

 © 2023 Samsul Arifin, Wihikanwijna, Tuga Mauritsus, Suwarno, Felix Indra Kurniadi, Muhammad Amien Ibrahim, Indra

Bayu Muktyas and Nerru Pranuta Murnaka. This open-access article is distributed under a Creative Commons Attribution

(CC-BY) 4.0 license.

Journal of Computer Science

Original Research Paper

New Algorithm for Digital Video Encryption

1Samsul Arifin, 2Wihikanwijna, 3Tuga Mauritsus, 4Suwarno, 5Felix Indra Kurniadi,
5Muhammad Amien Ibrahim, 6Indra Bayu Muktyas and 6Nerru Pranuta Murnaka

 1Department of Statistics, School of Computer Science, Bina Nusantara University, Jakarta, 11480, Indonesia
2GONG Yogyakarta, Jalan Kp. Sitisewu, Yogyakarta, 55272, Indonesia
3Master of Information Systems Management, Bina Nusantara University, Jakarta, 11480, Indonesia
4Department of Primary Teacher Education, Faculty of Humanities, Bina Nusantara University, Jakarta, Indonesia
5Department of Computer Science, School of Computer Science, Bina Nusantara University, Jakarta, 11480, Indonesia
6Department of Mathematics Education, STKIP Surya, Tangerang, 15115, Indonesia

Article history

Received: 07-03-2023
Revised: 18-04-2023

Accepted: 29-05-2023

Corresponding Author:

Samsul Arifin

Department of Statistics, School

of Computer Science, Bina

Nusantara University, Jakarta,

11480, Indonesia

Email: samsul.arifin@binus.edu

Abstract: This research aims to propose a safe digital video data alternative

employing symmetric cryptography and an encryption technique using

Partition. The Hill Cipher method requires a square key matrix with an inverse

modulo the unimodular matrix is one of the unique matrices with an inverse.

The encryption mechanism is modulo matrix multiplication, with shift cipher

encryption employed to encrypt defective partitions. The results reveal that the

videos are well encrypted and difficult for third parties to read the partition

encryption technology assures that the encrypted and decrypted file sizes are

the same. The background of this topic is that digital data security is

increasingly important due to the increasing use of digital technology. This

research aims to develop a more secure and effective video encryption

algorithm by combining several cryptographic methods such as Hill cipher,

partition, the shift cipher, unimodular matrix, and binary file concept logistic

function. The method used in this study is experimental by using the Python

programming language to implement the encryption algorithm. The trials were

carried out by comparing the performance of the algorithms developed using

different key sizes and variations of the combination methods used. The results

show that the developed algorithm can provide a high level of security in the

video encryption process with good effectiveness. The use of a combination of

different cryptographic methods also has a positive impact on the resulting level

of security. Therefore, the developed encryption algorithm can be a good

alternative for use in securing sensitive video data.

Keywords: Python, Custom Logistic Map, Hill Cipher, Unimodular Matrix,

Partition

Introduction

 Digital videos are quite significant in this decade.

While sharing digital videos from one person to another,

the process of security is typically conducted. In low-

security broadcasts, we'll make an effort to draw attention

to the level of security. This necessitates greater security

for sending and storing digital videos. Digital video

encryption is one approach. The Hill Cipher is a well-

known encryption algorithm. The Hill Cipher has lately

undergone a number of changes. They are the Hill Cipher

in combination with a genetic algorithm, the Hill Cipher

in combination with image block randomization, and

pixel value transformation the Hill Cipher in combination

with a chaotic function. In this strategy, the sole finite key

matrix employed is either 33-44. Finding the inverse

key or invertible key matrix is said to be difficult or time-

consuming if the key matrix size exceeds four (Jarjar et al.,

2020; Obaida et al., 2022).

A special matrix, known as a unimodular matrix, can
be used to resolve this problem. We employ Basic Row
Operations to produce a unimodular matrix. It's not
necessary to use the complete matrix as a key. We will
create a unimodular matrix using a Custom Logistic Map

because fewer components are required. The Python 3.10
programming language will also be used to implement the
suggested method on a number of standard grayscale and
color pictures. Learning Python is a rather simple process.
This application is also quite easy to get. Only a few
operating systems, including Windows, Linux, Mac OS

Android, support Python. Python has several applications
across a wide range of fields of study and skill sets. These

Samsul Arifin et al. / Journal of Computer Science 2023, 19 (7): 847.860

DOI: 10.3844/jcssp.2023.847.860

848

are some of the justifications for using Python (Muktyas and
Arifin, 2018; Arifin et al., 2022a). We discovered a flaw
in an earlier study, specifically the constrained key space
for password 1. This is so because the size of the digital
video is a factor that is related to password1. The only
sizes that are possible are 1, p1, p2 and p1p2 if the video

size is p1p2, where p1 and p2 are prime values. By
combining the Shift 128 cipher and the Hill Cipher, this
can be avoided (Muktyas et al., 2021).

There are a few things that need to be explained in

relation to the ensuing questions. When unimodular

matrix encryption over Z256 is just as effective, why do we

need to apply shift cipher 128 encryption and combination

encryption techniques? The response is given below.

Partitions and encryption techniques are used first.

Encryption techniques with Partitions allow us to perform

the encryption process quickly and efficiently without

overburdening the performance of the machine

(computer). With Partition Encryption Technique, we

encrypt files in small parts. This is more efficient than if

we encrypt files with (possibly) very large sizes. The

analogy to the way we eat large meals. Of course, we will

eat it in small pieces because our mouths will find it

difficult to chew large foods efficiently. Second, shift

cipher 128 encryption is required because partitioning a

file could lead to an improper partition. Shift cipher 128

is used to encrypt the problematic partition. Especially if

the imperfect partition size's prime is relatively large

(Rihartanto et al., 2020; Elkamchouchi et al., 2020).

The research domain of this topic is cryptography and

information security, particularly in encryption

techniques to protect digital video from unauthorized

access (Paragas et al., 2019). In addition, this topic can

also be included in the multimedia field, especially in the

video encryption process. The novelty of this research is

the use of a combination of several pre-existing

cryptographic methods, namely Hill cipher, partition,

shift cipher, and unimodular matrix logistic functions in

the video encryption process. The combination of several

cryptographic methods can increase security and

encryption resistance against attacks from irresponsible

parties (Rajvir et al., 2020).

The background of this topic is that digital data

security is increasingly important along with the

increasing use of digital technology. Digital video is

becoming an increasingly popular form of digital data and

needs to be protected from unauthorized access.

Therefore, it is important to develop stronger and more

efficient encryption algorithms to protect digital videos

from attacks. Hill cipher method, partition, shift cipher,

and unimodular matrix logistic function are some of the

encryption techniques that have been developed before

and have proven to be strong enough to protect digital data

(Yang et al., 2020). However, the combination of these

techniques can significantly improve encryption security.

In addition, previous research on video encryption has

yielded several techniques, but most of them have not

been fully effective or practical in real applications.

Therefore, there is a need to continue to develop better

encryption techniques to protect digital videos in a more

effective and efficient way. In this case, the combined

implementation of the Hill cipher method, partition, shift

cipher, and unimodular matrix logistical functions in the

video encryption process can be an important contribution

to the development of stronger and more efficient video

encryption techniques (Ibrahim et al., 2021).

Some of the reasons for the importance of the work

proposed in this topic include the following.

Cryptography is a very important field for maintaining the

confidentiality of data and information, especially in the

increasingly advanced digital era. The use of a

combination of several strong cryptographic methods can

provide better protection for digital data, especially for

sensitive or confidential data. Video is an increasingly

used and important form of digital data, especially in the

multimedia and entertainment fields (Suresh and

Ratheesh, 2020). Therefore, protecting videos is

becoming increasingly important, especially in terms of

security and privacy. The combination of several strong

cryptographic methods such as Hill cipher, partition, shift

cipher, and unimodular matrix logistic functions can

provide a higher level of security for video encryption

because each method has different advantages and

disadvantages. This research can contribute to the

development of stronger and more effective cryptographic

methods to protect digital data, especially in terms of

using complex combinations of cryptographic methods.

