8.110 0.0385 

19 210.980 215.39 4.410 0.0209 

20 217.180 211.62 5.550 0.0256 

 

 
 

Fig. 2: Filtered estimates for true value and observation 

 

 
 

Fig. 3: Filtered variation 
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Fig. 4: Kernel density for residuals 

 

 
 

Fig. 5: Q-Q plot 

 

Conclusion 

In this research work, we study the variation of the 

price process assumed to be a maneuvering system as a 

result of the continuous fluctuation in the market. We 

model the price change with a dynamical system and 

derive the state space model for the stock price from 

the system dynamic. We realize through Kalman's 

conditions that our model is both controllable and 

observable. In an attempt to verify if the system will 

return back to an equilibrium point when disturbed, we 

verify the stability of the SSM and realize that it is not 

stable (asymptotically), but can be stabilized through 

state feedback. We then simulate the SSM via the 

Kalman filter in Python. The simulation result of 252 

historical data indicates that the filtering method is 

effective through the various error metrics Fig. 2. For 

better accuracy achievement, the features of the state 

transition matrix can be added thereby adding the 

dimension of the SSM. As a proposition for further 

research, since the noise here is embedded in the 

acceleration, we can add some additional Gaussian 

noise to the SSM in equation 12. Also, we could 

infinitely increase the number of assets and develop a 

big data model for stock price prediction. 
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