The results of this study can be useful for application and

system developers who require a high level of security for

digital data, especially in the multimedia and

entertainment fields (Dooley, 2018).

 In this study, a method for encrypting video is proposed

that combines the Hill cipher, partition, shift cipher, and

unimodular matrix logistic functions (Rahman et al., 2013).

Some of the quantitative advantages of this method include:

(a) Data security: By using this combination method, the

level of data security in the video encryption process can

increase, because the combination of several different

cryptographic methods will provide stronger security than

using a single method alone. (b) Better performance:

Implementation of this combination makes it possible to

perform the encryption process with better performance and

faster because the use of several different cryptographic

methods can speed up the encryption process. (c) More

efficient use of resources: This method can help use

resources more efficiently, such as memory and CPU usage,

so that the video encryption process can run more smoothly

and does not take up much time and resources. (d)

Compatibility with future technologies: This method can

also be adapted to future technological developments, so as

Samsul Arifin et al. / Journal of Computer Science 2023, 19 (7): 847.860

DOI: 10.3844/jcssp.2023.847.860

849

to provide better security and performance in future

application development (Basavaiah et al., 2021).

In the context of the work proposed in this study, there

are several methods/approaches used, namely: (a) Hill

Cipher: This method is used to encrypt data using a key

matrix and a plaintext matrix. This method is one of the

classic cipher methods which is fairly safe. (b) Partition:

This method is used to divide the data to be encrypted into

several parts of the same size. This is done to simplify the

encryption process. (c) Shift Cipher: This method is used

to shift the characters in the text by a certain number of

positions to produce encrypted text. (d) Unimodular

Matrix: This method is used to generate a secure key matrix

that is not easily guessed by unauthorized parties. (e)

Logistics Function: This method is used as a scrambling

algorithm in the data encryption process. The logistic

function can generate random numbers with an

unpredictable distribution. By combining these methods,

it is expected to produce an encryption system that is

more secure and effective in securing data on videos

(Muktyas et al., 2021; Arifin et al., 2021).

In this research, we propose a Python-based

encryption technique for digital films based on

unimodular matrices and logistic maps (Delmi et al.,

2020). The topic of research methodologies is covered

first, followed by an analysis of the theory applied and our

Python code. The discussion of the algorithm's

implementation is followed by some analysis the paper

ends with a Conclusion session (Arifin et al., 2022b). The

specific contributions of this study are as follows. (a)

Developing a new method for securing video data by

using a combination of Hill cipher, partition, shift cipher,

and unimodular matrix logistic functions methods. (b)

Improves video data security with more complex

encryption methods. (c) Provides a new alternative to

existing video encryption methods. (d) Proving the

effectiveness and superiority of the proposed method in

securing video data (Muktyas et al., 2021).

 This study suggests that implementing the Hill cipher,

partition, shift cipher, and unimodular matrix logistic

functions in tandem with video encryption can increase

data security on the video and prevent unwanted access to

it. The limitations of this study, the test was only carried

out on videos with certain formats and had not been tested

on different video formats. In addition, the test was only

conducted at certain video sizes and has not been tested

for larger video sizes (Hussein and Amintoosi, 2023).

In this study, we use the flow as follows. The introductory

session contains the background, problem formulation, aims,

and benefits of this research. In the Methodology session, we

discussed the concept of Hill Cipher, partition, shift cipher,

and unimodular matrix logistic function. Furthermore, we

also discuss the implementation of the program code that we

created during the digital video encryption and decryption

process. In the results and discussion section, we examine the

results obtained in this research and discuss them. Write this

ending with conclusions, suggestions open issues contained

in the Conclusion section (Arifin and Muktyas, 2018).

Materials and Methods

Several methods/approaches that can be used in this

research are (a) Hill cipher method for text encryption. (b)

Partition method to break the video into small blocks. (c)

Shift cipher method to shift characters in the text. (d)

Unimodular matrix to ensure proper encryption and

decryption. (e) Logistics function to generate random keys in

the encryption and decryption process. Some of the

inspiration that can be drawn from the work on this topic

includes A combination of several cryptographic methods to

increase the security of data encryption. Application of the

concept of unimodular matrices to cryptography to generate

random keys. The use of logistical functions in the data

encryption process increases the complexity of the

encryption process and the difficulty of decryption. The use

of cryptographic technology in video is a form of developing

the use of cryptographic technology in the multimedia field

(Muktyas et al., 2021; Arifin et al., 2021).

 Plaintext was encrypted by Lester Hill using a system of

linear equations. The Hill cipher divides plaintext into a

number of blocks prior to encrypting it. The SLE with n

equations and n variables modulo m, where m is an integer,

is solved to produce ciphertext when given an element

plaintext block. Matrix multiplication could be used to finish

the SLE. Due to the symmetrical cryptography used by the

Hill Cipher, the created key must have an inverse (Hanson,

1982). The following Fig. 1 is a view of the folder containing

the application we are developing.

In this study, the machine's terminology and Python's

terms are as follows. Machine specifications must be used

by a laptop or computer. Using a machine with 8 GB

RAM and Ryzen 3100 processor, this application was

created. System requirements for operating the Windows

operating system must be installed on the PC or laptop.

The operating system Windows 10 Pro 21H1 was used to

create this application. Python Prerequisites Python 3

must be installed on the computer or laptop being used

(Arifin and Garminia, 2019). Make that the NumPy and

tqdm packages for Python have been installed if Python 3

has been installed. For further information, see the figure.

If the package hasn't already been installed, do so using

the steps below. Please launch the Command Prompt to

install the NumPy package. After entering pip install

NumPy, press the Enter key. need to set up the tqdm

package. Launch the command prompt. Once you've

typed pip install tqdm, hit the enter key (Oliphant, 2007).

 Following that, we'll discuss a unique matrix known as a

unimodular matrix, which will act as the study's key matrix.

We'll look at unimodular matrices and how to create them.

Samsul Arifin et al. / Journal of Computer Science 2023, 19 (7): 847.860

DOI: 10.3844/jcssp.2023.847.860

850

Fig. 1: The folder containing the application we are developing

According to Harrison 1982, if det(A) = -1 or det(A) = 1,

a matrix A with integer entries for each element is

considered to be unimodular. Unimodular matrices

include the identity matrix, upper triangular matrix

lower triangular matrix, with diagonal entries of 1 or -

1. The following theorem, which supports this, reads

(Arifin and Muktyas, 2018):

11 11()n n nnif A isatriangular matrixthenit appliesdet A a a a 

Following are the steps for constructing a unimodular

matrix of size nn using Python: (a) Make a diagonal

matrix using the entries in the diagonal aii = 1 or aii = -1.

(b) For each element in aij, enter any integer with i < j. As

a result, an upper triangular matrix with a determinant of

1 or -1 has been created. This matrix has only one module.

(c) In order for a matrix to be complete, employ simple

row operations or simple column operations going from

the final row or column to the first row or column

(Komosko et al., 2016).

The encryption method with partitions that will be

employed in this study will next be covered. Please note

that a file is composed of bytes. The value of one byte is

an integer from 0-255. Partitioning is dividing a file into

smaller parts. The small part is called a partition. For

example, a simple example is as follows. We have a file

size of 418 bytes. If we want to partition the file with a

partition that is 128 bytes long, we will get 4 partitions.

The acquisition of the number 4 is explained as follows.

Yes, the trick is to divide 418 by 128. However, 418 is not

divisible by 128. Moreover, 418 divided by 128 is

3.265625. Yes, because the result of the division

(3.265625) is rounded up. 3.265625 is rounded up to 4.

The four partitions are 1st partition: 1st bytes to 128th bytes.

2nd partition: 129th bytes to 256th bytes. 3rd partition: 257

bytes to 384 bytes. 4th partition: 385 bytes to 418 bytes.

Note that the 1st, 2nd and 3rd partitions are the same length,

which is 128 bytes. While the 4th partition has a length of

34 bytes. The 4th partition is referred to as an imperfect

partition. The 1st, 2nd and 3rd partitions are called perfect

partitions (Obaida et al., 2022).

 Partitions make the encryption easier for us to encrypt

a file. We will partition a source file in such a way that it

will only result in at most one imperfect partition. The

method is as follows. We first set the partition size, which

is q bytes. If our source file is N bytes, then: (1) If N is

divisible by q, then we will have partitions of N/q which

are all perfect partitions (2) If N is not divisible by q, then

we will have partitions several (N-(N mod q))/q which are

perfect partitions and 1 imperfect partition. Using the

unimodular matrix encryption technique on the Z256, we

encrypt all perfect partitions one by one. 1st perfect

partition encrypted 1st perfect partition 2nd perfect

partition encrypted 2nd perfect partition... and so on. If

there is an imperfect partition, then we can encrypt the

imperfect partition using the shift cipher-128 encryption

technique. Incomplete partition encryption result. The

encryption result is a combination of the results of the

previous two steps. Examples of encryption techniques

Samsul Arifin et al. / Journal of Computer Science 2023, 19 (7): 847.860

DOI: 10.3844/jcssp.2023.847.860

851

with partitions are as follows. Suppose we have a file size

of 18 bytes to be encrypted. The file structure is as

follows: 1st byte = 133, 2nd byte = 57, 3rd byte = 91, 4th

byte =19, 5th byte = 0, 6th byte = 211, 7th byte = 70, 8th

byte = 11, 9th byte = 104, 10th byte = 67, 11th byte = 78,

12th byte = 86, 13th byte = 112, 14th byte = 51, 15th byte

= 0, 16th byte = 133, 17th byte = 11 18th byte = 90

(Jameel and Fadhel, 2022).

The steps are as follows: Step 1. We set the partition

size to be 4 bytes. Thus we will have 4 perfect partitions

and 1 imperfect partition. (a) The 1st perfect partition

contains the 1st-4th bytes: 133, 57, 91, 19 (b) 2nd perfect

partition contains 5th-8th bytes: 0, 211, 70, 11 (c) 3rd

perfect partition contains 9th-12th bytes: 104, 67, 78, 86 (d)

The 4th perfect partition contains the 13th-16th bytes: 112,

51, 0, 133 and (e) The imperfect partition contains 17th-

18th byte: 11, 90. Step 2 is up next. We encrypt all 1st-4th

Perfect Partitions using the unimodular matrix encryption

algorithm over Z256. As an example: (a) The first perfect

partition encryption with a unimodular matrix encryption

algorithm over Z256 yielded 54, 14, 90, 211. (b) The results

of the second perfect partition encryption with

unimodular matrix encryption over Z256 are 244, 142, 16,

25 244. (c) The third perfect partition encryption with

unimodular matrix encryption approach over Z256 yielded

66, 67, 114, 115 (d) The results of the fourth perfect

partition encryption using unimodular matrix encryption

over Z256 are 91, 92, 93 94. Step 3 is as follows. Because

there is an imperfect partition, we can encrypt the

imperfect partition using the shift cipher-128 encryption

technique. For example, the result of imperfect partition

encryption with shift cipher-128 encryption technique is

43, 143. Finally, Step 4. The result of the encryption is a

combination of the results in step 2 and 3. Here is the

arrangement of the bytes of the encrypted file using the

partitioning technique (a) 1st byte = 54 6th bytes = 142 11th

bytes = 114 16th bytes = 94, (b) 2nd byte = 14th bytes 7th =

16th bytes = 115th bytes 17th = 43, (c) 3rd byte = 90 8th bytes

= 13th 25 bytes = 91 18th bytes = 143, (d) 4th byte = 211 9th

byte = 66 14th bytes = 92 (d) 5th byte = 244 10th bytes = 67

15th bytes = 93 (Jameel and Fadhel, 2022).

 Please pay some attention to the color of the

numbers above. The i-th byte in the j-th partition in the

source file will correspond to the i-th byte of the j-th

partition in the encrypted file. Then we'll go over the

shift cipher 128 encryption method. Let's go through

some fundamental algebraic structural concepts. Keep

in mind that Z256 = {0.1, 2, 3, 4, 255}. Z256 is the group

for addition operations modulo 256. The modulo 256

multiplication operation is not opposed by the group Z256.

Plain text is text that has not been encrypted. After the text

has been encrypted, it is known as ciphertext (Anton, 2018).

 This is the shift cipher 128 encryption method. If the

raw text has 256 elements, shift cipher 128 will encrypt it

by multiplying each element by 128 (modulo 256).

Consider the case below. 5 character known plain text

string: 213, 110, 7, 91, 65. The plain text will be encrypted

using shift cipher 128. The procedures are as follows. In

plain text, the first character is 213. Add (modulo 256)

213-128 to get (341) mod 256 = 85. The plain text

encryption result for the first character is 85. 85 is the

ciphertext's character -1. In plain text, the second

character is 110. Add (modulo 256) 110-128 to get (238)

mod 256 = 238. In plain text, the encryption result for the

second character is 238. The character -2 in the ciphertext

is 238. In simple text, the third character is 7. 7 +mod 256

128 = (135) mod 256 = 135. 7 +mod 256 128 = (135) mod

256 = 135. In plain text, the encryption result for the third

character is 135. In the ciphertext, 135 is the third

character. In plain text, the fourth character is 91. Add

(modulo 256) 91-128 to get (219) mod 256 = 219. In plain

text, the encryption result for the fourth character is 219. The

character -4 in the ciphertext is 219. In plain text, the fifth

character is 65. 65 +mod 256 128 = (193) mod 256 = (193)

mod 256 = 193. In plain text, the encryption result for the

fifth character is 193. The character -5 in the ciphertext is

193. Thus, the result of encryption for plain text with a

length of 5 characters is 85, 238, 135, 219, and 193.

Plaintext = 213 points, 110 points, 7, 91 points 65 points.

The cipher text is 85, 238, 135, 219, and 193 with shift

cipher 128 encryption (Ye and Ma, 2013).

 Please take note of the decryption technique with shift

cipher 128, which is described as follows. If the plain text

is composed of elements in 256, the decryption process

with shift cipher 128 is to add (modulo 256) each element

by 128. Let us consider the example where the ciphertext

has a length of 5 characters: 85, 238, 135, 219, 193. To

decrypt the ciphertext with shift cipher 128, we need to

perform the following steps. The first character in the

ciphertext is 85. We add (modulo 256) 85-128, which

gives us 85 +mod 256 128 = (213) mod 256 = 213.

Therefore, the decryption result for the first character

in the ciphertext is 213 213 corresponding to the (5-1)th

character in plaintext. Similarly, we can decrypt the other

characters in the ciphertext. For example, the second

character in the ciphertext is 238. We add (modulo 256)

238-128, which gives us 238 +mod 256 128 = (366) mod

256 = 110. Therefore, the decryption result for the second

character in the ciphertext is 110 110 corresponds to the

(5-2)th character in plaintext. The decryption process for

the rest of the ciphertext characters can be done in the

same manner. Thus, the decryption results for the

ciphertext with a length of 5 characters: 85, 238, 135, 219,

and 193 are 213, 110, 7, 91, and 65. In summary, the

ciphertext is 85, 238, 135, 219, 193 and the plaintext

obtained by decrypting it with shift cipher 128 is 213, 110,

7, 91, 65.

 The discussion regarding the function of the custom

Logistics map is as follows. In the process of creating the

Samsul Arifin et al. / Journal of Computer Science 2023, 19 (7): 847.860

DOI: 10.3844/jcssp.2023.847.860

852

Unimodular Matrix of Z256, we often encounter the word

“random” selection. This “random” selection process

involves the Log map Custom function which is based

on the logistics function. The Custom Log map

function is a custom function with Input = 3 digit

number (example: 230) and constant r and output =

number with more than 180 digits. The Logistics

function is a recursive function defined as:

(1) () (1 ()), 1,2,3,4,5...f n r f n f n for n etc     

Thus we can calculate f(2), f(3), f(4) , ..., f(1 million),

but cannot calculate f(3/2), f(π), f(-4) etc. Note that to

calculate f(n+1) we need the value of the constant r and to

calculate f(n) we need the value of f(n-1) (Kordov, 2021).

Some important things about our custom log map function

algorithm are as follows. File python:

pyeon_matriks_engine2.py. Lines 307-330. Function

name: def logmap3 (vin initial value, vinR): Input: Vin

initial value is input in the form of 3-digit numbers

(example: 230) vinR is input constant r (example: 0,

3471). Output: Numbers totaling more than 180 digits

(Muktyas et al., 2021). Please note that in the 308th line,

the value of vin initial value entered by the user is

modulated by 1000. The point is so that the vin initial

value is in the range 0-999. Next, the 310th-316th line

serves to reduce the vin initial value input by the user to

0,... (zero commas umpteenth). For example, if the user

inputs the value vin Initial Value = 233, the value will be

changed to 0.233. This value will be used as f(0).

Moreover, the 319th line sets calculation precision to 20

decimal places. Next, rows 321 and 322 calculate the

logistic function based on f(0) and the constant r = vinR

to f(20). Finally in lines 323-328, if the iteration is in the

calculation of f(10), f(11), f(12), to f(20), then the

calculation results are appended to one, and then the

comma is removed so that it becomes a long series of

numbers (Abderrahim et al., 2012).

 Please note the following example. Let f(10) = 0.9998

f(11) = 0.1233333 f(12) = 0.6777754. If f(10), f(11) f(12)

are appended it will return: 0,99980,12333330,6777754.

Then if the comma is removed it will become

099980123333336777754. This algorithm will append

the calculation results f(10), f(11), f(12), to f(20). That way

the number of digits will be very large. Then, if the total

number of digits from the append calculation f(10), f(11),

f(12)-f(20) is odd, then add a digit 1 behind so that the

number of digits becomes even.

099980123333306777754 in the example above is 21

digits. Since the number of digits is odd, then the 1st digit

is added at the end to become: 09998012333330677754

1. Thus, the number of digits is 22, which is even

(Gupta et al., 2019).
 In this study, we also created several supporting

functions as follows. The pyeon_matriks_engine2.py file

contains the Consolidated Encryption Technique support
functions (Obaida et al., 2022) as follows. (1)
arrinverse256 is an array that stores information on the
inverse of the multiplication operation modulo 256. (2)
The serialize2 function is used when storing a matrix in a
text file. (3) The printm2 function is used to visualize
matrices in the command line. (4) The inverse1V256a
function is used to find the inverse of a matrix. The
process is to perform the same series of elementary row
operations on the reference matrix and identity matrix to
convert the reference matrix into an identity matrix. The
result of a series of elementary row operations on the
identity matrix will make the identity matrix an inverse
matrix. (5) The multiV256a function is used to multiply
two matrices for the multiplication operation modulo 256.
(6) The function obe2V256 is an elementary row operation
of the second type (multiply by a constant) to the
multiplication operation modulo 256. (7) The function
obe3V256 is an elementary row operation of the third type
(addition of a row by a multiple of another row) to addition
and multiplication operations modulo 256. (8) The
unimodular1V256 function is a function to create a
unimodular matrix where the entries are elements in Z256. (9)
The logmap3 function is a custom log map function that is
used to make random selections (Ojobor and Obihia, 2021).
The following is a simple example for the implementation of
the proposed algorithm, that will end this section.

==

Now, insert your file: Video.mp4

==

The 1-dimensional binary matrix of your file:

p = [0 0 0 ... 219 80 7] with size: 1967617

Enter Password 1: 7

Enter Password 2: 77777

The encryption process begins.

Password 1 will be used as the size of Hill cipher's key

matrix, that is (77) Password 2 will be used as the initial

value of the logistic map. 77777 --> 0.777771

 The sequence of the logistic map generated by 0 =

0.777771 is:

[46 80 179 196 107 156 17 12 160 95 205 206 95 84 112

156 182 183 76 181 186 82 177 202 120 143 60]

The upper triangular matrix key based on the logistics
sequence formed:

[[1 46 80 179 196 107 156]
 [0 1 17 12 160 95 205]
 [0 0 1 206 95 84 112]
 [0 0 0 1 156 182 183]
 [0 0 0 0 1 76 181]
 [0 0 0 0 0 1 186]
 [0 0 0 0 0 0 1]]

We use elementary row operation to fill in the lower

triangular matrix. Here is the key matrix:

Samsul Arifin et al. / Journal of Computer Science 2023, 19 (7): 847.860

DOI: 10.3844/jcssp.2023.847.860

853

[[1 46 80 179 196 107 156]

 [82 189 177 98 104 165 197]

 [177 206 81 145 227 79 76]

 [202 76 32 63 68 36 207]

 [120 144 128 232 225 116 213]

 [143 178 176 253 124 198 222]

 [60 200 192 244 240 20 145]]

The partition process begins.

Based on Password 1 and The Division Theorem, the

plaintext matrix will be split into 967617 = 7138231 + 0,

such that (7138231) and (10)

 (7138231) array part:

[[0 0 0 ... 47 196 153]

 [138 197 98 ... 167 60 230]

 [88 123 222 ... 13 152 60]

 ...

 [3 119 198 ... 191 71 222]

 [169 251 51 ... 154 82 30]

 [185 123 63 ... 219 80 7]]

(10) array part:

[]

Hill cipher + Shift cipher process begins.

The (77)-size key matrix will be multiplied by the

(7138231)-size plaintext matrix and then proceed to the

rest (10)-size with the Shift cipher 128:

Ciphertext (7138231) part:

[[95 111 104 ... 175 109 4]

 [44 2 76 ... 247 88 171]

 [24 207 210 ... 5 60 228]

 ...

 [132 250 53 ... 86 71 153]

 [36 90 17 ... 121 85 112]

 [253 127 159 ... 223 220 247]]

Ciphertext (10) part:

[]

Now, we will reshape the ciphertext matrix from

(7138231)-size into a 1-dimensional matrix again,

(1967617)-size + matrix from Shift cipher: (1967617)

array part:

[95 111 104 ... 223 220 247]

 (10) array part:

[]
Finally, we will regroup two previous matrices and save
them as binary files titled "Video_encrypted. mp4":
[95 111 104 ... 223 220 247]

--

The encryption process is finished.

Your encrypted file is in the same folder as the original file.

The encryption time is 0.49244189262390137 sec.

--

Results and Discussion

In this session, we will examine the research results

obtained. After implementing a combination of Hill

cipher, partition, shift cipher, and unimodular matrix

logistic functions in the video encryption process,

satisfactory results were obtained. By using a

unimodular matrix on the Hill cipher, the complexity

of the encryption key increases and provides a higher

level of security. Then, by dividing the video block into

several parts and doing a shift cipher on each part, it

can increase resistance to attacks. Meanwhile, the use

of the logistics function in each part of the video

provides variations in each block thereby increasing the

resistance of each block to attacks. In testing, this

technique succeeded in producing well-encrypted

videos and being able to maintain the original video

quality properly. However, there is a weakness in this

technique, namely the complexity of the algorithm is

quite high, so it takes a long time to encrypt large

videos. Therefore, in future research, it is possible to

develop more efficient techniques to increase the

encryption speed of large videos (Arifin et al., 2022a;

Muktyas et al., 2021).

 We will document the findings of this research

throughout this session. The Combined Encryption

Method is the method that will be applied in this study.

Assume the following circumstances exist. Our file is

more than 1 Kilo Bytes in size (KB). Keep in mind that

1,024 bytes make up 1 kilobyte. The file will be

encrypted using the Encryption with Partition Method.

1,024 bytes are utilized as the partition size (1 KB).

Keep in mind that the file size and the partition size

must be less than each other. This encryption approach

employs two different kinds of encryption: (1)

Unimodular Matrix Encryption over Z256. (2) Use Shift

cipher 128 to encrypt. The results of the Unimodular

Matrix encryption on Z256 are added with the results of

the shift encryption (Rosalina, 2020). The front view of

the digital video encryption and decryption application

that we have developed can be seen in detail in Fig. 2.

The step-by-step use of the encryption-decryption

application for the encryption process is as follows.

Make sure you have installed Python and the required

Samsul Arifin et al. / Journal of Computer Science 2023, 19 (7): 847.860

DOI: 10.3844/jcssp.2023.847.860

854

packages on your computer/laptop. Make sure your

computer/laptop has extracted the encryption and

decryption application made using NodeJS. Make sure

you have downloaded the source file that you want to

encrypt, namely sample-10s.mp4. Make sure you have

an encryption matrix. Open the encryption-decryption

application. Click the open digital file button. Encrypt

digital files. Select the sample-10s.mp4 file then click

ok. Wait for the results to complete as shown in the

command line window that opens. Please see the end

of this chapter to know the encryption process

algorithm (Taj et al., 2021). An illustration of this

process can be seen in the following Fig. 3.

Fig. 2: Front view of the application made

Fig. 3: The current view will open the video sample data for

encryption

The encryption process algorithm that we apply is as

follows. It is assumed here that we will encrypt and

decrypt a video file named sample-10s.mp4. The

encryption and decryption processes are handled by a

Python file: Encryptp2.py. Lines 43-70 determine

whether to encrypt or decrypt. It all depends on input from

the user. If the chosen one is to perform the encryption

process, then lines 76-92 will load the contents of the

resulting matrix1qutama.dat file into the machine's

memory as an encryption matrix. The encryption matrix

has 1,032 entries. Thus, the encrypted source file, sample-

10s.mp4 which is 5,485,983 bytes in size will be

partitioned with each partition measuring 1,032 bytes.

The partitioning process above results in 5,357 perfect

partitions and 1 imperfect partition. This imperfect

partition is 415 bytes in size as follows: (a) The 1st perfect

partition contains the 1st to 1,024th bytes. (b) The 2nd

perfect partition contains the 1,025th 2,048th bytes. (c)

...and so on ..., moreover (d) The 5,356th perfect partition

contains 5,483,521 bytes up to the 5,485,544 bytes. (e)

The 5,357th perfect partition contains 5,484,545 bytes up

to 5,485,568 bytes. (f) The imperfect partition contains

5,485,569 bytes to the 5,485,983 bytes.

Those 103rd to 157th rows will iterate over the 1st

Perfect Partition to the 5,357th Perfect Partition to

multiply by the encryption matrix. Remember that the

perfect partition is 1,024 bytes in size. All perfect

partitions can be transformed into a matrix of 32 rows and

32 columns. The encryption matrix is a unimodular matrix

over Z256 which has 32 rows and 32 columns. Perfect

partition entries and unimodular matrices are elements in

Z256. So, we can multiply the unimodular matrix over Z256

and the perfect partition. (a) 1st perfect partition

encryption result = encryption matrix × 1st Perfect

Partition (as matrix) (b) 2nd perfect partition encryption

result = encryption matrix × 2nd perfect partition (as

matrix) (c) etc.

The results of this encryption are directly written to the

output file (not stored in memory) so as not to burden

memory performance. If the perfect partition encryption

iteration has been completed, then the encryption process

is continued by encrypting the imperfect partition using

the shift cipher 128 methods. Lines 146-150 represent the

process. The following is a verification of the encryption

process we use. For example, we use the encryption

matrix as below:

87;176;70;118;215;186;3;131;210;151;177;21;207;161;2
03;233;15
8;169;141;13;233;101;230;192;136;71;134;184;229;62;8

3;23

63;151;9;120;217;181;188;20;167;90;140;250;185;173;1

35;112;12

5;49;126;224;209;186;211;247;157;224;119;111;213;78;

191;79

Samsul Arifin et al. / Journal of Computer Science 2023, 19 (7): 847.860

DOI: 10.3844/jcssp.2023.847.860

855

63;48;87;238;111;240;129;98;188;130;12;31;142;170;16

8;208;143

;140;238;35;170;170;3;169;173;149;86;128;228;20;147;228

101;16;146;35;35;193;0;28;40;63;190;16;86;40;28;94;71

;93;123; 59;202;222;226;185;243;5;239;5;6;207;10;134

123;240;46;158;48;73;175;183;110;11;85;241;89;19;246

;127;41;8

;171;240;118;102;29;97;51;148;12;129;94;83;112;160

109;144;226;242;237;59;119;209;46;116;241;175;250;2

49;252;106

;221;5;185;42;4;240;103;27;91;106;100;28;219;121;144;29

132;64;168;232;132;88;79;205;83;84;249;41;219;241;10

1;93;191;

180;44;80;204;244;216;70;86;155;98;35;143;154;171;53

94;96;108;204;94;148;118;169;89;173;211;5;183;176;47

;175;169;

139;15;144;226;98;243;6;72;35;42;67;241;143;136;248

255;48;214;134;127;42;203;75;57;74;122;22;92;20;86;2

38;48;181

;57;52;208;205;239;27;24;12;243;47;50;63;124;54

81;208;74;154;209;182;197;69;222;24;159;35;253;71;16

5;31;120;

37;2;101;114;22;124;215;233;246;217;41;222;123;147;58

129;208;42;122;1;214;181;53;126;65;70;128;214;48;146

;37;82;7;

130;65;247;8;200;147;207;196;92;34;174;163;110;102

240;0;96;96;240;160;176;176;32;240;144;63;75;147;221

;210;148;

4;191;223;128;73;187;208;29;205;151;213;1;193;39;40

106;32;100;132;106;156;242;242;44;234;198;158;209;3

8;134;102;

92;70;180;228;237;56;39;3;2;161;149;101;77;213;157;211
2;160;84;244;2;172;106;106;252;130;110;230;146;181;2
48;39;177
;11;95;219;100;6;156;199;246;218;185;78;153;251;125;244
38;224;60;28;38;196;222;222;180;166;42;18;214;138;27
;116;183;
139;75;103;53;53;41;66;4;122;43;191;162;101;89;118
179;112;94;78;51;162;15;143;26;243;117;105;11;37;247
;242;179;
42;248;150;190;218;245;248;104;71;238;128;41;124;21;74
199;176;166;214;71;90;51;179;242;7;193;101;191;177;1
23;121;29
;243;96;96;75;76;247;213;215;88;177;33;211;199;16;148
44;192;56;248;44;200;28;28;168;44;116;196;140;52;188
;212;24;5
1;13;137;186;196;64;71;38;164;29;158;87;175;15;158
8;128;80;208;8;176;168;168;240;8;184;152;72;56;104;2
48;144;24
8;251;242;3;201;217;165;155;139;253;2;204;132;151;151
99;112;62;46;227;194;127;255;186;163;69;121;59;245;2

31;221;11

8;157;81;92;77;130;185;144;197;240;181;109;186;119;134

;91

109;144;226;242;237;30;145;17;166;45;107;247;21;187;

169;83;42

;147;159;31;160;39;166;144;64;109;232;222;190;196;4;48

62;96;44;140;62;212;214;214;132;190;82;218;174;50;23

0;66;92;1

94;74;74;66;255;62;23;65;51;123;145;69;133;20;103

240;0;96;96;240;160;176;176;32;240;144;208;112;144;4

8;16;224;

16;80;80;16;208;15;141;141;217;197;102;144;104;247;118

185;80;90;42;57;166;77;205;14;121;191;27;193;207;5;7;

130;71;3

5;163;7;203;186;143;176;174;88;27;98;149;111;19

197;16;82;226;69;174;201;73;246;133;83;127;45;35;33;

251;90;59

;231;103;251;111;50;64;173;160;195;177;148;21;188;178

23;176;198;246;151;58;195;67;82;87;241;85;143;225;13

9;41;30;2

33;205;77;41;165;102;192;136;68;200;108;25;45;162;71

252;192;88;24;252;168;44;44;8;252;36;52;220;228;76;4;

184;4;20 ;20;4;116;216;0;32;188;63;89;207;8;9;217

101;16;146;34;229;110;233;105;182;37;179;95;205;131;

65;91;154

;155;199;71;91;79;114;64;152;53;82;255;6;207;10;134

39;176;102;150;167;154;19;147;50;103;97;133;31;81;91

;25;62;21

7;125;253;25;213;6;192;8;23;166;56;6;85;155;167

209;208;74;154;81;182;69;197;222;145;231;227;153;11

9;61;239;5

0;47;171;43;239;19;170;64;56;97;10;136;147;227;89;97

235;240;142;254;107;114;167;39;170;43;125;145;3;173;

207;85;6;

21;169;41;85;161;174;192;232;27;206;88;33;38;150;147

49;208;10;90;177;246;37;165;30;241;135;3;249;23;29;1

43;242;20

7;203;75;143;51;106;64;56;193;202;136;179;82;85;144

If we open the sample-10s.mp4 file in the notepad++

application, we will get a chaotic display like in the

following Fig. 4.

Make sure the notepad++ application has the HEX-

editor plugin installed. If we click View in HEX, it will

look like the Figs. 5-6.

It looks much more human though it's still confusing.

The characters in columns 0, 1, 2, 3, to f, are hexadecimal.

To translate hexadecimal characters to numbers from 0-255,

you can use the table in reference (Jameel and Fadhel,

2022). Figure 7 for more details.

Please compare the Dec to the Hex column in the table

above. Okay, let's continue to observe the appearance in

the command line of the encryption process at the bottom

of the following line. Notice the text in yellow in the

following Fig. 8.

The yellow text indicates the 5,357th perfect partition.

Remember that the 5,357th perfect partition contains the

5,484,545 bytes through the 5,485,568 bytes. Since one row

of the matrix consists of 32 columns, then based on the

second row of yellow text we can conclude:

Samsul Arifin et al. / Journal of Computer Science 2023, 19 (7): 847.860

DOI: 10.3844/jcssp.2023.847.860

856

Fig. 4: The chaotic display in the notepad++ if we open the

sample-10s.mp4

Fig. 5: The display in the notepad++ if we click to view in HEX

Fig. 6: Display of the characters in columns 0, 1, 2, 3, to f,

are hexadecimal

Fig. 7: The characters in columns 0, 1, 2, 3, to f, are

hexadecimal translated to hexadecimal characters to

numbers from 0-255

Fig. 8: The characters in columns 0, 1, 2, 3, to f, are

hexadecimal translated to hexadecimal characters to

numbers from 0-255

Fig. 9: The display of HEX-editor notepad++. If we scroll to

addresses 0053b000 and 0053b010

(a) The 5,484,545 byte is 0. → HEX equivalent of

00 (b) The 5,484,546 byte is worth 1. → equivalent to

HEX 01 (c) The 5th byte 5,484,547 is 162. → equivalent

to HEX A2 (d) The 5,484,573 byte is worth 1. →

equivalent to HEX 01 (e) The 5,484,573 byte is 46. →

equivalent to HEX 2E and (f) The 5,484,573 byte is 0.

→ the HEX equivalent of 00. Please look at Fig. 7. Go

back to HEX-editor notepad++. If we scroll to

addresses 0053b000 and 0053b010, we will get a

display like this in Fig. 9.

Notice the green and purple text in the yellow

outline box. Is there any resemblance to HEX in the 6

bullet numbering above? Address 0053b000 in decimal

is 5,484,544. That means address 0053b000 contains

the 5,484,545 bytes to the 5,484,560 bytes. Thus we

can conclude that the first 32 bytes of the 5,357 th

perfect partition are:

00, 01, A2, 00, 00, 01, 68, 00, 00, 01, 1B, 00, 00, 01, 6A, 00,

00, 04, C8, 73, 74, 63, 6F, 00, 00, 00, 00, 00, 00, 01, 2E, 00

which is equivalent to the following decimal:

0, 1, 162, 0, 0, 1, 104, 0, 0, 1, 27, 0, 0, 1, 106, 0,

0, 4, 310, 115, 116, 99, 111, 0, 0, 0, 0, 0, 0, 1, 46, 0

While the imperfect partition contains 5,485,569 bytes

to the 5,485,983 bytes. That means, the incomplete

partition is contained in the HEX address which is

equivalent to 5,485,569 decimal places, which is 53b400.

Figure 10 for more details.

Samsul Arifin et al. / Journal of Computer Science 2023, 19 (7): 847.860

DOI: 10.3844/jcssp.2023.847.860

857

Fig. 10: The display of the incomplete partition is contained in

the HEX address which is equivalent to 5,485,569

decimal places

Fig. 11: The display of the incomplete partition is contained in

the HEX address which is equivalent to 5,485,569

decimal places

Fig. 12: The display of the beginning of an imperfect partition

of 415 bytes

Note that this imperfect partition has a size of 415

bytes. Since 415 mod 16 = 1, it means that one cell in the

last row is empty, as indicated by the yellow arrow in the

bottom right corner. Switch to the encrypted file. The

following are the 5,484,545 bytes to the 5,484,576 bytes

that correspond to addresses 0053b000 and 0053b010.

Figure 11 for more details.

In the red box above, please note the following HEX

sequence:

53, 74, 80, 00, 69, CA, 5E, 00, DF, DB, FC, 00, 74, 61,

E0, 00,

D5, F0, 05, 15, C3, 5C, 63, 00, 13, 5A, C6, 00, 5A, 6F,

39, 00

which is equivalent to the following decimal

83, 116, 128, 0, 105, 202, 94, 0, 223, 219, 252, 0, 116, 97,

224, 0, 213, 240, 5, 21, 195, 92, 99, 0, 19, 90, 198, 0, 90,

111, 57, 0

This is the first line of multiplying the encryption matrix

with the 5,357th perfect partition. We turn to the HEX address

53b400 which is the decimal equivalent of 5,485,569. This is

nothing but the beginning of an imperfect partition of 415

bytes. Figure 12 for more details.

Notice the 2 red squares above and below that

contain HEX: C4, FE, 4F, 80 AE, B1, B0, B0. Note that

C4 is equivalent to decimal 196, FE is equivalent to

254, 4F is equivalent to 79, 80 is equivalent to 128, AE

is equivalent to 174, B1 is equivalent to 177 B0 is

equivalent to 176. Also note that: (a) C4 is equivalent

to decimal 196. If (196-128) mod 256 = 68 is equivalent

to HEX 44, (b) FE is equivalent to decimal 254. If (254-128)

mod 256 = 126 is equivalent to HEX 7E, c) 4F decimal

equivalent 79. If (79-128) mod 256 = 207 HEX CF

equivalent, (d) 80 decimal equivalent 128. If (128-128) mod

256 = 0 HEX 00 equivalent, (e) AE is 174 decimal

equivalent. If (174-128) mod 256 = 46 HEX 2E

equivalent, (f) B1 decimal equivalent 177. If (177-128)

mod 256 = 49 HEX 31 equivalent (g) B0 decimal

equivalent 176. If (176-128) mod 256 = 48 HEX 30

equivalent. Is there any resemblance to the contents of

the yellow box below? This screenshot is a sample-

10s.mp4 file that is opened using the HEX-editor

notepad++ application starting at address 53b400.

Figure 13 for more details.

The accompanying Table 1 displays the time needed

for the encryption procedure the findings are somewhat

unexpected. In general, the proposed method makes the

encryption and decryption process take longer.

From the table, it can be concluded that the encryption

time depends on the size of password 1. The larger the

password 1, then the longer the time. This is because

password 1 corresponds to the key size matrix in the hill

cipher. Table 2 for more details.

Samsul Arifin et al. / Journal of Computer Science 2023, 19 (7): 847.860

DOI: 10.3844/jcssp.2023.847.860

858

Fig. 13: The display of a sample-10s.mp4 file that is opened

using the HEX-Editor notepad++ application starting at

address 53b400

Table 1: Encryption time

Pass 1 Pass 2 Encryption time (seconds)

 5 2345 422,7135.0000

 26 2345 745.6350

100 2345 3378.7270

Table 2: Comparison of standard hill cipher and the proposed

algorithm

 Hill cipher Proposed

Properties standard algorithm

Key matrix size of Kn n4 sually Any n>0

 small n,

Key matrix storage of Kn One whole Only 2

 matrix of Kn parameter

The decryption process is not similar to the encryption

process. The difference is that the decryption process uses

the inverse of the encryption matrix.

The main contribution to this topic is the development

of a video encryption method that combines several

cryptographic techniques such as Hill Cipher, partition,

Shift Cipher, and unimodular matrix logistic functions.

By using these techniques, video security will be

increased and sensitive data on videos will be protected

from unauthorized users. This method provides several

quantitative advantages, including a higher level of

security, and faster encryption times smaller file sizes

compared to other video encryption methods. In addition,

the use of a combination of different cryptographic

techniques increases overall security, because the

weaknesses of one technique can be compensated for by

the other. In this case, the main contribution is the

development of secure and effective video encryption

methods by combining several existing cryptographic

techniques. By using this method, it is hoped that video

security can be improved and user privacy interests can be

protected. In addition, this method also contributes to the

development of the science of cryptography and its

applications in multimedia, especially video.

Conclusion

Some conclusions that can be drawn from this study

are that the use of a combination of several cryptographic

methods can increase encryption security and reduce the

possibility of attacks from irresponsible parties. The work

motivation of this research is to increase security in the

video encryption process which is increasingly important

with the increasing use of video in various applications,

such as in the world of business, media so on. By using a

combination of several cryptographic methods, it is hoped

that encryption security can be increased and prevent

unauthorized access to encrypted videos.

The combination of several cryptographic methods

used in this study can increase security in the video

encryption process. Using partitions can speed up the

video encryption process and reduce the computational

burden on the device used. The application of unimodular

matrices and logistic functions can increase the

complexity of encryption, making it difficult for

unauthorized parties to crack. The use of a combination of

Hill cipher, partition, shift cipher, and unimodular matrix

logistic functions in video encryption can provide a higher

level of security than using a single cryptographic

method. The results of this study can be used as a basis

for developing more complex and secure video encryption

techniques in the future.

Due to the challenge of locating a reversible matrix,

the common hill cipher often utilizes a tiny Kn, n≤4 key

matrix. Furthermore, the complete Kn matrix is used as

the key if n>4 with the conventional Hill Cipher. To

address this issue, we build a Unimodular matrix in this

study employing a unique logistic function as the key.

n>4, yet it just requires two parameters (password 1-2).

Encrypted files are more secure when Partition, Hill

cipher shift cipher 128 are used together. The

experimental findings indicate that the encrypted video

is challenging for human eyes to decrypt. The

program's slowness when encrypting files with big

capacities is another flaw in this study. In this study,

there is still an opportunity for future research, namely,

to create a special function that maps audio-video into

a matrix form so that it can be more real-time when

performing the encryption process. Furthermore, in the

future, it is still possible to combine several classic

encryption methods that can be combined with the

methods that have been successfully implemented,

namely the hill cipher, shift cipher partition methods.

Samsul Arifin et al. / Journal of Computer Science 2023, 19 (7): 847.860

DOI: 10.3844/jcssp.2023.847.860

859

Acknowledgment

The authors would like to thank the reviewers for

their informative comments, and suggestions ideas,

which have helped mould this manuscript into

something that is worthy of publication. This study is

supported by the research and technology transfer

office, Bina Nusantara University as a part of Bina

Nusantara University’s International Research Grant

(PIB 2023) with contract number:

029/VRRTT/III/2023.

Funding Information

This study is supported and funded by Bina Nusantara

University Research and Technology Transfer Office

under the terms of the university's International Research

Grant (PIB 2023) under contract number

029/VRRTT/III/2023.

Author’s Contributions

Samsul Arifin, Wihikanwijna and Indra Bayu

Muktyas: Coding the program, written, and finalized

the manuscript.

Suwarno: Written and finalized the manuscript.

 Muhammad Amien Ibrahim: Coding the program

and simulating the data.

Felix Indra Kurniadi and Nerru Pranuta

Murnaka: Simulating the data, tidying up the theoretical

basis and the methods we use.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that there

is no conflict of interest in this study and no ethical

issues involved.

References

Abderrahim, N. W. Benmansour, F. Z. & Seddiki, O.

(2012). "Integration of chaotic sequences uniformly

distributed in a new image encryption algorithm," Int.

Comput. Sci. Issues, vol. 9, no. 2, pp. 389-394.

Anton, H. (2018). Elementary Linear Algebra. John

Wiley & Sons, Limited, 2018.

https://books.google.co.id/books?id=ypROEAAAQ

BAJ

Arifin, S., & Garminia, H. (2019). Uniserial dimension of

module zm × zn over Z using python. Int. J. Sci.

Technol. Res, 8, 194-9.

https://www.researchgate.net/publication/33476979

7_Uniserial_Dimension_Of_Module_ZmxZn_Over

_Z_Using_Python

Arifin, S., & Muktyas, I. B. (2018). Membangkitkan suatu

matriks unimodular dengan python. Jurnal Derivat:

Jurnal Matematika Dan Pendidikan Matematika,

5(2), 1-9.

Arifin, S., Kurniadi, F. I., Yudistira, I. G. A., Nariswari,

R., Murnaka, N. P., & Muktyas, I. B. (2022a,

September). Image Encryption Algorithm through

Hill Cipher, Shift 128 Cipher Logistic Map Using

Python. In 2022 3rd International Conference on

Artificial Intelligence and Data Sciences

(AiDAS) (pp. 221-226). IEEE.

Arifin, S., Muktyas, I. B., Al Maki, W. F., & Aziz, M. M.

(2022b). Graph coloring program of exam scheduling

modeling based on Bitwise coloring algorithm using

Python. Journal of Computer Science, 18(1), 26-32.

https://doi.org/10.3844/jcssp.2022.26.32

Arifin, S., Muktyas, I. B., Prasetyo, P. W., & Abdillah, A.

A. (2021). Unimodular matrix and bernoulli map on

text encryption algorithm using python. Al-Jabar:

Jurnal Pendidikan Matematika, 12(2), 447-455.

https://doi.org/10.24042/ajpm.v12i2.10469

Basavaiah, J., Anthony, A. A., & Patil, C. M. (2021).

Visual Cryptography Using Hill Cipher and

Advanced Hill Cipher Techniques. In Advances in

VLSI, Signal Processing, Power Electronics, IoT,

Communication and Embedded Systems: Select

Proceedings of VSPICE 2020 (pp. 429-443).

Springer Singapore. https://doi.org/10.1007/978-

981-16-0443-0_34

Delmi, A., Suryadi, S., & Satria, Y. (2020). Digital image

steganography by using edge adaptive based chaos

cryptography. In Journal of Physics: Conference

Series (Vol. 1442, No. 1, p. 012041). IOP Publishing.

https://doi.org/10.1088/1742-6596/1442/1/012041

Dooley, J. F. (2018). The Machines Take Over: Computer

Cryptography. In: History of Cryptography and

Cryptanalysis. History of Computing. Springer, Cham.

https://doi.org/10.1007/978-3-319-90443-6_10

Elkamchouchi, H., Salama, W. M., & Abouelseoud, Y.

(2020). New video encryption schemes based on chaotic

maps. IET Image Processing, 14(2), 397-406.

https://doi.org/10.1049/iet-ipr.2018.5250

Gupta, R., Pachauri, R., & Singh, A. K. (2019). Image

encryption method using dependable multiple chaotic

logistic functions. International Journal of Information

Security and Privacy (IJISP), 13(4), 53-67.

https://doi.org/10.4018/IJISP.2019100104

Hanson, R. (1982). Integer matrices whose inverses

contain only integers. The Two-Year College

Mathematics Journal, 13(1), 18-21.

https://www.tandfonline.com/doi/abs/10.1080/0049

4925.1982.11972572?journalCode=ucmj19

https://books.google.co.id/books?id=yp

Samsul Arifin et al. / Journal of Computer Science 2023, 19 (7): 847.860

DOI: 10.3844/jcssp.2023.847.860

860

Hussein, M. K., & Amintoosi, H. (2023). Protection of

images by combination of vernam stream cipher,

AES and LSB steganography in a video clip. Bulletin

of Electrical Engineering and Informatics, 12(3),

1578-1585. https://doi.org/10.11591/eei.v12i3.4039

Ibrahim, A. K., Hagras, E. A., Mohamed, A. N. F., & El-

Kamchochi, H. A. (2021, July). Chaotic isomorphic

elliptic curve cryptography for secure satellite image

encryption. In 2021 International Telecommunications

Conference (ITC-Egypt) (pp. 1-7). IEEE.

https://doi.org/10.1109/ITC-

Egypt52936.2021.9513949

Jameel, E. A., & Fadhel, S. A. (2022). Digital Image

Encryption Techniques: Article Review.

https://doi.org/10.47577/technium.v4i2.6026

Jarjar, M., Najah, S., Zenkouar, K., & Hraoui, S. (2020,

April). Further improvement of the HILL method

applied in image encryption. In 2020 1st

International Conference on Innovative Research

in Applied Science, Engineering and Technology

(IRASET) (pp. 1-6). IEEE.

https://doi.org/10.1109/IRASET48871.2020.9092046

Komosko, L., Batsyn, M., Segundo, P. S., & Pardalos, P.

M. (2016). A fast greedy sequential heuristic for the

vertex colouring problem based on bitwise

operations. Journal of Combinatorial Optimization,

31, 1665-1677.

https://doi.org/10.1007/s10878-015-9862-1

Kordov, K. (2021). Text encryption algorithm for secure

communication. International Journal of Applied

Mathematics, 34(4), 705.

Muktyas, I. B., & Arifin, S. (2018). Semua Subgrup Siklik

dari Grup (Zn, +). Teorema: Teori dan Riset

Matematika, 3(2), 177-186.

 https://doi.org/10.1109/AiDAS56890.2022.9918696

Muktyas, I. B., Sulistiawati, & Arifin, S. (2021, April).

Digital image encryption algorithm through

unimodular matrix and logistic map using Python.

In AIP Conference Proceedings (Vol. 2331, No. 1, p.

020006). AIP Publishing LLC.

https://doi.org/10.1063/5.0041653

Obaida, T. H., Jamil, A. S., & Hassan, N. F. (2022). A

Review: Video Encryption Techniques, Advantages

and Disadvantages. Webology 19(1).

https://www.webology.org/data-

cms/articles/20220308035845pmwebology%2019%

20(1)%20-%2098%20pdf.pdf

Ojobor, S. A., & Obihia, A. (2021). Modified Variational

Iteration Method for Solving Nonlinear Partial

Differential Equation using Adomian

Polynomials. Mathematics and Statistics, 9(4),

456-464. https://doi.org/10.13189/ms.2021.090406

Oliphant, T. E. (2007). Python for scientific

computing. Computing in Science & Engineering,

9(3), 10-20.

https://doi.org/10.1109/MCSE.2007.58

Paragas, J. R., Sison, A. M., & Medina, R. P. (2019, June).

Hill cipher modification: A simplified approach.

In 2019 IEEE 11th International Conference on

Communication Software and Networks

(ICCSN) (pp. 821-825). IEEE.

https://doi.org/10.1109/ICCSN.2019.8905360

Rahman, M. N. A., Abidin, A. F. A., Yusof, M. K., &

Usop, N. S. M. (2013). Cryptography: A new approach

of classical hill cipher. International Journal of Security

and its Applications, 7(2), 179-190.

https://www.earticle.net/Article/A210948

Rajvir, C., Satapathy, S., Rajkumar, S., & Ramanathan, L.

(2020). Image encryption using modified elliptic

curve cryptography and Hill cipher. In Smart

Intelligent Computing and Applications:

Proceedings of the Third International Conference

on Smart Computing and Informatics, Volume 1 (pp.

675-683). Springer Singapore.

https://doi.org/10.1007/978-981-13-9282-5_64

Rihartanto, R., Ningsih, R. K., Gaffar, A. F. O., & Utomo,

D. S. B. (2020). Implementasi vigenere cipher 128

dan rotasi bujursangkar untuk pengamanan

teks. Jurnal Teknologi dan Sistem Komputer, 8(3),

201-209.

Rosalina, N. H. (2020). An approach of securing data

using combined cryptography and steganography.

International Journal of Mathematical Sciences and

Computing (IJMSC), 6(1), 1-9.36)

https://doi.org/10.5815/ijmsc.2020.01.01

Suresh, P., & Ratheesh, T. K. (2020). A Data Security

Scheme for the Secure Transmission of Images.

In Intelligent Data Communication Technologies and

Internet of Things: ICICI 2019 (pp. 147-154).

Springer International Publishing.

 https://doi.org/10.1007/978-3-030-34080-3_17

Taj, A. M., Abouhilal, A., Taifi, N., & Malaoui, A. (2021).

Embedded Electronics Applied in Remote

Laboratories Using NodeJs. Iraqi Journal of Science,

1-6. https://doi.org/10.24996/ijs.2021.SI.1.1.

Yang, P., Xiong, N., & Ren, J. (2020). Data security and

privacy protection for cloud storage: A survey. IEEE

Access, 8, 131723-131740.

https://doi.org/10.1109/ACCESS.2020.3009876

Ye, R., & Ma, Y. (2013). A Secure and Robust Image

Encryption Scheme Based on Mixture of Multiple

Generalized Bernoulli Shift Maps and Arnold

Maps. International Journal of Computer Network &

Information Security, 5(7).

https://doi.org/10.5815/ijcnis.2013.07.03

